Multiphysics couplings and stability in geomechanics

Jean Sulem, Ioannis Stefanou

Laboratoire Navier, Ecole des Ponts ParisTech, IFSTTAR, CNRS UMR 8205,
Université Paris-Est, Marne-la-Vallée, France
jean.sulem@enpc.fr, ioannis.stefanou@enpc.fr

Aknowledgments: N. Brantut, V. Famin, A. Schubnel, M. Veveakis
Seismic event: Unstable slip along a pre-existing mature fault (stick-slip instability)

Fault zone embedded in an elastic crustal block

Conceptual model of a spring slider system

Key factor for the nucleation of seismic slip: Softening of the shear resistance of the fault zone
Example of coupled processes during seismic slip

- Rapid slip
 - Frictional heat
 - Temperature increase (Shear heating)
 - Pore pressure increase (Thermal pressurization)
 - Slip weakening
 - Fluid mass increase
 - Heat consumed in endothermic reactions
 - Temperature rise inhibited
 - Mineral decomposition
 - Solid volume decrease
 - Porosity increase
 - Permeability increase
 - Pore pressure decrease
 - Slip strengthening
Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects

- The endothermic chemical reaction limits the co-seismic temperature increase
- Pore pressure exhibits a maximum and then decreases due to the reduction of solid volume (pore pressure pulse)
- Weakening/restrengthening of the shear stress

A key parameter:
Size of the localized zone
ADIABATIC SHEAR BANDING
Adiabatic shear-banding (1/3)

Strain rate hardening and Temperature softening

\[\tau = \tau_0 + H (\dot{\gamma} - \dot{\gamma}_0) + \xi (T - T_s) \]

\(\tau \): threshold for temperature softening

\(H = \frac{\partial \tau}{\partial \dot{\gamma}} \) : strain rate hardening modulus

\(\xi = \frac{\partial \tau}{\partial T} \) : temperature softening coefficient

Simple model:
Adiabatic shear-banding (2/3)

We consider a shear experiment at constant strain rate

\[\dot{\gamma}_0 = \frac{V}{h} \]

Assumption: all the frictional energy is converted into heat

\[\rho C \dot{T} = \tau \dot{\gamma}_0 = \left(\tau_0 + \xi (T - T_s) \right) \dot{\gamma}_0 \]

at \(t = 0 \): \(T = T_s \) and \(\tau = \tau_0 \)

\(\rho C \): specific heat

Integrating the above differential equation we get:

\[T = T_s + \frac{\tau_0}{\xi} \left(1 - \exp \left(\frac{\xi \dot{\gamma}_0}{\rho C} t \right) \right) \]

\[\tau_c = \tau_0 \exp \left(\frac{\xi \dot{\gamma}_0}{\rho C} t \right) = \tau_0 \exp \left(\frac{\xi}{\rho C} \gamma \right) \]

for \(t \to \infty \): \(T \to T_s + \frac{\tau_0}{-\xi} \) and \(\tau \to 0 \)
Linear stability analysis of adiabatic shear-banding (1/5)

To study the stability of adiabatic shear banding we perform a linear perturbation analysis of the uniform solution

\[T(z, t) = \overline{T}(t) + T_1(z, t) \]

\[V(z, t) = \dot{\gamma}_0 z + V_1(z, t) \]

\[\tau(z, t) = \overline{\tau}(t) + \tau_1(z, t) \]

\[T_1(z, t) = A \exp(st) \exp \left(\frac{2\pi i z}{\lambda} \right) \]

\[V_1(z, t) = B \exp(st) \exp \left(\frac{2\pi i z}{\lambda} \right) \]

\[\tau_1(z, t) = D \exp(st) \exp \left(\frac{2\pi i z}{\lambda} \right) \]

\(s \) is the \textbf{growth coefficient} in time of the instability

\(\lambda = h/N \) is the \textbf{wave length} of the instability \((N=1,2,\ldots \text{ wave number})\)
Stability analysis of adiabatic shear-banding (2/5)

Governing equations (with heat diffusion term)

Constitutive equation:
\[\tau = \tau_0 + H (\dot{\gamma} - \dot{\gamma}_0) + \xi (T - T_s) \]

Energy balance:
\[\rho C \left(\dot{T} - c_{th} \frac{\partial^2 T}{\partial z^2} \right) = \tau \dot{\gamma} \]

Momentum balance:
\[\frac{\partial \tau}{\partial z} = \rho \frac{\partial V}{\partial t} \]

\(c_{th} \): thermal diffusivity

\[
\begin{bmatrix}
\xi & H \frac{2\pi i}{\lambda} & -1 \\
\rho C \left(s + c_{th} \left(\frac{2\pi}{\lambda} \right)^2 \right) & -\tau_0 \frac{2\pi i}{\lambda} & -\dot{\gamma} \\
0 & \rho s & -\frac{2\pi i}{\lambda}
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
D
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

For non trivial solution: \((A, B, C) \neq (0, 0, 0)\)

\[
\rho C \rho s^2 + \rho C \left(\rho c_{th} + H \right) \left(\frac{2\pi}{\lambda} \right)^2 - \xi \rho \dot{\gamma}_0 \left(\frac{2\pi}{\lambda} \right)^2 + \xi \tau_0 \left(\frac{2\pi}{\lambda} \right)^2 + \rho C_{th} H \left(\frac{2\pi}{\lambda} \right)^4 = 0
\]

Stability condition: All the roots of the characteristic equation have a negative real part
Stability analysis of adiabatic shear-banding (3/5)

For strain rate and temperature softening \((H < 0 \text{ and } \xi < 0)\), the uniform solution is unstable for all wave lengths of the perturbation.

For strain rate hardening and temperature softening \((H > 0 \text{ and } \xi < 0)\)

Stability condition:

\[
\xi \tau_0 + c_{th} H \rho C \left(\frac{2 \pi}{\lambda} \right)^2 > 0 \iff \lambda < \lambda_{cr}, \text{ with } \lambda_{cr} = 2 \pi \sqrt{\frac{c_{th} H \rho C}{\xi \tau_0}}
\]

Perturbations with wavelengths shorter than the critical value will decay exponentially; those greater than the critical value will grow exponentially.

Only shear zones with a thickness \(h < \lambda_{cr}/2\) will support stable homogeneous shear.
Stability analysis of adiabatic shear-banding (4/5)

Numerical example

c_{th} = 1\, \text{mm}^2 / \text{s}
ρC = 2.7\, \text{MPa/°C}
τ_0 = 70\, \text{MPa}
H = 0.05\, \text{MPa.s}
ξ = -0.5\, \text{MPa/°C}

\begin{align*}
\lambda_{cr} &= 2\pi \sqrt{\frac{c_{th} H \rho C}{-\xi \tau_0}} \\
\lambda_{cr}(\tau_0 = 70\, \text{MPa}) &= 0.39\, \text{mm} \\
\lambda_{cr}(\tau_0 \to 0) &= \infty
\end{align*}

For \(\lambda \geq \lambda_{cr} \) the growth coefficient \(s \) of the instability reaches a maximum for a particular wave length \(\lambda \)

Shear will localize in narrow zones with a size controlled by the wave length with fastest growth coefficient of the instability
Stability analysis of adiabatic shear-banding (5/5)

Evolution in time and space of the strain rate

Mode (1)

Mode (3)
THERMAL PRESSURIZATION OF THE PORE FLUID: A MECHANISM OF THERMAL SOFTENING
Undrained adiabatic shearing of a saturated rock layer

\[p = p_0 + \left(\sigma_n - p_0 \right) \left(1 - \exp\left(- \frac{f \Lambda}{\rho C} \dot{\gamma}_0 t \right) \right) \]

\[T = T_0 + \left(\frac{\sigma_n - p_0}{\Lambda} \right) \left(1 - \exp\left(- \frac{f \Lambda}{\rho C} \dot{\gamma}_0 t \right) \right) \]

Solution:

The pore-pressure increases towards the imposed normal stress \(\sigma_n \).

In due course of the shear heating and fluid pressurization process, the shear strength \(\tau \) is reduced towards zero.

mass balance: \(\frac{\partial p}{\partial t} = \Lambda \frac{\partial T}{\partial t} \)

energy balance: \(\frac{\partial T}{\partial t} = \frac{1}{\rho C} \left(\sigma_n - p \right) f \frac{V}{h / 2} \)

\[f = f_0 + H \log \frac{\dot{\gamma}}{\dot{\gamma}_0} \]

is the rate-dependent friction coefficient

\[\Lambda = \frac{\frac{\lambda_f}{\beta_n} - \frac{\lambda_n}{\beta_f}}{\beta_n + \beta_f} \]

is the coefficient of thermal pressurization

(typical values: 0.1 to 1 MPa/°C)
Linear stability analysis of undrained adiabatic shearing of a saturated rock layer

Stability condition: \[\lambda < \lambda_{cr}, \text{ with } \lambda_{cr} = 2\pi \sqrt{\frac{H \rho C}{f_0 \Lambda} \left(c_{th} + c_{hy} \right)} \left(f_0 + 2H \right) \dot{\gamma}_0 \]

Only shear zones with a thickness \(h < \lambda_{cr}/2 \) will support stable homogeneous shear.

Competing processes: Fluid and thermal diffusion and rate-dependent frictional strengthening tend to expand the localized zone, while thermal pressurization tends to narrow it.

For representative material parameters at a seismogenic depth of 7km, \(V=1\text{m/s}, \ h=10\text{mm} \)

\[\lambda_{cr}/2 = 3\mu\text{m for intact material, 23 }\mu\text{m for damaged material} \]

The localized zone thickness may be comparable with the gouge grain size.
LOCALIZED ZONE THICKNESS AND MICROSTRUCTURE

Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure

Sulem, Stefanou, Veveakis, (2011), *Granular Matter*

Strain hardening elasto-plasticity for 2D Cosserat continuum
Rock layer at great depth (7km)

Cosserat continuum
- Cosserat terms are active only in the post localization regime
- Microinertia
- Wave length selection is obtained (wave length with fastest growth in time)

Cauchy continuum
- The critical hardening modulus for instability is unchanged \(h_{cr} = 0.015 \).
- The growth coefficient tends to infinity for the infinitely small wave length limit (ill-posedness).
• The selected wavelength decreases with decreasing hardening modulus and reaches a minimum (for $\lambda \sim 200$).

λ is the wavelength normalized by the internal length of the Cosserat model R (grain size).

• With $R=10\mu m$ (grain size for highly finely granulated fault core) the obtained localized zone thickness is about 1mm which is compatible with field observations of localized shear zones in broader damaged fault zones.
Effect of chemical reactions such as thermal decomposition of minerals on the localized zone thickness

Mass balance: Pore pressure diffusion and generation

\[
\frac{\partial p}{\partial t} = \Lambda \frac{\partial T}{\partial t} + c_{hy} \frac{\partial^2 p}{\partial z^2} + \frac{1}{\rho_f \beta^*} \frac{\partial m_d}{\partial t} - \frac{1}{\beta^*} \frac{\partial n_d}{\partial t}
\]

- Thermal pressurization
- Fluid diffusion
- Fluid production
- Porosity increase (solid decomposition)

Energy balance

\[
\frac{\partial T}{\partial t} = c_{th} \frac{\partial T^2}{\partial z^2} + \frac{1}{\rho C} \tau \frac{\partial v}{\partial z} - \frac{1}{M_{CaCO_3} \rho C} \Delta H^0 \frac{\partial m_d}{\partial t}
\]

- Heat diffusion
- Frictional heat
- Heat consumed in the chemical reaction
Example: Thermal decomposition of Carbonate

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2
\]

calcite \quad \text{lime}

For representative material parameters at a seismogenic depth of 7km, a selected wave length of 4-5 * Cosserat length scale is obtained.

The shear band thickness is initially controlled by the thermal pressurization and can be reduced when the temperature of the slipping zone reaches the critical temperature of mineral decomposition (about 700°C for carbonates).
CHEMICAL DEGRADATION AND COMPACTION INSTABILITIES IN GEOMATERIALS

Stefanou & Sulem, (2014), *J. Geoph. Res*
Theoretical framework for deformation bands formation

Criterion for compaction bands without dissolution: \(\beta + \mu \leq -\sqrt{3} \)

Associate plasticity: \(\beta = \mu = -\frac{\sqrt{3}}{2} \)

\(\zeta \) is a chemical softening parameter (e.g. Grain Dissolution)

\[\begin{align*}
\zeta & = \frac{1}{d} \\
\mu & = \frac{d \gamma_p}{dp} < 0 \\
\end{align*} \]

\[d \varepsilon_p = \beta d \gamma_p > 0 \]

\[
\begin{align*}
\beta \mu & = -\frac{\sqrt{3}}{2} \\
\end{align*}
\]

Issen & Rudnicki (2000)

\[\begin{align*}
\theta = 90^\circ \\
\theta = 0^\circ \\
\theta = 40^\circ \\
\end{align*} \]

\[\begin{align*}
\text{Dilation Bands} \\
\text{Shear Bands} \\
\text{Compaction Bands} \\
\end{align*} \]

\[\begin{align*}
k_{\sigma} < 0 \\
k_{\sigma} = 0 \\
\end{align*} \]

...
Distinction of scales

Macro-scale / Elementary volume (REV)
- Constitutive behavior
- Momentum balance
- Mass balance

Micro-scale / Single Grain
- Reaction kinetics of dissolution
- Grain crushing
Reaction kinetics (micro-scale)

\[
\frac{\partial w_2}{\partial t} = k^* S \left(1 - \frac{w_2}{w_2^{eq}} \right) e
\]

- \(w_2\) is the mass fraction of the dissolution product in the fluid
- \(k^*\) is a reaction rate coefficient
- \(e\) is the void ratio
- \(S \propto \frac{1}{D}\) is the specific area of a single grain of diameter \(D\)

Example reactions
- Dissolution of quartz:
 \[\text{SiO}_2(\text{solid}) + 2\text{H}_2\text{O}(\text{liquid}) \rightarrow \text{H}_4\text{SiO}_4(\text{aqueous solution})\]
- Carbonate:
 \[\text{CaCO}_3(\text{solid}) + \text{H}_2\text{CO}_3(\text{aqueous solution}) \rightarrow \text{Ca}\left(\text{HCO}_3\right)_2(\text{aqueous solution})\]
Evolution of the effective grain size
Grain crushing (micro-scale)

$$D = D_0 \left(\frac{a}{a + E_T} \right)$$

or

$$S = S_0 \left(1 + \frac{E_T}{a} \right)$$

- a is a material constant which describes grain crushability
- E_T is the total energy density given to the system

Baud et al. (2009)
Constitutive behavior (macro-scale)

Modified Cam-Clay plasticity model

\[f = q^2 + M^2 p'(p' - p'_c) = 0 \]

\[p'_c = p'_R - (p'_R - p'_0) \zeta^{\kappa} \]

Non local chemical softening

\[\frac{\partial \zeta}{\partial t} = -\frac{\mu_3 \rho_f}{\mu_2 \rho_s} e \zeta \frac{\partial w^M_2}{\partial t} \]

\[w^M_2 = \frac{1}{V_T v_T} \int w_2 dV \approx w_2 + \ell_c^2 \frac{\partial^2 w_2}{\partial z^2} \]

\(\ell_c \) characteristic length
Mass balance (macro-scale)

\[
\frac{\partial p_f}{\partial t} = c_{hy} \nabla^2 p_f - \frac{1}{n \beta_f} \frac{\partial \varepsilon}{\partial t} - c_{p,ch} \frac{\partial w_2}{\partial t}
\]

- \(c_{hy} \) is the hydraulic diffusivity
- \(n \) is the porosity
- \(\beta_f \) is the fluid compressibility
- \(c_{p,ch} \) is the chemical pressurization coefficient
- \(p_f \) is pressure of the fluid
- \(\varepsilon \) is the volumetric strain
Linear stability analysis of oedometric compaction

\[u_z(z,t) = u_z^h + \tilde{u}_z(z,t) \]
\[\tilde{u}_z(z,t) = U e^{st} \cos\left(\frac{z}{\lambda}\right) \]

\[p_f(z,t) = p_f^h + \tilde{p}_f(z,t) \]
\[\tilde{p}_f(z,t) = P e^{st} \sin\left(\frac{z}{\lambda}\right) \]

\[w_2(z,t) = w_2^h + \tilde{w}_2(z,t) \]
\[\tilde{w}_2(z,t) = W e^{st} \sin\left(\frac{z}{\lambda}\right) \]

s is the growth coefficient of the perturbation (Lyapunov exponent)
Numerical example: Compaction banding in a reservoir

Carbonate grainstone

Elastic constants

\[K = 5 \text{GPa} \]
\[G = 5 \text{GPa} \]

Physical properties

\[c_{hy} = 10^{-3} \text{m}^2 \text{s}^{-1} \]
\[D_0^{50} = 0.2 \text{mm} \]
\[n = 0.25 \]

Cam clay yield surface

\[p_R' \approx 0 \text{MPa} \]
\[p_0' = 30 \text{MPa} \]
\[M = 0.9 \]

Chemical parameters

\[k_\text{'} = 10^{-6} \text{mol s}^{-1} \text{m}^{-2} \]

Initiation stress state at 1.8 km (oedometric)

\[\sigma_n \geq 45 \text{MPa} \]
\[p_f \geq 18 \text{MPa} \]

Grain crushing parameter:

\[a = 0.5 \text{ MPa} \]
Linear Stability Analysis & zones of instability

$$\mu = \beta = -\frac{\sqrt{3}}{2}$$

Instability region

Instability region becomes larger

Tendency for grain crushing $$\frac{1}{a} \uparrow$$
Oedometric stress path
Wave length selection
Wave length selection – influence of the hydraulic diffusivity
Wave length selection – influence of grain crushing and dissolution rate
Conclusions

- Importance of coupled processes in seismic slip: shear heating, pore fluid pressurization, thermal decomposition of minerals...

- Thermal decomposition of minerals can explain the lack of pronounced heat outflow along major tectonic faults

- A key parameter: thickness of the localized zone (competition of several length scales)

- Thickness and periodicity of compaction bands: a new chemo-mechanical model with strong coupling that accounts for the increase of dissolution kinetics rate because of grain crushing