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Preface

From 28th September to 30th September 2023, the ALERT Doctoral School 2023 is
scheduled to be held in Aussois and will be dedicated to “Machine Learning in Ge-
omechanics”. The School has been organized by Ioannis Stefanou (EC-Nantes) and
Félix Darve (Université Grenoble-Alpes). I sincerely thank the organizers and all the
contributors to this book for their effort!

Constitutive modelling, numerical modelling of geotechnical structures, and image
correlation are central activities of ALERT researchers in Geomechanics. These ac-
tivities offer several opportunities for Machine Learning to improve their applications.
For instance, when constitutive models are developed to include more microstructural
features, their complexity and computational expense also increase. Employing ML
is undoubtedly a promising approach to speed up the process. I strongly believe that
Machine Learning will become a common tool for development in geomechanics in
the near future, thus making this school beneficial to the ALERT community.

The three-day school will explain what machine learning entails, with a focus on the
most essential methods. These methods will be demonstrated in solving geomechanics
problems, with specific sessions devoted to their applications, aiming to exhibit their
efficiency and limitations.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials (http: // alertgeomaterials. eu/ publications/ ) after
the school. On behalf of the ALERT Board of Directors I wish all participants a suc-
cessful ALERT Doctoral School 2023!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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_____________________________________________________________________________________

Machine Learning in Geomechanics:
Foreword

____________________________________________________________________

When discussing about artificial intelligence (AI), some basic questions are immedi-
ately emerging such as: what AI is? how does it work? Behind this popular term,  
there is a collection of methods of Applied Mathematics that allow the computer to 
learn and identify patterns in data. This collection of methods is called Machine 
Learning (ML) and it is the target of ALERT’s 2023 Doctoral School.
In combination with the tremendous increase of the computational power, Machine 
Learning has led to incredible achievements in many disciplines of science and tech-
nology. These achievements were that striking that some researchers believe that 
ML could become a turning point for humanity, as the discovery of fire was for our  
far ancestors!
Until the sixties, the scientific development has been characterized by the so-called 
“linear physics” and by modeling represented by analytical equations solved explic-
itly by the available mathematical tools giving rise to analytical solutions. The field 
of problems which can be solved in this way is, of course, precious, but very limited.
Then the numerical revolution, based on powerful numerical methods and comput-
ers,  allowed to solve numerically a great variety of  problems, which can be de-
scribed by a known system of equations. Many limits of this methodology are known 
due to the abundance of non-linear processes in nature, chaos and complexity. In 
any  case,  Numerical  Analysis,  another  branch of  Applied  Mathematics,  has  im-
mensely enlarged the class of problems that can be solved today.
However, the numerical solutions of these sets of non-linear equations can be com-
putationally very intensive or even impossible. Moreover, many problems in engi-
neering are hard to describe by a set of equations. Machine Learning tools provide 
promising methods for addressing both those problems.
Another aspect of ML algorithms is their ability to solve very complex problems in a 
“creative” manner. One characteristic example of creativity was shown when the 
machine won the world champion of the Go game, which was invented a long time 
ago in China. Differently from chess, in which the computer can predict the game 
evolution several  moves in advance,  in Go the number of  possible moves  is  ex-
tremely large (higher than the number of atoms in the known universe). Therefore, it 
is  necessary  to  follow creative  strategies.  Indeed,  the machine,  “AlphaGo”,  has 
shown that it is able to carry out novel strategies that surprised even the best human 
players in the world. 
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All these methods of Machine Learning, give new powerful tools to scientists and en-
gineers and open new perspectives in Geomechanics. The target of this volume is to 
demystify Machine Learning, to present its main methods and to show some exam-
ples of applications in (geo-)mechanics. Most of the chapters of the volume were 
drafted having in mind to provide a pedagogical introduction to the most important 
methods of ML and to uncover the fundamental notions behind them. 
The volume is organized in ten chapters:
The first chapter, “Overview of Machine Learning”, is the introductory chapter of 
this volume. In this chapter we explain how the machine can learn, we show a clas-
sification of the main methods in Machine Learning, we outline some applications of 
ML in Geomechanics and we highlight its limitations.
The second chapter, “Introduction to regression methods”, focuses on regression, 
which is one of  the fundamental  pillars of  supervised Machine Learning. In this 
chapter we introduce the essential concepts in regression analysis and methods, by 
providing hands-on, practical examples.
The target of the third chapter, “Unsupervised Learning: Basic Concepts and Appli-
cation to Particle Dynamics”, is twofold. The first part of this chapter is devoted to  
the description of the basic concepts of the most popular techniques of unsupervised 
learning. The second part illustrates an application of unsupervised learning to the 
discovery of patterns in particles dynamics. 
The fourth chapter, “Classification Techniques in Machine Learning”, aims at de-
scribing what the problem of classification in Machine Learning is and illustrates 
some of the methods used for solving it, without resorting to Artificial Neural Net-
works. Hands-on examples are given and Active Learning is discussed.
Chapter five, “Data-Driven Modeling in Geomechanics”, presents the theoretical 
framework of the so called data-driven computational mechanics. Furthermore, it 
shows some of its applications for the solution of problems involving Cauchy and 
Cosserat continua with elastic and inelastic materials, which, naturally, represent 
common descriptions of geomaterials.
The  sixth  chapter,  “Non-Euclidean machine  learning for  geomechanics”,   is  in-
tended to provide a concise review on how to train, verify and validate constitutive 
models enhanced by graph-theoretic data.  The use of graph convolutional neural 
networks  for  constitutive  modeling,  material  design,  and  the  solution  of  inverse 
problems is discussed.
The next two chapters, “Artificial Neural Networks: layer architectures, optimizers 
and automatic differentiation” and “Artificial Neural Networks: advanced topics” 
provide a comprehensive introduction to Artificial Neural Networks (ANN). Several 
hands-on examples are given to help the reader grasp the main ideas and tools of 
the most important ANN architectures. More advanced topics are also discussed and 
the connection of ANN with information theory is made.
Chapter  nine  “Physics-informed  and  thermodynamics-based  neural  networks” 
shows how to inject prior knowledge into deep learning algorithms. Using various 
examples, we present Physics-Informed Neural Networks for the discovery of partial 
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differential equations and Thermodynamics-based Artificial Neural Networks for the 
discovery of constitutive models of complex, inelastic materials.
The last chapter, “Introduction to Reinforcement Learning with Applications in Ge-
omechanics”, presents the basic concepts of Reinforcement Learning, which enables 
the development of software agents that are capable of making optimal decisions in 
dynamic and uncertain environments. The chapter closes with two applications of 
Reinforcement Learning in Geomechanics.
We deeply thank all the authors of this volume for their comprehensive contributions 
and their effort to present complex notions in a pedagogical manner. We hope that 
the chapters provide a valuable introduction to Machine Learning in Geomechanics.

Ioannis Stefanou
Félix Darve
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Overview of Machine Learning

Ioannis Stefanou

Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183,
F-44000, Nantes, France

1 What machine learning is?

One of the best methods for making a puppy to learn its name is to play the name
game:

1. Take your puppy to a quiet place and gain its attention by calling its name in a
happy and reassuring tone (e.g. LoupI look at me or LoupI come here!).

2. As soon as you’ve gained its attention, reward it with a treat to encourage its
good behavior.

3. Repeat this process several times until your puppy has learned to respond to its
name.

In the above iterative process the puppy learns from experience that reacting when
you call its name is a good thing. By repeating this process, the puppy recognizes the
pattern between similar, but not identical vocal signals of its name (training data) and
associates them with a specific behavior (task).

Many cognitive processes of humans involve a similar way for associating patterns
with specific reactions, see for instance how we learn to drive a car, speak a foreign
language or even understanding how a geomaterial behaves!

Machine learning (ML) is an anthropomorphic extension of the above process of
“learning” to a computer program, i.e. to the machine. By learning, the machine
will progressively improve its performance in executing a specific task. According to
Tom Mitchel [Mit97], ML can be defined as follows:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

The whole set of examples that the computer will use during learning is the training
set, while each training example is called a training instance or sample. The whole
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process of learning is called training. The training set is usually distinguished into
training data, validation data and test data. More details about those sets and their
importance will be given in section 5 and in Chapters 2 and 7.

A popular example showing the power of ML was AlphaGo, a ML program, which
won the human world champion of Go (see also [SHM+16] and Chapter 10 for Rein-
forcement Learning). Go is a strategy board game for two players in which the aim is
to cover more territory than the opponent (see Figure 1). Despite its relatively simple
rules, Go is extremely complex. The state-space complexity of Go, i.e. the number of
legal game positions reachable from the initial position of the game [All94], is of the
order of 10170 [TF07], which is much higher than that of chess, which is of the order
of 1044 [Sha50], and certainly higher than the number of atoms in the universe. This
makes Go a great challenge for ML algorithms.

Applying the above mentioned definition in a ML program for Go, the performance,
P, will be measured by the ability of the machine to win its opponent by gaining
experience, E, by executing multiple times the task, T, which is playing the game with
itself. Experience can be also obtained by processing existing games of other (human)
players.

Figure 1: Eighteen times Go world champion Lee Sedoll playing with the machine
(courtesy: Lee Jin-man / AP, The New Yorker,
https://www.newyorker.com/tech/annals-of-technology/

alphago-lee-sedol-and-the-reassuring-future-of-humans-and-machines).

Another recent popular example of machine learning is ChatGPT chatbot developed
by OpenAI. ChatGPT was released in November 2022 and provoked a massive public
reaction. Let us see what it answers when we ask it to describe itself and what it knows
about ALERT Geomaterials.

6 Machine Learning (ML) in Geomechanics
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Ioannis: Describe your self.

ChatGPT: I am ChatGPT, an AI language model developed by OpenAI. I have
been trained on a vast amount of text data from the internet, books, and other
sources. My purpose is to assist users in generating human-like text responses
and providing information on a wide range of topics.

I don’t have a physical form or personal experiences like humans do, but I
can understand and generate text in multiple languages. I strive to provide
helpful and accurate responses to the best of my abilities, drawing upon the
knowledge I have acquired during my training.

I can engage in conversations, answer questions, offer explanations, and as-
sist with various tasks. However, please keep in mind that while I strive for
accuracy, I may occasionally generate incorrect or incomplete information.
It’s always a good idea to verify important details from reliable sources.

Overall, I am here to assist and provide information to the best of my abilities.
Feel free to ask me anything you’d like to know or engage in a conversation on
any topic of your interest.

Ioannis: How do you work?

ChatGPT: As an AI language model, my functioning can be divided into two
main phases: training and inference.

Training: During the training phase, large amounts of text data are used to
train the model. In the case of GPT models like ChatGPT, this training in-
volves a process called unsupervised learning. The model learns to predict
what comes next in a given sequence of text, based on the patterns and rela-
tionships it discovers in the training data. By doing this over a vast dataset, the
model gradually learns grammar, facts, reasoning abilities, and the nuances
of human language.

Inference: Once the training is complete, the model moves into the inference
phase, where it can generate responses and interact with users. Here’s a sim-
plified overview of how it works during inference:

Input: When you provide a prompt or a message, the model receives it as input.
The input can be a question, a statement, or any text you want to generate a
response to.

Tokenization: The model breaks down the input text into smaller units called
tokens. These tokens can represent words, subwords, or characters. Tokeniza-
tion helps the model understand the structure and meaning of the input.

Processing: The tokenized input is then passed through several layers of neural
networks. These layers are designed to understand the relationships between
the tokens and capture the context and meaning of the text.
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Generation: Once the input is processed, the model generates a response. It
predicts the most likely next tokens based on the context and the patterns it has
learned during training. The generated tokens form the model’s response.

Iteration: The process of tokenization, processing, and generation can happen
in an iterative manner. The generated response can be further used as input,
creating a back-and-forth conversation or a continuous interaction.

It’s important to note that while ChatGPT can generate impressive responses,
it may sometimes produce incorrect or nonsensical answers. It doesn’t have
real-world experiences or access to current information beyond its knowledge
cutoff date. It’s always a good idea to fact-check and verify important infor-
mation from reliable sources.

Ioannis: What is ALERT Geomaterials in summary?

ChatGPT: In summary, ALERT Geomaterials is an international scientific
association dedicated to the study of the mechanics and behavior of geomate-
rials, including soil, rock, and other geological materials. It brings together
researchers and professionals in the field of geomechanics and geotechnical
engineering to promote collaboration, knowledge exchange, and scientific ad-
vancements. ALERT Geomaterials organizes workshops, conferences, and
training courses, providing a platform for researchers to share their findings
and discuss topics related to soil and rock mechanics, slope stability, geotech-
nical engineering, experimental testing, and numerical modeling. The asso-
ciation also publishes a journal focused on energy geotechnics and geoenvi-
ronmental engineering. Overall, ALERT Geomaterials plays a crucial role in
fostering research and innovation in the field of geomaterials.

Impressive! At this point it becomes quite tempting to let ChatGPT to finish this
chapter or even the whole book! However, I assure you, we took the necessary time
to entirely draft this volume word by word. Read carefully also ChatGPT’s answers.
Are all of them correct?

It is straightforward to see how the above definition for ML applies to ChatGPT and
to many other applications of ML, such as in speech, handwriting, face and object
recognition, voice-to-text and vice versa, translation, text auto-correction and auto-
completion, spam filtering, computer games, self-driving cars, medicine, forecasting,
banking, security, marketing, control problems, engineering and, of course, to (geo-
)mechanics.

ML is an evolving field of knowledge and involves a plethora of methods and com-
binations of those. In the next section we will try to categorize and classify them in
groups.

Having described and defined what ML is, it is natural to ask what Artificial Intelli-
gence (AI) is? ML and AI are closely related and the latter is considered to include
the former. The exact definition of AI seems to be a bit foggy for the time being and
depends on how we define the terms “artificial” and “intelligence”. To the author’s
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opinion, it is easier to describe the characteristics of AI, rather than give a unique
and exact definition of the term. Another example, in a totally different domain, that
definitions are hard to make is what is justice. It seems easier and more important to
describe the characteristics of justice (e.g. equality for all) rather than give a precise
definition of the term.

2 Classification of ML methods

There are numerous ML methods in the literature. Therefore, it is useful to classify
them into different categories. Here we follow the classification of Géron [Gé19], who
categorizes ML to: supervised learning vs unsupervised learning, batch learning vs
online learning and instance-based learning vs model-based learning methods. Of
course, this is a rough classification and one method can combine different categories,
as shown in Figure 2.

Supervised

      Batch

                     Instance-based

Unsupervised

Online        

Model-based                  

0

1

2

3

4

5

Method 1
Method 2

Figure 2: Classification of ML methods. Method 1 is a supervised, batch, instance-
based method, while Method 2 has components belonging to different categories.

2.1 Supervised vs unsupervised ML
In supervised learning the training set includes the desired solutions/predictions, which
are called labels.

For instance, imagine that your training set is hundreds of images with each one con-
taining either a dog or a cat and that the training task is to distinguish the photos of
dogs from those of cats. This is called a classification problem (see Chapter 4). If we
give to the computer the information which of the photos show dogs and which cats,
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or in other words, if we label the training set then the learning is called supervised.
If the training is successful, then the computer will have learned to identify cats from
dogs even in a new set of photos that it haven’t processed during its training.

On the contrary, if the training set is unlabeled, then the learning is called unsupervised
learning. In this case the computer will eventually understand the pattern of the two
different animals shown in the photos and it will be able to distinguish dogs from cats
in an unsupervised manner (see also clustering in Chapter 3). Of course, the machine
won’t have learned to call a cat, cat and a dog, dog, because we haven’t given this
additional information, but it will have identified their differences and separate the
data into two different classes.

Another machine learning problem is regression (see Chapters 2, 7, 8 and 9). In re-
gression the training set contains one or several numerical inputs, also called features,
and the task is to predict one or several numerical outputs, also called predictors that
depend on the inputs. Consider as an example the prediction of the stress response
of a geomaterial, which as we know depends on several input parameters, such as
the applied strain, available information about the evolution of its microstructure (e.g.
the position and the velocity of the grains of a sand obtained by a Discrete Element
Method (DEM) analysis), history and/or other features. As the training set contains
both the output and the input, the training for predicting the stresses based on the
above mentioned features is supervised. However, the identification/extraction by the
machine of a representation of the most important features of the microstructure that
are related to the prediction of the stress response is unsupervised. Examples of un-
supervised methods in ML are feature extraction, anomaly detection, dimensionality
reduction, in which the aim is to reduce the the size of the training set without loosing
important information with respect to a specific task or measure and data compression
(among others).

In Table 1, we provide a list of important supervised and unsupervised methods in ML.
However, not all ML methods can be categorized to supervised and unsupervised. A
notable example is Reinforcement Learning (RL), which does not require labeled data
or a even training set. For more details on RL we refer to Chapter 10. Finally, when
labels are not available for all the samples in the training set, we refer to semisuper-
vised learning. Most of semisupervised methods are a combination of supervised and
unsupervised algorithms. An example of semisupervised learning is Active Learning
(see Chapter 4 for more details).

2.2 Batch vs online ML
Another manner to classify ML algorithms is based on whether they can improve their
predictions by providing them with new data that may become available after the first
training.

In batch learning the machine has to be trained over a fixed training data set, without
being able to add more data to the training set. Therefore, batch ML methods cannot
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Table 1: Classification of some important methods in ML. The asterisk denotes that
not all variations of the method fall into this category.

ML Method Supervised Unsupervised Online Presented in
this volume

Linear regression
Logistic regression

Polynomial regression
Lasso, Ridge

k-Nearest neighbors
Support vector

machines (SVM)
Decision trees

Random forests
Artificial Neural
Networks (ANN)

Autoencoders
Clustering

Principal Component
Analysis (PCA) ∗

Locally Linear
Embedding (LLE)

Reinforcement
Learning (RL)

Stefanou 11

ALERT Doctoral School 2023



improve their performance in a specific task with providing them with more data after
the end of the training.

On the contrary, ML methods that support online learning allow to modify and in-
crease the initial training set. Consequently, they are more flexible and suitable for
large training sets, as they can be partially loaded into the memory of the computer and
used whenever needed. Old data, over which the computer has been already trained,
can be also erased to save space. Online learning is also very convenient when a con-
stant flow of information exists, contrary to batch learning, in which the machine must
be retrained over the whole data set. In other words, in batch learning, when new data
become available the training set has to be updated and the training has to be repeated
from scratch. This can be fine for some applications, but in many others it could have
a very high computational and data storage cost.

Not all ML algorithms support online learning, see Table 1.

2.3 Instance-based vs model-based ML
One more way to categorize ML methods is based on the way data is learned in or-
der to make predictions for data outside the training set. Two ML categories can
be distinguished, instance-based (also known as memory-based or lazy) learning and
model-based learning (also known as physics-based in some applications).

In instance-based learning, training data is simply interpolated in a high (usually) di-
mensional space. Then, new predictions are made based on how close or how similar
new data are to those used for training. Similarity is measured on the basis of a dis-
tance measure, depending on the data and the problem at hand. In this sense data
is “memorized” by the machine, thus the term memory-based. The quality of the
predictions of data outside the training set is determined by how well new data are
represented by the data of the training set. Instance-based approaches are straightfor-
ward to apply in any data set and they don’t require any particular knowledge about
the structure of the data or other characteristics that they might have. The hope of
the user of instance-based methods is the machine to eventually identify by itself the
hidden patterns in the data and give correct predictions even for data outside the train-
ing set. Examples of instance-based methods are Artificial Neural Networks, Decision
trees, Random forests, k-Nearest neighbors and many clustering techniques, Locally
Linear Embedding (LLE) and Principal Component Analysis (PCA).

Despite the versatility and the many advantages of instance-based ML methods, they
have an important drawback. In physics and engineering, we know that data have to re-
spect at least some fundamental principles, like for instance the conservation of mass,
of the energy and of the linear and angular momentum. Therefore, instance-/memory-
based predictions that do not respect these conservation laws are unacceptable and can
be even dangerous for applications. Data in this case has to be processed and learned
by the machine under a model that includes the laws of physics.

Model-based machine learning adopts a model with some model parameters, which
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are optimized during training in order to optimally represent the data of the training
set. Then the model is used to make predictions for unseen input data. Of course, if
the adopted model is poor, the predictions will be poor as well.

Both instance-based and model-based approaches can introduce bias. The former
because of limited data over which they were trained and the latter because of the
model chosen. To fix the ideas, an example of instance-based and model-based ML is
given in Figure 3. The training set contains the shear stress at failure (predictor) for a
given normal stress (feature) of a series of experimental tests of a frictional interface.
An instance-based method could give very poor predictions for unseen data, while a
model-based prediction will be as good as the model is for describing the data. In this
simple example, a Coulomb model was adopted for the model-based approach.

Figure 3: Instance-based vs model-based ML for predicting failure (slip) of a frictional
interface based on experimental data (fictitious).

3 ML and Geomechanics

The applications of ML in science are nowadays numerous and increasing. The same
holds for applications of ML in geomechanics. It is out of the scope of this chapter to
provide a comprehensive literature review, but it is worth mentioning some research
directions in constitutive modeling, geotechnics, geophysics and image corelation that
can be a starting point for the interested reader.

Geomaterials are among the most complex materials to study and model. The main
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reason is that their mechanical response is governed by multiphysics couplings at
multiple spatial and temporal scales, which result in a macroscopic strongly non-linear
and dissipative response.

Empirical constitutive models are often used to describe the mechanical behavior of
geomaterials. Classification and regression methods can be used for choosing the ap-
propriate constitutive model that fits the best the experimental data (see [MPRP22,
MH19, GBL+21, SKOM23, PEW20, ZYJ21] and references therein). Another chal-
lenging task is to capture the macroscopic behavior of geomaterials based on the
the behavior of their microstructure and its evolution due to loading. Multiscale
approaches can be employed for this purpose, requiring the solution of a boundary
value problem (BVP) of an elementary cell of the microstructure at each point and
time increment of the macroscopic analysis. Then, based on homogenization, the
intrinsic constitutive behavior of the microstructure can be upscaled to the macro-
scopic level. For this purpose, mixed numerical schemes, such as the FE2 method
[Fey03, LVRSHOO19, EBC+16] and FEM×DEM [NMCDD+11, NCCD14] are of-
ten employed, depending on the nature of the microstructure. However, the computa-
tional cost of these methods is extremely high for real-scale applications, if not pro-
hibitive. ML and ANN are one of the most promising ways to speed-up this multiscale
process.

Recent works have shown that ANN can successfully encapsulate several aspects of
the constitutive behavior of the underlying microstructure and provide the necessary
information to the macroscopic scale with reduced calculation cost (see [GGW91,
LS03, MBC+19, LW19, HXFD20, VS21, ZHX21, WSD19, RKVDM21, BDMJ22,
WXW23, SBV+21, ZZJ+23, PABT+21] to mention few). Going a step further, ANN
can be designed in such a way to respect, by construction, the laws of physics [KKL+21,
RPK19], symmetries [HWS20] and thermodynamics [MSVMB21, MS22, MS23, HBG+21]
(see also Chapters 6 and 9). Once trained, these approaches can tremendously speed-
up the solution of difficult multiscale problems, they can guarantee the respect of the
thermodynamic restrictions in their predictions and enable the extraction of the hidden
state variables of the material. The latter can, in turn, shed light on the importance and
the role of specific micromechanisms to the overall macroscopic behavior of complex
(geo-)materials. The above collection of ML approaches is enriched by the so-called
“data-driven.” methods, which present an alternative formulation, whereby optimal
material states are sought within a dataset that most closely satisfy momentum and
energy conservation principles [KSOA20, KO16, KO18, KOA21] (see also Chapter
5).

Moving to applications of ML in geotechnics, according to the recent review of Bagh-
bani et al. [BCCR22] (see also [ZLL+21]), more than 1200 articles can be found in
the literature starting from the early 90’s. According to the same source, a net burst of
production of scientific articles is observed after 2017. Notice, that more than half of
these works use ANN. Several areas of geotechnical engineering are covered (see Fig-
ure 4), such as frozen soils and soil thermal properties, rock mechanics, subgrade soils
and pavements, landslides (see [TCL+22] for a recent review), liquefaction, slope sta-
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bility, shallow foundations, piles, tunneling and tunnel boring machines, dams, and
unsaturated soils, among others. In 2018, the increasing interest of the geotechnical
community in ML led [ZL22] to the creation of a new technical committee (TC) in the
International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE),
entitled as TC309 “Machine Learning and Big Data” (https://www.issmge.org/
committees/technical-committees/impact-on-society/machine-learning,
see also TC304).

Figure 4: Number of published articles using ML for geotechnical applications
(slightly modified from [BCCR22]).

ML has also promising applications in geophysics. For instance, it finds applications
in geophysical exploration, reservoir engineering and drilling (see [SYR+21] and ref-
erences therein). Moreover, it was used for creating synthetic accelerograms based
on numerical simulations or databases of real earthquake signals [GC20, LGBC22].
ML was used as well in an attempt for earthquake prediction —the holy grail in
seismology— showing that earthquake-like events in the laboratory could be predicted
by identification by the machine of seismic precursor patterns [JRLPN+21, BSMM21,
LTG+22, RY23]. RL was also used for controlling earthquake-like events [PS21] (see
Chapter 10) for which more exact mathematical theories show that are controllable
[Ste19, GOTSP].

Given the striking advances of ML in self-driving cars, object and face recognition
[Bal15], it is natural to expect ML methods to also find numerous applications in im-
age processing in experimental geomechanics and geotechnics. Convolutional Neural
Networks (CNNs) (see Chapters 7 and 8 for more details) is the basic ingredient of
most machine learning techniques used in image and video processing, without for-
getting more traditional compression techniques that are also considered as ML (e.g.
PCA). Boukhtache et al. [BAB+21] presents a review of Digital Image Correlation
(DIC) with deep learning. We also refer to [CZX+23, DXD+23, BAB+23] for some
recent developments. Accuracy is one of the main issues for those methods in order to
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outperform the current state of the art (see ALERT Doctoral School 2022 [AMHD22]).
Focusing on granular materials, Stefano Buitrón et al. [CJM+23] propose a CNN to
automatically distinguish properly segmented digital grains with up to 90% of ac-
curacy, while Cheng et al. [CWX23] present a machine learning-based strategy to
estimate the contact force chains of uniformly sized spherical granular materials us-
ing particle kinematics and inter-particle contact evolution data measured by X-ray
micro-tomography.

4 Libraries for ML

Today, many libraries exist for machine learning (see https://en.wikipedia.org/
wiki/Machine_learning#Software for an updated list). Most of the existing li-
braries provide a Python interface.

Some general purpose libraries for ML that are extensively used in this doctoral
school are Numpy [HMW+20], Pandas [McK10], SciPy [VGO+20] and Scikit-learn
[PVG+11]. For Artificial Neural Networks, TensorFlow [MAP+15] and PyTorch
[PGM+19] are equally popular today (see Figure 5). Both offer parallelization and
GPU support for training large ANN and handling large collections of data. In this
doctoral school we use PyTorch (see Chapter 7 for more details). As always, the best
library is the library that we know the best, provided that it is open-source and it allows
us do what we want!

Figure 5: Normalized Google searches over time for TensorFlow and PyTorch ANN
libraries.
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5 Bias in ML and limitations

The success of ML algorithms in performing complicated and complex tasks makes
them convenient tools for many applications. However, we have to be aware of their
limitations. In other words, we have to use the right screwdriver for the right screw!
In section 2.3 (see Figure 3), we showed how the choice of the ML method and the
quality of the data can lead to biased predictions, even in a very simple problem.

Applications of ML algorithms have demonstrated gender [Kel19], racial [DF18, Per21],
hiring [VVNR21] and other biases [Var23]. ML methods are algorithms which should
be used with care and knowledge of the the underlying limitations. This is not differ-
ent from the application of other methods. For instance, we know how wrong Finite
Element predictions can be when the appropriate finite elements are not used, when
convergence analyses are not performed or when we want to model a softening mate-
rial without regularizing the underlying mathematical problem. The inappropriate use
of specific methods has traditionally led to spectacular failures with uncountable casu-
alties and economic loss. ML methods will not be an exception, unless we understand
them better and use them with caution.

As far as it concerns ML and geomechanics, luckily, we have at our disposal estab-
lished and undeniable principles that have to be respected in any application. Conser-
vation principles, the laws of thermodynamics and other physics at various spatiotem-
poral scales should be incorporated into the ML algorithms in order to assure adequate
and safe predictions. Physics-based approaches in ML (see Chapters 5, 6 and 9) gain
more and more attention from the scientific community and can become the natural
environment for marrying the established know-how of decades of research in geome-
chanics with ML. This could give fresh ideas and an opportunity to push further the
current state of the art in our fields. The incorporation of physics in ML could eventu-
ally inspire new ML methods in other domains too, which today suffer from inevitable
bias (see social sciences where data are always limited).

Another limitation of most of the available ML methods today is their greediness for
data. We do not need thousand of photos to teach to a child what a car is! With ML
though we need tons of data! In many applications there is abundance of data (see for
instance the data that are produced, but not saved, at each increment at each Gauss
point during a non-linear Finite Element analysis in a geomechanics problem). In
some other applications though, data may not be enough (see for example X-ray scans
of thousand of specimens [TLA+20]).

Noise in the data, overfitting and underfitting are some other points that we have to pay
attention to. Data with a lot of noise can make hard the learning process and render
the predictions unreliable and of poor generalization (see also Chapters 2 and 7 to 9).
Data preparation to assure good quality is of paramount importance then.

The choice of a ML method allowing to fit data in a very high dimensional space can
lead to overfitting. In this case the training data can be very well represented, but
predictions for unseen data can be far off. The opposite happens with underfitting,
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where the space for fitting is too low for identifying and reproducing the inherent
patterns in the data. A classical example of overfitting and underfitting in polynomial
regression is shown in Figure 6. Thankfully, there are ways for estimating in practice
how well a ML model performs. This is mainly achieved by splitting the training
set into training, validation and test data. Regularization methods can also help in
avoiding this problem. For more details we refer to Chapters 2, 4 and 7.

Figure 6: Data points of a synthetic heartbeat, interpolated by two polynomial func-
tions. The high degree polynomial fits exactly the data points, but overfits the signal.
The low degree polynomial fits poorly the data points and underfits the signal. Both
regressions are not acceptable, because they either predict a superhuman heartbeat or
a dead person!

6 What to expect from this volume?

This volume aims at explaining what Machine Learning is, what its main methods
are and how they can be used for solving problems in (geo-)mechanics. Most of the
chapters were written having in mind to provide a pedagogical introduction to the most
important methods in machine learning and the fundamental notions behind them.

It is not possible to cover all the available ML methods in the existing literature and,
without any doubt, many important methods were inevitably left out. For instance
we won’t discuss about genetic algorithms, principal component analysis and related
methods, particle swarm optimization, fuzzy logic algorithms, ML methods based on
control theory and many others. We hope, however, to have provided a good selection
of ML methods for an introductory course.

By the end of this school we expect the students to have:
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• demystified and understood what ML is;

• be conscious of the fundamental notions of the most important ML methods;

• used ML in simple examples, got aware of pitfalls and understood the need
for physics- and (geo-)mechanics-based ML methods for solving problems in
(geo-)mechanics.

The courses are addressed to undergraduate and graduate level. The minimum re-
quirements for accessing them are:

• knowledge of Python programming language1;

• basic concepts in mathematics (calculus, elements of differential calculus and
of numerical analysis).

• have some nice problems in mind that could combine ML and geomechanics!

Updated versions of the chapters of this volume and the python scripts supporting this
volume and hands-on sessions are available at:
https://github.com/alert-geomaterials/2023-doctoral-school.
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Jacques Desrues. Modeling the strain localization around an under-
ground gallery with a hydro-mechanical double scale model ; effect
of anisotropy. Computers and Geotechnics, 2016.

20 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



[Fey03] Frédéric Feyel. A multilevel finite element method (FE2) to describe
the response of highly non-linear structures using generalized con-
tinua. Computer Methods in Applied Mechanics and Engineering,
192(28-30):3233–3244, 2003. ISBN: 0045-7825.

[GBL+21] Zhenfei Guo, Ruixiang Bai, Zhenkun Lei, Hao Jiang, Da Liu, Jian-
chao Zou, and Cheng Yan. CPINet: Parameter identification of path-
dependent constitutive model with automatic denoising based on
CNN-LSTM. European Journal of Mechanics - A/Solids, 90:104327,
November 2021.

[GC20] Filippo Gatti and Didier Clouteau. Towards blending Physics-Based
numerical simulations and seismic databases using Generative Ad-
versarial Network. Computer Methods in Applied Mechanics and
Engineering, 372:113421, December 2020.

[GGW91] J Ghaboussi, J H Garrett, and X Wu. Knowledge Based Modeling
of Material Behavior with Neural Networks. Journal of Engineering
Mechanics, 117(1):132–153, 1991.

[GOTSP] Diego Gutiérrez-Oribio, Georgios Tzortzopoulos, Ioannis Stefanou,
and Franck Plestan. Earthquake Control: An Emerging Application
for Robust Control. Theory and Experimental Tests. Accepted for
publication in IEEE Transactions on Control Systems Technology.
arXiv: 2203.00296.
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David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Ter-
zopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, H. Jaap
Van Den Herik, Paolo Ciancarini, and H. H. L. M. Donkers, editors,
Computers and Games, volume 4630, pages 84–99. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. Series Title: Lecture Notes in
Computer Science.

[TLA+20] Alessandro Tengattini, Nicolas Lenoir, Edward Andò, Benjamin
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Introduction to regression methods

Filippo Masi

The University of Sydney, Australia

Regression is one of the fundamental pillars of supervised Machine Learning. In this
Chapter we uncover the essential concepts in regression analysis and methods, by pro-
viding (hands-on) practical examples, designed for graduate students and researchers
seeking to gain a solid understanding.
In particular, we first delve into linear regression methods, exploring both closed-form
solutions and the general optimization framework provided by the gradient descent.
Then, we introduce the necessary pre- and post-processing steps for building and test-
ing models: feature scaling, hold-out and cross-validation.
Moving on, we focus on nonlinear regression methods, and, in particular, polynomial
regression. Through extensive examples, we then demonstrate the benefits associated
with regularization techniques (LASSO, Ridge, Elastic Net) and the possibility of con-
structing interpretable and parsimonious models.
Lastly, we introduce Bayesian approaches with focus on linear and Gaussian process
regression. The advantages and drawbacks of the latter are compared with ordinary
regression methods.

1 Introduction

Regression is a statistical technique used to explore and quantify the relationship be-
tween dependent variables (often called outcomes) and independent variables (often
called predictors). In other words, regression involves fitting a model to some data,
under some error function. Two distinct purposes characterize regression. The first
one, and the primary, is to identify a model that can be used for predictions and fore-
casting. While, the second is to infer causal relationships between independent and
dependent variables, under certain circumstances.

To grasp the main core of regression, consider a scenario where we seek to understand
the influence of relative density and effective confining pressure on the shear strength
and critical state behavior of a sand sample. Figure 1(a) presents 25 drained mono-
tonic triaxial compression tests of Karlsruhe fine sand with different initial relative
densities ID0 and effective confining pressures [WT].
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In this framework, regression allows to identify the intrinsic relationship between in-
dependent variables x (that is, relative density and effective pressure) and a dependent
variable y (shear strength or critical state line), by assuming

y = fθ(x) + ϵ (1)

where fθ represents a function, with θ denoting its parameters (unknown), and ϵ is
an error term*. With this objective in mind, we continue by formulating an objective

(a)

(c)(b)

Figure 1: Drained monotonic triaxial compression tests of Karlsruhe fine sand with
different initial relative densities ID0 and effective confining pressures [WT] (a). Non-
linear regression of the failure envelope – locus of peak deviatoric stress – (b) and
critical state line (c) using a basis of polynomial and trigonometric functions.

function that measures the difference between the predictions of the model (1) and the
values of the dependent variable. Via the minimization of the latter, we can determine
an optimal fit and thus identify the parameters θ. By doing so, we obtain two models,
fθ(x), able to generate predictions of the failure envelope and critical state, as depicted
in Figure 1(b-c).
This process is the core of regression and enables us to uncover relationships between
variables (data), make predictions, and gain insights from data.

*The error term ϵ is an irreducible source of error. For instance, it may arise whenever there exist
variables other than x – and independent of x – that have some not negligible effect on the dependent
variable y.
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This Chapter provides the tools necessary for carrying such analyses by means of a
comprehensive introduction to regression methods, using a “hands-on approach” –
that is, providing essential theoretical aspects and prioritizing understanding through
concrete examples. After studying this Chapter, we hope that the reader will be able
to:

• Understand the fundamental notions related to regression methods and gradient
descent;

• Solve a regression problem and select the best (class of) method(s) depending
on the particular task (linear, nonlinear, regularized, or Bayesian regression);

• Understand the importance of validating and testing a regression model (and in
general any Machine Learning model) and how to do so;

• Grasp the importance of regularization techniques to uncover parsimonious and
simple models from data sets;

• And understand the benefits and drawbacks of Bayesian approaches as com-
pared to ordinary regression methods.

All codes used in this Chapter are available on ALERT Geomaterial GitHub (reposi-
tory alert-geomaterials/2023-doctoral-school) and updated versions of this
Chapter can be found at filippo-masi.github.io.

As it follows, scalar values and functions are represented in lowercase italic font,
while lowercase bold font denotes vectors and uppercase bold font denotes matrices.

2 Linear regression

In linear regression [Man82], the idea is to select a linear function fθ(·), in equation
(1), whose parameters θ are identified to fit data by means of the minimization of
some error metric between the predictions, i.e., the outputs of the function, and the
dependent variables. As we will see, linear regression can be formulated as a simple
solution of a linear system.

To fix the ideas, let us start by considering a training data set, with n data points or
snapshots, composed of p dependent variables Y and m independent variables X

Y ≡


y(1) y(2) · · · y(n)


 , X ≡


x(1) x(2) · · · x(n)


 , (2)

where y(k) and x(k) are the vectors collecting the p dependent variables and the m
independent variables, respectively, at the k-th snapshot of the data set.
In the following, we will consider for simplicity one-dimensional dependent variables,
i.e., p = 1, and we will refer to the vector collecting the snapshots of the dependent
variable as y. However the entire framework developed herein can be easily formu-
lated in higher dimensions.
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To find a best fit line through the training data points, we thus assume a linear model
of the form

ŷ = θ0 + θ1x1 + θ2x2 + · · ·+ θmxm, (3)

where ŷ is the value predicted by the model, xk is the k-th independent variable value,
and θk is the k-th model parameter – including the bias term, θ0, and the model
weights, θ1, θ2, · · · , θm. The above equation can be formulated more concisely as

ŷ = fθ (x) ≡ θTx∗, (4)

where θ =
[
θ0, θ1, θ2, · · · , θm

]T
is the vector collecting the model parameters, x∗ =[

x0, x1, x2, · · · , xm
]T

is the augmented feature vector with x0 = 1, fθ (·) is often
called hypothesis function – a linear function, in this case –, and the superscript T
denotes the transpose operator. To simplify notation, in the following we write inter-
changeably x for both x and x∗.

The next step is to identify the parameters θ such that the linear regression model,
fθ (x), best fits the data set (X,y). This operation is called training. Training identi-
fies the parameters value that optimize a measure of the goodness-of-fit, i.e., how well
(or poorly) a model fits the data. Various objective functions, often referred to as loss
functions, can be adopted and their choice strongly determines the subsequent model.
Two standard error metrics of hypothesis fθ(·) on a set X are often considered which
are associated with the ℓ1 and ℓ2 norms, respectively defined as the mean absolute
error (MAE) and the root mean square error (RMSE):

E1 (X, fθ) ≡
1

n

n∑

k=1

∣∣∣fθ(x(k))− y(k)
∣∣∣ (5a)

E2 (X, fθ) ≡
(
1

n

n∑

k=1

(
fθ(x

(k))− y(k)
)2
)1/2

. (5b)

One can also broadly define the error based on the ℓr norm, and namely

Er (X, fθ) ≡
(
1

n

n∑

k=1

∣∣∣fθ(x(k))− y(k)
∣∣∣
r
)1/r

. (6)

The higher the norm index r, the more the error metrics focuses on large values and
neglect small ones, thus the best fit model intrinsically depends on r. In most cases,
the differences between models based on different norms are small. However, when
there are outliers† in the data, the choice of norm can have a significant impact: for
instance, the RMSE is more sensitive to outliers than the MAE.

In linear regression, the most common choice is the root mean square error, but in
practice, it is simpler to minimize the mean squared error (MSE) than the RMSE,
and it leads to the same result (because the value of θ that minimizes a function also

†An outlier is an observation that lies an abnormal distance from the other values present in a data set.
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minimizes its square root). The MSE of a linear regression hypothesis fθ on a set X
is given by

MSE (X, fθ) ≡ E2
2 (X, fθ) =

1

n

n∑

k=1

(
θTx(k) − y(k)

)2
. (7)

Once the loss function is defined, training requires to find the parameters that mini-
mize that particular loss. This requires differentiation with respect to θ to identify the
value of the latter such that a minimum of the error occurs – that is, find those θ for
which ∂MSE (X, fθ) /∂θ = 0. Note that, although a zero derivative denotes either a
minimum or a maximum, we know this must be a minimum of the error since there is
no maximum error, i.e., we can always find a model that has a larger error.
Following the above procedure, the values of the parameters for which the error is
minimum, θ̂, are the solution of the following linear system of equations

XTXθ̂T = XTy. (8)

If the matrix XTX is square and invertible (i.e., it has nonzero determinant), then there
exists a unique solution θ̂ which is given by the normal equation,

θ̂T =
(
XTX

)−1
XTy. (9)

However, when XTX is singular, the normal equation does not hold. An alternative
way to solve equation (4) consists of using the Moose-Penrose pseudoinverse‡ X+ of
X to obtain the general solution

θ̂ = X+y, (10)

obtained by leveraging the commutative property (X+)
T
=
(
XT
)+

.

We have now all the necessary ingredients for building a linear regression model: is
time to move to a simple example.

2.1 Example
Let consider fitting a data set, shown in Figure 2, generated by the function

y = α2 exp (α1x+ U (−1, 1)) , α1 = 1, α2 = e, (11)

where U (−1, 1) is a uniformly distributed random variable that lies between −1 and
1. The snippet hereinafter generates our data set:

‡The pseudoinverse is computed using the matrix factorization technique called singular value decom-
position that can decompose the independent variables matrix X into the multiplication of three matrices
UΣVT. The pseudoinverse is computed as X = VΣ+U. To compute the matrix Σ+, the algorithm takes
Σ and sets to zero all values smaller than a tiny threshold value, then it replaces all the nonzero values with
their inverse, and finally it transposes the resulting matrix.
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import numpy as np

np.random.seed(42)

n_snapshots = 200 # set number of snapshots: n

a_1 = 1.; a_2 = np.exp(1) # set coefficients

noise = np.random.uniform(-1,1,(n_snapshots,1)) # uniform noise

X = np.random.uniform(0,4.,(n_snapshots,1)) # independent variable X

y = a_2*np.exp(a_1*X+noise) # dependent variable y

At this point, we can use the normal equation (9) and compute the values θ̂, using
NumPy’s linear algebra module (np.linalg) to calculate the inverse of a matrix and
the dot() method for matrix multiplication:

X_p = np.c_[np.ones((n_snapshots, 1)), X] # add x0 = 1 to each instance

theta_best = np.linalg.inv(X_p.T.dot(X_p)).dot(X_p.T).dot(y)

print(theta_best) # parameters

array([[-16.93873601],

[ 28.05702557]])

The normal equation gives a linear model of the form ŷ ≈ −16.9+28.0x. Let’s check
if the model correctly fits the data set, making predictions as follows

X_new = np.array([[0],[4]])

X_b = np.c_[np.ones((2,1)), X_new] # add x0 = 1 to each instance

y_predict = X_b.dot(theta_best)

Finally, we can plot the predictions (y predict) with the training data set, see Figure
2. As one could have imagined from the very beginning, the linear regression model
poorly fits the nonlinear data set.
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Figure 2: Linear regression: an example and a failure (!). Randomly generated data
set (left) – y = α2e

(α1x+U(−1,1)) – and linear regression model predictions (right).

But, as in most cases, data set preparation and transformation may help us in im-
proving the model predictions. In this particular case, one has to simply perform a

34 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



change of coordinates, defining y′ = ln(y) and α′
2 = ln(α2). Such a transformation

(magically) performs the linearization of the original data set, which from (11) now
becomes

y′ = α′
2 + α1x+ U (−1, 1) , α1 = 1, α′

2 = 1, (12)

Let’s try to apply the following changes to the original data set, repeating the linear
regression fit, and plotting the predictions:

y_prime = np.log(y) # change of coordinate, y' = ln(y)

X_b = np.c_[np.ones((n_snapshots, 1)), X] # add x0 = 1 to each instance

theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_prime)

X_new = np.array([[0],[4]])

X_b = np.c_[np.ones((2,1)), X_new] # add x0 = 1 to each instance

y_predict = X_b.dot(theta_best) # parameters

print(theta_best)

array([[0.99530983],

[0.98646971]])

Done! The linear regression now correctly fits the transformed data set, identifying
the following model: ŷ′ = 0.98 + 0.99x. Note that the presence of noise renders
impossible to retrieve the exact values of the intercept and the angular coefficient.

0.0 1.0 2.0 3.0 4.0

x

0

1

2

3

4

5

6

y
′ =

ln
(y

)

predictions

Figure 3: Comparison of the linear regression model predictions with the linearized
data set, see equation (12).

Alternatively, a simpler (and more concise) way to perform a linear regression fit is to
directly compute the pseudoinverse of the independent variable matrix x, see equation
(10). This can be done, in few lines of code, using Scikit-Learn’s library [BLB+13]:

from sklearn import linear_model

from sklearn.metrics import mean_squared_error

regr = linear_model.LinearRegression() # create linear regression object

regr.fit(X, y_prime) # train the model
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y_predict = regr.predict(X) # make predictions

print("Parameters: ", regr.intercept_,regr.coef_) # parameters

print("Mean squared error: %.4f" % mean_squared_error(y_prime,

y_predict)) # compute MSE

Parameters: [0.99530983] [[0.98646971]]

Mean squared error: 0.3459

3 Gradient descent

We have seen that linear regression allow us to fit data sets with pre-identified lin-
ear models or hypothesis fθ. The advantages are (i) the admission of analytically
tractable, best-fit solutions and (ii) the reduced computational complexity. However,
the major drawback is the impossibility to fit nonlinear functions, much more abun-
dant in nature than linear ones (cf. Chapters 4 and 7).
To this end, the general theory of nonlinear regression§) considers a nonlinear hy-
pothesis function fθ (x), in contrast with the linear function in equation (3). In this
case, if we proceed as we have done for linear regression – that is, requiring that
∂MSE (X, fθ) /∂θ = 0 – we obtain the following nonlinear system of equations

1

n

n∑

k=1

(
fθ(x

(k))− y(k)
) ∂fθ
∂θ

= 0. (13)

Unfortunately, there are no analytical methods to solve such a nonlinear system for
a general (unspecified) nonlinear hypothesis fθ. And, actually, sometimes equation
(13) may even not admit a solution or admit an infinity of solutions.

In such scenarios, the idea to solve the nonlinear system (13) is to resort to iterative
approaches which, depending on the good (or bad) initial guess, may converge to the
global (or a local) minimum error.
One of the most effective approaches to identify the roots of a nonlinear system of
equations is gradient descent [BV04]. Gradient descent (GD), also called steepest
descent, is an optimization algorithm for finding a local minimum of a differentiable
function – that is, a set of optimal parameters θ that minimizes a given (differentiable)
loss function.

A quite easy way to grasp the essence of gradient descent is to imagine yourself lost
in a foggy mountain, where visibility is so limited that you can only sense the slope
beneath your feet. To find your way out quickly, a smart approach would be to head
downhill, following the steepest slope¶. This is exactly what gradient descent does: it
measures the local gradient of the loss function with regard to the parameters θ and
tweaks the latter to go in the direction of descending gradient. Once the gradient is
zero, we have reached the minimum.

§Note, however, that if we formulate the nonlinear regression problem differently, within a reduced
special setting, a seemingly linear hypothesis function can actually be formulated (cf. Section 5.

¶Disclaimer: if you are truly lost on a mountain, then you should probably stop and wait for a break in
the fog, rather than following the steepest descent.
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Let’s break it down further. At the beginning, θ is filled with random values, or
some other predefined values. This process is called initialization. Then, in small
incremental steps, often called epochs, the algorithm tweaks repeatedly the parameters
to minimize the value of the loss function E (θ, fθ) (that must be differentiable for all
θ – which also implies that fθ must be differentiable for every θ) according to the
regular gradient descent optimizer equation

θ next step = θ − η ∂E
∂θ

(θ, fθ) , (14)

where η is the learning rate. In other words, we need to compute how much the loss
function E will change if we change θi just a little bit, with i = 1, 2, · · · ,m.
By resorting to the analogy of the foggy mountain, it is like asking “What is the slope
of the mountain under my feet if I face east?” and then asking the same question facing
north (and so on for all other dimensions i up tom, if you can imagine a universe with
more than three dimensions).
After having computed the gradient vector ∂E/∂θ which points uphill, we just have
to head in the opposite direction to go downhill – that is, subtracting the gradient from
the parameters θ, with a weighting factor η. This process continues until the algorithm
converges, reaching a (global or local) minimum value, as shown in Figure 4.
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Figure 4: Schematic representation of gradient descent, the model parameters are ini-
tialized randomly and get tweaked repeatedly to minimize the cost function; the learn-
ing step size is proportional to the slope of the cost function, so the steps gradually get
smaller as the parameters approach the minimum.

When optimizing an objective function using GD two important aspects must be con-
sidered:

• The size of the incremental steps, which is determined by the learning rate, η.
The latter is a hyperparameter. A hyperparameter is a variable controlling the
learning process (in contrast to the model parameters that are determined via
training). The learning rate, as such, is crucial in identifying the best value of
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the parameters θ within the smallest number of iterations.
Indeed, if η is set too small, the algorithm will require numerous iterations to
converge, resulting in a time-consuming computations. Conversely, if η is ex-
cessively high, we might overshoot the minimum and end up on the opposite
side, potentially at a point where error is higher than before. This scenario
could even cause the algorithm to diverge, producing increasingly larger error
values and failing to find an optimal solution.

• The loss function. Not all loss functions exhibit a smooth, bowl-like shape
as the ones depicted in Figure 4. Depending on the choice of loss function
and/or the hypothesis function, we may find irregularities such as holes, ridges,
plateaus, and many local minima, creating challenges for convergence towards
the (global) minimum. Also remember that the loss function must always be
differentiable||, otherwise we cannot compute the optimizer equation (14).
Figure 5 highlights some of the primary obstacles that we may encounter with
some loss functions and, in most of the cases, for nonlinear hypotheses fθ – but
also in neural networks (cf. Chapter 7). When the algorithm starts on the left
due to random initialization, it attempts to converge to a local minimum, which
may not be as desirable as the global minimum. This same local minimum
is a point of discontinuity which renders even more difficult the convergence.
On the other hand, if the algorithm begins on the right, it finds a plateau and
crossing it takes an extensive amount of time and if we prematurely stop the
algorithm we won’t succeed in reaching the global minimum.

local minimum global minimum

plateau

point of
discontinuity

lo
ss

 fu
nc

tio
n

Figure 5: Gradient descent for a general non convex loss function.

The MSE for linear regression models happens to be always differentiable and convex:
great news! This means that any two points on the curve can be connected by a line
segment that never intersects the curve. Consequently, there are no local minima, only
one single global minimum. Moreover, the MSE function is continuous, exhibiting a
slope that changes gradually (differently from the MAE). These characteristics have a
significant implication: given sufficient time and an appropriate value of the learning
rate, gradient descent is guaranteed to approach the global minimum closely.

||In reality, when dealing with a loss function that is not everywhere differentiable, an ad-hoc subgradient
procedure can be used. Instead of calculating the gradient, we use a subgradient that provides a valid lower
bound on the slope of the loss function at that particular singular point.
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In linear regression, the shape of the MSE loss function always resembles a bowl.
However, we should note that the latter can be elongated if the parameters – that is, the
features – have different scales. Figure 4, right, demonstrates GD applied to a set with
features θ1 and θ2, where the latter has significantly smaller values than the former.
Note that, in general, when features have quite different scales, the convergence to the
global minimum requires a large number of iterations. Such a drawback can be easily
overcome by appropriately scaling the features – that is, by scaling the independent
and dependent variables (cf. Section 4).

It’s worth noting that training a model, whether linear or not, involves searching for a
perfect combination of model parameters that minimizes the loss function across the
entire data set. This search takes place within the vast parameter space of the model.
Imagine we are trying to train a model with an extensive set of parameters that sur-
passes the simplicity of the one- and two-parameters models in Figure 4. In this sce-
nario, we are essentially following the same steps as before, but now in a higher-
dimensional space. The dimension of this space is equal to the number of parameters,
making the search much more challenging. Indeed, finding a needle in a haystack that
has 1000 dimensions is significantly more intricate than doing so in just two dimen-
sions. However, in the case of linear regression (unlike artificial neural networks, see
Chapter 7), the loss function has optimal properties and the needle (global minimum)
always resides comfortably at the bottom.

3.1 Batch gradient descent
Batch gradient descent is the most cumbersome implementation of the GD algorithm.
It involves the use of equation (14) for the full training set X at every step – that is,
the whole batch of training data (and this is the reason of its name).
Applying batch GD for a linear regression problem starts with the computation of the
partial derivative of the MSE function with respect to the model parameter,

∂

∂θ
MSE (X, fθ) =

2

n
XT (Xθ − y) , (15)

and continues by recursively using equation (14) to update the parameters. The re-
cursion stops when we reach the prescribed number of steps (epochs) or the error is
smaller than a prescribed threshold.

We can now use the training data set from the previous example and find a linear
regression model by means of batch GD:

eta = 0.05 # learning rate

n_epochs = 500 # no epochs

theta = np.array([[0.],[0.]]) # initialization

for epoch in range(n_epochs):

gradients = 2/n_snapshots * X_p.T.dot(X_p.dot(theta) - y_prime) # Eq. (15)

theta = theta - eta * gradients # optimizer Eq. (14)

print(theta)

[[0.99530187]

[0.98647279]]
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It should come as no surprise that we obtain the same result as using the normal
equation. However, we might wonder what would happen if we had chosen a different
learning rate. In Figure 6, we visualize the predictions of the same linear model within
the first 10 iterations using different learning rates, all starting from the same initial
point (represented by the dotted line). Similarly, Figure 7 illustrates the evolution
of the model parameters, θ1 and θ2, with the contours representing the loss function
(MSE) that has a global minimum approximately located at (1, 1).

Figure 6: Batch gradient descent with various learning rates with the same parameters
initialization.

Figure 7: Evolution of the model’s parameters during batch gradient descent with
various learning rates (see Figure 6).

Starting from the left, we observe that with a relatively high learning rate, the algo-
rithm bounces around during each iteration. In this particular scenario, if we select a
larger value of the learning rate, the algorithm will diverge and we will never reach
the minimum (you can try by yourself with the above code). In the middle, a mod-
erately appropriate learning rate allows gradient descent to smoothly reach the global
minimum. On the right, with a very low learning rate, the algorithm will eventually
converge to the solution, but it will take a considerable amount of time.

To identify an appropriate learning rate value, we can employ two strategies: first, we
can use an adaptive learning rate (see paragraph 3.2) or second, we can fine-tune the
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learning rate using grid search** [Gér22].

Despite being much faster than using the normal equation (9) or computing the pseu-
doinverse (10) for high-dimensional linear regression tasks, batch GD is the most
computationally demanding among all gradient descent variants and the most vulner-
able to “bad” initialization. In addition, the evaluation of the optimizer equation (14)
is often computationally intractable, especially for deep neural networks (cf. Chapter
7). This is primarily due to two reasons: (i) the parameter vector, collecting the pa-
rameters θk, can be quite large, and (ii) the number of data points n can also be large.
Thus, utilizing the entire training set for computing the gradient can hinder conver-
gence speed.
As it follows, we will explore two alternative versions of gradient descent that can en-
hance the convergence speed to the minimum of the loss function: stochastic gradient
descent and mini-batch gradient descent.

3.2 Stochastic gradient descent
Stochastic gradient descent is a version of gradient descent that differs from batch gra-
dient descent in how it estimates the gradient in equation (14). Instead of using all n
training data points, stochastic GD randomly selects a single datum (snapshot) from
the training set to estimate the gradient at each iteration. As a result, stochastic GD
is faster than batch GD: it only needs to process a single instance at a time allowing
efficient memory allocation when dealing with large data sets (see also Chapter 7).
However, due to its stochastic nature, stochastic GD exhibits less smooth behavior
compared to batch GD. Instead of smoothly decreasing towards the minimum, the
loss function experiences fluctuations, with only an average error decrease over itera-
tions. Consequently, when the algorithm stops, the final parameter values are gener-
ally good but not necessarily optimal. Yet, it is worth noting that the inherent random-
ness in stochastic GD can actually aid in escaping eventual local minima, increasing
the chances of finding the global minimum compared to batch GD.
Hereinafter, we implement the stochastic GD for the same above example:

eta = 0.05 #learning rate

n_epochs = 20 # no epochs

theta = np.array([[0],[0.]]) #initialization

for epoch in range(n_epochs):

for i in range(n_snapshots): # iterate over each snapshot

random_index = np.random.randint(n_snapshots) # pick random snapshot

xi = X_p[random_index:random_index+1]

yi = y_prime[random_index:random_index+1]

gradients = 2 * xi.T.dot(xi.dot(theta) - yi) # Eq. (15)

theta = theta - eta * gradients # Eq. (14)

print(theta)

**Grid search is a technique used in ML to systematically search for the optimal combination of hyperpa-
rameter values for a given model. It involves specifying a set of possible values for each hyperparameter and
exhaustively evaluating the model performance using all possible combinations of these values. By evalu-
ating the model accuracy for each combination, grid search helps identify the hyperparameter configuration
that yields the best performance.
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[[0.83905266]

[1.15041967]]

The results are shown in Figure 8, where we can observe that the algorithm strug-
gles in converging to the global minimum, rather bouncing all around. This is to the
significant dependence of stochastic GD on the learning rate, which in turn is due to
inherent stochastic nature of the former.

Figure 8: Stochastic gradient descent and evolution of the parameters, with constant
learning rate.

The problem can be alleviated by gradually adapting the learning rate while training.
Below, we repeat the learning process using a rather simple learning schedule that
linearly decrease the learning rate at each epoch:

theta = np.array([[0],[0.]]) #initialization

t0, t1 = 1, 100 # learning schedule hyperparameters

def learning_schedule(t):

return t0 / (t + t1)

for epoch in range(n_epochs):

for i in range(n_snapshots):

random_index = np.random.randint(n_snapshots)

xi = X_p[random_index:random_index+1]

yi = y_prime[random_index:random_index+1]

eta = learning_schedule(epoch * n_snapshots + i) # schedule

gradients = 2 * xi.T.dot(xi.dot(theta) - yi)

theta = theta - eta * gradients

print(theta)

[[0.90607535]

[1.02276101]]

Super effective! In 20 iterations only, the algorithm converges – relatively close – to
the global minimum, as depicted in Figure 9. And this should be compared with the
500 iterations that were needed for the batch GD to reach the minimum.

3.3 Mini-batch gradient descent
Once we grasped both batch and stochastic GD, understanding mini-batch GD be-
comes straightforward if we get inspiration from Aristotle’s (Latin) quote: “In medio
stat virtus” – that is, “the best option lies between two extremes”.
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Figure 9: Stochastic gradient descent with learning schedule.

Instead of computing gradients based on the entire training set (batch GD) or a single
datum (stochastic GD), mini-batch GD computes gradients on small random sets of
data points known as mini-batches. This approach offers the advantage of leveraging
optimized matrix operations, resulting in improved performance compared to stochas-
tic GD. At the same time, it avoids the need for large memory allocation required by
batch GD. Depending on the size of the mini-batch, the optimization path followed by
mini-batch GD is less erratic than its stochastic counterpart, often leading to a more
optimal minimum.

Implementing mini-batch GD is relatively simple. We only need to make slight mod-
ifications to the stochastic GD algorithm and provide an iterator to extract mini-
batches:

def iterate_minibatches(inputs, targets, batchsize, shuffle=False):

'''Iterator over mini-batches

:param inputs, targets: independent and dependent variables

:param batchsize: mini-batch size

:param shuffle: shuffle mini-batches

:return: mini-batches of inputs and targets'''

# Check if no of samples in inputs and targets are equal

assert inputs.shape[0] == targets.shape[0]

if shuffle:

indices = np.arange(inputs.shape[0]) # Generate array of indices

np.random.shuffle(indices) # Shuffle the indices

# Iterate over mini-batches

for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):

if shuffle: # subset of shuffled indices

excerpt = indices[start_idx:start_idx + batchsize]

else: # slice to select samples

excerpt = slice(start_idx, start_idx + batchsize)

yield inputs[excerpt], targets[excerpt] # return mini-batches

eta = 0.05 #learning rate

theta = np.array([[0],[0.]]) #initialization

batch_size = 30 # define mini-batches size

for epoch in range(n_epochs):

for batch in iterate_minibatches(X_p, y_prime, batch_size, shuffle=True):

x_batch, y_batch = batch

gradients = 2/batch_size * x_batch.T.dot(x_batch.dot(theta) - y_batch)

theta = theta - eta * gradients
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print(theta)

[[0.94862053]

[0.96679924]]

Done: much faster and accurate than the stochastic GD!
Figure 10 depicts the predictions of the model within the first 10 iterations of the
algorithm and the parameters evolution. Note that the value of the minimum reached
by the mini-batch GD intrinsically depends on the selected size of the mini-batch. The
latter represents yet another important hyperparameter of the optimization problem.

Figure 10: Mini-batch gradient descent.

To perform the same task, we could also use Scikit-Learn, and namely the SGDRegressor
class, which by default minimizes the MSE. The following code runs for maximum
20 epochs or until the loss drops by less than 0.001 during one epoch (max iter=20,

tol=1e-3). It starts with a learning rate equal to eta and use the following learning
schedule: η(next step) = ηt−1/4. The option penalty=None avoids the use of regular-
ization strategies (cf. Section 6).

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(max_iter=20, tol=1e-3, penalty=None, eta0=eta)

for epoch in range(n_epochs):

for batch in iterate_minibatches(X_p, y_prime, batch_size, shuffle=True):

x_batch, y_batch = batch

sgd_reg.partial_fit(X, y_prime.ravel()) # partial_fit mini-batch

print(sgd_reg.intercept_, sgd_reg.coef_)

[1.00172812] [1.00508048]

Also note that if we were performing stochastic GD, we would not need to iterate over
the mini-batches, and we should replace partial fit() with fit().

In conclusion, the three alternative algorithms for gradient descent – batch, stochastic,
and mini-batch – are powerful tools for solving an optimization problem and they
should be preferred to the normal equation and the computation of the pseudoinverse,
when dealing with a high-dimensional linear regression problem (with large numbers
of data sets and/or large number of parameters).
The main difference among the three alternatives is summarized by Figure 11 which
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provides a comparison for the parameters trajectory during training. The mini-batch
GD is often preferred as it allows a good compromise in terms of the goodness of the
reached minimum and the computational speed, however it is difficult to provide strict
recommendations for a general case. As a rule of thumb, we may opt for a mini-batch
GD and train the model with different mini-batch sizes – if equal to 1, we will resort
to stochastic GD, if equal to the training set size, we will end up with batch GD.

Figure 11: Gradient descent paths comparison in the parameters space.

Finally, it is worth noticing that herein we limited ourselves to the standard optimizer
equation (14), however alternative and more effective solutions exist (cf. Chapter 7).

4 Data preprocessing and model validation

In the above examples, we have seen how to perform linear regression given some
training data sets. However, we have neglected two important aspects common to all
ML models – regression included: feature scaling and models validation. The former
is part of the preprocessing to train a model, while the latter can be interpreted as
postprocessing of the trained model.

4.1 Feature scaling
Feature scaling is a crucial step in preparing data for ML. Indeed, all gradient descent
algorithms and in general most of the optimization algorithms struggle in dealing with
variables with different scales (e.g. Figure 4). In the frame of gradient descent, there
are two common methods to address this issue: normalization and standardization.
Both techniques transform a feature x into its scaled counterpart x̄, according to

x̄ =
1

α
(x− β) . (16)

Normalization shifts and re-scales the feature values to a range between -1 and 1, by
considering α ≡ 1

2 (max(x)−min(x)) and β ≡ α+min(x).
On the other hand, standardization transforms the feature in a distribution with a zero
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mean and unit variance, by considering α ≡ σ(x) and β ≡ µ(x), with µ and σ being
the mean and standard deviation, respectively.

Normalization is simple and confines values to a specific range, while standardization
is not bound to a range and is less affected by outliers. Whether it is more appropriate
to normalize or standardize the data depends mainly on the loss function and the statis-
tics of the data themselves – when the latter are uniformly distributed, normalization
is to be preferred, in all the other cases, standardization is the best choice.

Hereinafter an explicit implementation of both scaling techniques, depending on how
the function is called:

def scaling(x, fit=False, transform=False, inverse_transform=False,

norm=True, param=None):

''' scale variable x

:param x: variable

:param fit: find scaling parameters

:param transform: scale x

:param inverse_transform: inverse scale x

:param norm: inverse scale x

:param fit: scaling parameters

:return: scaling parameters (if fit=False)

scaled x (if transform=True)

inverse scaled x (if inverse_transform=True) '''

if fit==True:

if norm==True:

min_ = np.amin(x); max_ = np.amax(x)

a = 0.5*(max_-min_)

b = 0.5*(max_+min_)

else:

a = np.std(x)

b = np.mean(x)

return [a,b]

elif transform==True:

return np.divide(x-param[1],param[0])

elif inverse_transform==True:

return np.multiply(x,param[0])+param[1]

One could also use directly Scikit-learn’s preprocessing module.

4.2 Test and validation of a model
In the examples above, we discovered regression models that best fits some training
data {X,y}. However, in the general case, and not only in the frame of regression
methods, we need to evaluate how well a (regression) model performs on new data.
To this end, we must first define three notions: interpolation, generalization, and
extrapolation.

Definition. Interpolation is the ability of predicting values within the range of ob-
served data points.

In the context of regression, it means predicting the value of the dependent variables
for values of independent variables that lie within the range of the training data.
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Definition. Generalization is the ability of making predictions for new, previously
unseen data, drawn from the same distribution as the ones used to train the model.

Machine learning is all about having models that can generalize well. Trained to
solve one problem, the model attempts to utilize the patterns/relationships learned
from that task to solve the same task, with slight variations. Whilst the existence
of a subtle difference between interpolation and generalization, both terms are often
adopted interchangeably.

Definition. Extrapolation is the ability of predicting values beyond the range of the
observed, training data points.

Extrapolation requires a solid understanding of the relationships identified by a model
to apply the same outside the familiar data range. It is challenging for current ML
models to reliably extrapolate, as they often specialize in specific tasks and struggle
with broader applications. Many artificial intelligence methods are inherently inter-
polative, and constructing extrapolative or ”intelligent” algorithms still remains an
open challenge (cf. Section 7, Chapters 7 and 9).

From the aforementioned definitions, it is clear that we should always test models in
order to quantify their generalization capabilities. A cumbersome approach consists
of dividing the original data set into two: a training set and a test set.
The training set is used to train the model, as we have already seen, while the test set is
used to assess its performance. The latter is estimated by means of the generalization
error, which measures the error of the trained model on the (unseen) test data set. Thus,
if a model has low training error but high generalization error, it indicates overfitting
to the training data. Overfitting is defined as the phenomenon where a model becomes
overly complex and excessively fits the training data set, capturing noise and irrelevant
patterns instead of learning the true underlying patterns and relationships.

However, evaluating the generalization error multiple times on the same test set and
optimizing the model and hyperparameters (such as the learning rate in gradient de-
scent, or the mini-batch size in mini-batch GD) specifically for that set may be subop-
timal. Indeed, the model will unlikely perform as well on new data.

4.2.1 Hold-out validation

To mitigate the problem arising from testing a model on the same test set, a common
solution is hold-out validation. A portion of the training set is reserved as a valida-
tion set. Multiple candidate models with different hyperparameters are trained on the
reduced training set, and the one that performs best on the validation set is selected.
The best model is then trained on the full training set, including the validation set, to
create the final model. The performance of the latter is then evaluated on the test set
to quantify the generalization error.

While hold-out validation is effective, the size of the validation set is crucial. If it is
too small, evaluations may be imprecise, leading to the selection of suboptimal mod-
els. Conversely, if the validation set is too large, the remaining training set becomes

Masi 47

ALERT Doctoral School 2023



significantly smaller, making it unfair to compare models trained on a much smaller
set.
As a rule of thumb (and a first good guess), we often split data in 80%-20%-20% for
training-validating-testing. We can easily do it, by leveraging Scikit-learn:

from sklearn.model_selection import train_test_split

# split into training+validation and test sets

X_tv, X_tv, y_train, y_test = train_test_split(X, y, test_size=0.2)

# split into training and validation sets - note: 0.25 * 0.8 = 0.2

X_train, X_val, y_train, y_val = train_test_split(X_tv, y_tv, test_size=0.25)

4.2.2 Cross-validation

Repeated hold-out validation addresses the issue related to the choice of the validation
set size by using multiple small validation sets. This process is called k-fold cross-
validation, where the training data set is further partitioned into k-folds, which are
typically randomly selected portions of the original set. In k-fold cross validation,
the training data is randomly partitioned into k partitions (or folds). Each partition is
used to construct a regression model ŷ(l) = fθ(l)

(x(l)) for l = 1, 2, · · · , k. Then, the
final, cross-validated model is constructed by averaging the values of the parameters
obtained from each fold – that is, θ = 1/k

∑k
l=1 θ(l).

Despite its great advantage over hold-out validation, cross-validation may increase
tremendously the learning process as each model needs to be trained on different val-
idation sets.

We will implement cross-validation both using Scikit-learn (cf. example in paragraph
5.1) and performing the aforementioned steps explicitly (cf. application in paragraph
7.1).

5 Nonlinear regression

Up to this point, we have seen how to train and validate linear models that best fits
some data. However, what if the data are more complex and cannot be fitted, with
good approximation, by a simple straight line?
In that case, we may simply resort (spoiler alert!) to artificial neural networks (see
Chapter 7). But, no worries! A much simpler alternative exists: we can actually fit
a linear model to nonlinear data. To this end, we just need to replace the original set
of independent variables, X, with a library ϕ(x) =

[
ϕ1(x),ϕ2(x), · · · ,ϕl(x)

]T
of

l candidate basis functions, e.g., polynomials, trigonometric or radial basis functions,
or any other user-supplied function. By doing so, equation (1) becomes

ŷ = θT ϕ(x). (17)

Everything is settled and we can move straightforward to an example. This time,
we will also take care of preprocessing the data (see Section 4). We will consider
as candidate basis functions only polynomial ones: the regression is thus said to be
polynomial.

48 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



5.1 End-to-end example
Let us consider a data set given by

y = sin(|x|) + sin(x2) +N (0, σ), (18)

whereN (0, σ) is a normally distributed random variable with mean zero and standard
deviation σ. To generate the data, we use the code below:

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(42)

n_snapshots = 200

noise = np.random.normal(0,0.5,(n_snapshots,1)) # generate normal noise

X = np.random.uniform(-np.pi,np.pi,(n_snapshots,1))

y = np.sin(np.abs(X))+np.sin(X)**2+ noise

Now, we proceed by splitting the data set into a training and test set, using Scikit-
Learn’s train test split. Then, we scale both independent and dependent vari-
ables based on the statistics of the training data set (see Section 4).

from sklearn.model_selection import train_test_split

# split into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# compute scaling params

param_x = scaling(X_train,fit=True) # scaling params for X

param_y = scaling(y_train,fit=True) # scaling params for y

# scale X (training and test sets)

norm_X_train = scaling(X_train,transform=True,param=param_x)

norm_X_test = scaling(X_test,transform=True,param=param_x)

# scale y (training and test sets)

norm_y_train = scaling(y_train,transform=True,param=param_y)

norm_y_test = scaling(y_test,transform=True,param=param_y)

At this point, we have to construct the polynomial basis functions, with Scikit-Learn’s
PolynomialFeatures (we stop at the sixth degree). Then, we can simply perform a
linear regression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

poly_features = PolynomialFeatures(degree=6, include_bias=False)

norm_X_poly = poly_features.fit_transform(norm_X_train)

lin_reg = LinearRegression()

lin_reg.fit(norm_X_poly,norm_y_train) # perform linear regression

lin_reg.intercept_, lin_reg.coef_ # theta_0 and theta_k

(array([-0.35987146]),

array([[ 0.20041976, 7.23777176, -0.72575099, -16.10685101,

0.48763306, 8.95138004]]))

Not so difficult! The model finds the following best-fit equation

ŷ = −0.36 + 0.20x+ 7.24x2 − 0.73x3 − 16.11x4 + 0.49x5 + 8.95x6.

We can now deploy it to make predictions and compare the latter with the test set
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x = np.expand_dims(np.linspace(-np.pi,np.pi,200),1)

norm_x = scaling(x,transform=True,param=param_x)

norm_x_poly = poly_features.fit_transform(norm_x)

norm_y_predicted = lin_reg.predict(norm_x_poly)

Figure 12, left, compares the predictions with the training and test sets and below we
evaluate the MSE of the predictions for the training and test sets:

from sklearn.metrics import mean_squared_error

norm_X_test_poly = poly_features.fit_transform(norm_X_test)

norm_y_predicted_train = lin_reg.predict(norm_X_poly)

norm_y_predicted_test = lin_reg.predict(norm_X_test_poly)

print('MSE on train set: ', mean_squared_error(norm_y_predicted_train,

norm_y_train))

print('MSE on test set: ', mean_squared_error(norm_y_predicted_test,

norm_y_test))

MSE on training data set: 0.05173368072737507

MSE on test data set: 0.05142192371233674

The model performs quite well on both sets.

Figure 12: Nonlinear regression using polynomial basis functions with: (i) degree six
(left) and (ii) different degrees (right). Features are scaled.

However, we skipped two important aspects: (i) hyperparameters selection and (ii)
validation of the model.

5.1.1 Hyperparameters selection

The degree of the polynomial basis is actually a hyperparameter. Thus, we cannot a
priori say that the analysis is completed – that is, whether or not we found the best
model fot the data set at hand. To this end, we need to train multiple models with
different degrees:

50 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



degree = [2,6,50,100] # different polynomial degrees

color = ['black','red','darkblue','darkorange']

fig = plt.figure(figsize=(3., 2.))

plt.plot(norm_X_train,norm_y_train,'ko',alpha=0.2)

plt.plot(norm_X_test,norm_y_test,'ko')

for i in range(len(degree)):

poly_features = PolynomialFeatures(degree=degree[i], include_bias=False)

norm_X_poly = poly_features.fit_transform(norm_X_train)

lin_reg = LinearRegression() # linear regression model

lin_reg.fit(norm_X_poly,norm_y_train) # fit model

norm_x_poly = poly_features.fit_transform(norm_x)

norm_y_predicted = lin_reg.predict(norm_x_poly)

plt.plot(norm_x,norm_y_predicted,'-',color=color[i],

linewidth=3,label=str(degree[i]))

plt.ylim(-1,1)

plt.xlim(-1,1)

plt.show()

The results are depicted in Figure 12, right, and from them we can draw some conclu-
sions: (i) a quadratic model is unable to fit the data and (ii) high-degree – 50 and 100,
here – polynomial models wiggle around to get as close as possible to the training data
points. In other words, the quadratic model is underfitting, while for high polynomial
degrees, the model tends to overfit the training set. So, how can we select the best
models – that is, the one that will generalize best (cf. Section 4)? To answer let’s
move to the second part of this example: model validation.

5.1.2 Validation

We have already seen in Section 4 that a crucial aspect in finding models that general-
ize well is to perform hold-out validation. To this end, we should assess the model’s
performance by examining the validation error at varying of the size of the training
set (and eventual hyperparameters). By repeatedly training the model on subsets of
varying sizes from the training set, we can generate informative plots that will guide
us in selecting the model with the minimum error on the validation set. Below we
implement a function that is designed to plot the training, validation, and test errors of
models with different polynomial degrees (up to 40).

def learning_curves(X_train, y_train, X_test, y_test, degree):

degree +=1

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size = 0.25) # split

norm_X_val = scaling(X_val,transform=True,param=param_x) # scale

model = LinearRegression()

train_errors = np.zeros((degree-1,len(X_train)-1))

val_errors = train_errors.copy()

test_errors = train_errors.copy()

for deg in range(1,degree):

for m in range(1, len(X_train)):

# Construct polynomial library up to degree = deg

poly_features = PolynomialFeatures(degree=deg, include_bias=False)

X_train_poly = poly_features.fit_transform(norm_X_train)

X_val_poly = poly_features.fit_transform(norm_X_val)
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X_test_poly = poly_features.fit_transform(norm_X_test)

# Fit model

model.fit(X_train_poly[:m], y_train[:m])

# Predict training, validation, and test

y_train_predict = model.predict(X_train_poly[:m])

y_val_predict = model.predict(X_val_poly)

y_test_predict = model.predict(X_test_poly)

# Store errors

train_errors[deg-1,m-1] = mean_squared_error(y_train[:m],

y_train_predict)

val_errors[deg-1,m-1] =mean_squared_error(y_val, y_val_predict)

test_errors[deg-1,m-1] = mean_squared_error(y_test, y_test_predict)

return train_errors, val_errors, test_errors

train, val, test = learning_curves(norm_X_train, norm_y_train,

norm_X_test, norm_y_test, degree=40)

Let first have a look at the error on the training and validation sets for a sixth-degree
polynomial model, depicted in Figure 13. We start by analyzing the behavior of the
training error. When there is a small bunch of training points, the model can perfectly
fit those data and results in zero error. However, as more points are added, the model
struggles to fit the data precisely due to the noise that we artificially added and the
intrinsic non-linearity of the function we are trying to fit. Thus, the error on the train-
ing data increases until it reaches a plateau where additional data won’t significantly
affect the mean error.
An analysis on the validation error however rapidly reveals that things are quite dif-
ferent. When there is a small bunch of training points, the model clearly fails to gen-
eralize well and leads to relatively high validation errors. As the model is exposed to
more training points, it gradually learns and improves, causing the validation error to
decrease and, in this example, to reach approximately the same plateau of the training
error.
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Figure 13: Training and validation MSE at varying of the training set size for a sixth-
degree polynomial model.

We are now ready to look at the big picture, namely Figure 14, where we can see the
variation of the training, validation, and (optionally) test errors at varying of both the
polynomial degree and the size of the training set.
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The training error presents the same aforementioned behavior. Additionally, we can
observe that for any polynomial degree smaller than 6, the error is high – that is, the
model is underfitting the training data. Instead, as we increase the degree of the model,
we observe a slight reduction of the error (caused by overfitting the training data).
If we move to the validation error, we observe that for training sets smaller than a
certain size, the model does not generalize well (exactly as before). However, in addi-
tion, we (re-)discover overfitting. For degrees larger than 20, the model displays high
validation error meaning that it overfits the training data and cannot accurately predict
any other data different from those contained in the training set (poor generalization).
As we have discussed in Section 4, the validation set allows us to pick up the best
model(s) as the one(s) that presents the minimum validation error – approximately
corresponding to a degree equal to 16, in this example. Once we have selected such
model, we can deploy it to make prediction of new/unseen data – that is, the test set.
And, indeed, the minimum error for the test set (i.e., the minimum of the general-
ization error) is located within the region where the validation error is minimum (see
Figure 14).
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Figure 14: Training (left), validation (middle), and test (right) mean squared errors at
varying of the training set size and the polynomial degree.

An alternative to the above laborious evaluation of the model performances at varying
of the training set size consists of using Scikit-Learn’s k-fold cross-validation††. The
code below, considering a polynomial regression of degree six, splits randomly the
training set into five distinct folds, then it trains and evaluates the model five times,
picking a different fold for evaluation every time and training on the other four folds.

††Note that cross val score expects an objective function to be maximized, so the scoring function is
actually the opposite of the MSE.
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The result is an array containing the five evaluation scores:

from sklearn.model_selection import cross_val_score

poly_features = PolynomialFeatures(degree=6, include_bias=False)

X_train_poly = poly_features.fit_transform(norm_X_train)

scores = cross_val_score(lin_reg, X_train_poly, norm_y_train,

scoring="neg_mean_squared_error",

cv=5)

mse_scores = -scores

print('Scores: ', mse_scores)

print('Mean scores: ', np.mean(mse_scores))

print('Standard deviation scores: ', np.std(mse_scores))

Scores: [0.09159855 0.07245614 0.04068157 0.04406373 0.03980408]

Mean scores: 0.05772081499906291

Standard deviation scores: 0.0207975583120194

The sixth-degree polynomial model has a MSE of approximately 0.057 ± 0.021 and
we would have missed such information if we have just used one validation set.

6 Regularization techniques

6.1 Over- and under-determined systems
In linear and nonlinear regression, we are often confronted with a system of equations,
either (4) or (17), that is under- or over-determined [Gen12]. To investigate these
scenarios, let us rewrite equation (10) as

Aθ = b, (19)

where A ≡ XT is a matrix with n rows and m columns and b ≡ yT is a matrix with
n rows and p columns. Note that an analogous formulation can also be written for
nonlinear regression (13).
With reference to equation (19), we define overdetermined systems those systems of
equations that have more constraints than unknowns (variables) – i.e., when the ma-
trix A is tall-skinny – while underdetermined systems have more unknowns than con-
straints – i.e., A is short-fat, see Figure 15.

Let us translate these notions from linear algebra to regression methods. If the number
of data points is larger than the dimension of the independent variables (n > m),
then we are dealing with an overdetermined systems of linear equations. Viceversa,
if n < m, we are confronted with an underdetermined system. In the former case,
there are generally no solutions satisfying the linear system, and instead, approximate
solutions are found to minimize a given error. In the latter, there is an infinite number
of solutions, and some additional constraints must be enforced in order to select an
appropriate solution.
Note that in regression, we are most often dealing with overdetermined systems, even
if sometimes overparametrization is preferred [BLLT20]. Analogous underdetermined
systems are instead met when dealing with overparametrized artificial neural networks
(cf. Chapter 7) [JNM+19].
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Overdetermined or underdetermined optimization problems for linear systems (19)
involve the minimization of the error of the solution, the MSE for instance, plus a
constraint (n < m) or a penalty (n > m), which is also known as regularization, i.e.,

θ̂ = argmin
θ

(
MSE (Aθ − b) + λw(θ)

)
, (20)

where λ is a weighting parameter and w(θ) a given function, depending whether the
system is over- or under-determined. Below, we will see how ℓ1 and ℓ2 norm penal-
ties/constrains can help in solving Aθ = b.

overdetermined system underdetermined system

Figure 15: Overdetermined (left) and underdetermined (right) system.

6.1.1 Overdetermined systems

When dealing with overdetermined systems, there exists no solution that satisfy Aθ =
b. Thus, penalties based on the ℓ1 and ℓ2 norms are often considered and the optimiza-
tion problem (20) reads

θ̂ = argmin
θ

(
MSE (Aθ − b) + λ1||θ||1 + λ2||θ||2

)
, (21)

where ||θ||r = (|θ|r)1/r denotes the ℓr norm and the parameters λ1 and λ2 control
the penalization of the ℓ1 and ℓ2 norms, respectively. The above penalty is crucial for
obtain optimal approximate solutions, which are directly affected by the value of the
penalty parameters.

To fix the ideas, consider an overdetermined system of equations. We draw A and
b from normal distributions N [0, 1). We then obtain the parameters θ by (i) using
equation (10) and (ii) solving the optimization problem (21), considering two combi-
nations of penalty parameters: {λ1, λ2} = {0.1, 0}, {0, 0.1}.
Figure 16 shows the obtained θ̂, as a m × p matrix. The key difference between
the two regularization techniques and the ordinary solution without regularization is

Masi 55

ALERT Doctoral School 2023



that ℓ1 penalty shrinks the parameters associated with less important variables to zero.
Indeed, regularization based on the ℓ1 norm promotes a parsimonious solution, dom-
inated by zero entries, i.e., sparse. While, regularization based on the ℓ2 norm keeps
the solution values as small as possible. We could also combine both kinds of regular-
ization to promote both sparsity and decrease in the value of the parameters.

Figure 16: Solution of an overdetermined linear system of equations obtained using
the pseudoinverse (left), ℓ1 (middle) and ℓ2 (right) regularization.

6.1.2 Underdetermined systems

When dealing with undetermined systems, there exists an unlimited set of potential
solutions that satisfy the equation Aθ = b. In such cases, the objective is to introduce
constraints that would ideally result in a single, unique solution among the countless
possibilities. Usually the optimization problem (20) is reformulated as

θ̂ = argmin
θ

(
MSE (Aθ − b) + ||θ||r

)
, (22)

where the r denotes the r-norm. Once again, one could use either ℓ1 or ℓ2 norm, or
combination of them, as for the overdetermined case.

6.2 Regularized regression
It is now time to see how the aforementioned penalties and constraints for the solution
of under- and over-determined systems can be employed in regression.
As already mentioned, (non)linear regression deals, most of the times, with overde-
termined systems of equations – all examples we have looked up so far are indeed
characterized by n ≫ m. We should not be surprised, at this point, that the same
penalty terms that are used for the solution of overdetermined systems have their own
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counterparts (and names) in regression. Regularized regression models based on the
ℓ1 and ℓ2 norms are called LASSO – Least Absolute Shrinkage and Selection Opera-
tor Regression –, and Ridge, respectively. The combination of both is often referred
to as Elastic net.

6.2.1 LASSO

LASSO regression [Tib96] is the (non)linear regression version with a regularization
term proportional to ||θ||1. This forces the learning algorithm to not only fit the data
but also shrink the model parameters to zero. The loss function is thus defined as

LLASSO (X, fθ) = MSE (X, fθ) + λ1||θ||1. (23)

Note that the above loss function is not differentiable at θ = 0, thus we cannot derive
a closed form solution analogous to the normal equation. However, we can still use
gradient descent provided that we define the following modified gradient, whenever θ
is equal to zero,

grad
(
θ,LLASSO) = ∂

∂θ
MSE(X, fθ) + sign (θ) , (24)

where sign(·) is the sign function.
Below, we perform LASSO regression using Scikit-learn’s for the same example we
have seen for polynomial regression (cf. Section 5) and we consider polynomials of
degree 100:

from sklearn.linear_model import Lasso

lambda_1 = 0.0001

lasso_reg = Lasso(alpha=lambda_1,max_iter=100000) # define lambda_1

# Polynomial feature up to degree 100

poly_features = PolynomialFeatures(degree=100, include_bias=False)

lasso_reg.fit(norm_X_poly,norm_y_train) # fit LASSO reg model

norm_x_poly = poly_features.fit_transform(norm_x)

norm_y_predicted_lasso = lasso_reg.predict(norm_x_poly) # make predictions

The predictions are shown in Figure 17, left. For the sake of clarity, the plot also
shows the solution obtained without regularization (pinv). We can easily observe that
LASSO allows to rediscover the underlying function, equation (18), used to gener-
ate the data, independently of the additive noise, and without overfitting – in contrast
with the ordinary regression model (pinv), with all polynomial degrees up to 100. The
reason is that LASSO shrinks most of parameters to zero, hence we discover a quite
precise series expansion of the combination of sinusoidal functions within the range
(−π, π).
For the sake of completeness, note that we could also use Scikit-learn’s SGDRegressor
with the following arguments: penalty="l1" and alpha=lambda 1:

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(max_iter=10000,

tol=1e-6,penalty="l1",alpha=lambda_1,
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eta0=0.01)

sgd_reg.fit(norm_X_poly,norm_y_train.ravel())

norm_y_predicted_sgd = sgd_reg.predict(norm_x_poly) # make predictions

6.2.2 Ridge

Ridge regression [HK70] is the (non)linear regression version with a regularization
term proportional to ||θ||22 that forces the model parameters to be as small as possible.
The loss function is defined as

LRidge (X, fθ) = MSE (X, fθ) + λ2||θ||22. (25)

As with linear regression – and differently from LASSO –, we can perform Ridge
regression either by computing a closed-form equation [HK70] or by performing gra-
dient descent. The code hereinafter implements the closed-form solution using Scikit-
learn’s Ridge:

from sklearn.linear_model import Ridge

lambda_2 = lambda_1

ridge_reg = Ridge(alpha=lambda_2,max_iter=100000) # define lambda_2

ridge_reg.fit(norm_X_poly,norm_y_train) # fit Ridge reg model

norm_y_predicted_ridge = ridge_reg.predict(norm_x_poly) # make predictions

We plot the predictions in Figure 17(middle). Once more, thanks to regularization,
we are able to retrieve the original function, in contrast with the massively overfitted
linear model (pinv).

6.2.3 Elastic net

Elastic net is the middle version between LASSO and Ridge. Accordingly, the regres-
sion model is regularized with respect to both the ℓ1 and ℓ2 norms. The regularization
term is a mix of both Ridge and LASSO’s controlled by a ratio ϱ:

LElastic net (X, fθ) = MSE (X, fθ) + ϱλ||θ||1 +
1− ϱ
ϱ

λ||θ||22. (26)

Elastic net is equivalent to Ridge if ϱ = 0 and to LASSO if ϱ = 1. Below the code to
define and fit an Elastic net model, whose predictions are shown in Figure 17, right:

from sklearn.linear_model import ElasticNet

net_reg = ElasticNet(alpha=2*lambda_2,l1_ratio=1.0,

max_iter=100000) #l1_ratio = \varrho

net_reg.fit(norm_X_poly,norm_y_train) # fit Elastic Net reg model

norm_y_predicted_net = net_reg.predict(norm_x_poly) # make predictions

7 Challenges in generalization and extrapolation

Regression, like other supervised ML methods, is mainly design for making predic-
tions rather than determining existing relationships between some features. However,
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Figure 17: Nonlinear regression using polynomials of degree 100. Comparison be-
tween standard regression (pinv) – equation (10) – and regularized models: LASSO
and stochastic GD (left), Ridge (middle), Elastic net (right). Features are scaled.

by post-processing the model parameters θ, we can, under some circumstances, grasp
the underlying relationships buried under the mere data points we are analyzing. In
this sense, we may even end up (re)discovering some laws of physics, in the form of
governing equations, see e.g. [CLKB19]. To do so, the obtained model needs to be
interpretable – that is, capable of explaining why data behaves in a certain manner.
An interpretable model has, in general, not only good generalization capabilities, but
also good expressive ability (extrapolation) [KB22].

Think to the example in Section 5 involving data generated from a combination of
trigonometric functions with additive noise. The example highlighted that regression
is actually more nuanced than simply choosing a regression model and performing
a least-square fit. The selection of the model itself is crucial for achieving better
predictions and interpretable descriptions of the data.
In the example, we have seen that if we pick up an “optimal” polynomial degree,
then we will obtain a model able to interpolate quite well the test data (cf. Figure 12,
left). However, if the polynomial degree is too large (or too small), we will end up
having a model that massively overfits (or underfits) the training data – that is, unable
to generalize for new data points (cf. Figure 12, right). The ultimate solution was to
resort to regularized regression models (e.g., LASSO). In doing so, we succeeded in
identifying a good approximation of the true (trigonometric) model hidden under the
pile of noisy data (cf. Figure 17).

However, why a regularized regression model seems to have much more predictive
power than a straightforward nonlinear regression one, with as many polynomials
terms as we are able to count? The answer lies in Occam’s razor, a principle of parsi-
mony (“lex parsimoniae”) attributed to William of Occam:

“Entia non sunt multiplicanda praeter necessitatem”

i.e. “entities must not be multiplied beyond necessity.” In other words, among dif-
ferent competing models that make the same predictions, the simpler one is the more
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likely. This principle is extensively used in science, where simpler explanations are
preferred. An example is the method of dominant balance, which allows to determine
the asymptotic behavior of solutions to an ordinary differential equation by identifying
those terms that may be neglected in the limit. Dominant balance is, for instance, when
we consider the evolution of shear stress in a sand sample, and we do not model nei-
ther its quantum state nor the effects of the relativistic warping of space-time caused
by the grains.

Regularized regression adheres to this principle by discouraging the inclusion of nu-
merous polynomial terms – or, in general, of features – thus promoting model simplic-
ity. In addition, regularization helps in avoiding overfitting and results in high degree
of stability. Indeed, high-dimensional polynomial models tend to suffer from instabil-
ity due to multicollinearity that occurs when two or more independent variables have
a high correlation with one another, see Figure 12, right.
While some of these benefits could also be obtained with low-degree polynomial mod-
els without the need to resort to regularization, these models tend to underfit the train-
ing data and exhibit insufficient expressive power. It is also worth mentioning that
successful machine learning models often exhibit a certain degree of benign overfit-
ting (also called overparametrization) [BLLT20]. Therefore, regularized regression
models, with their ability to balance complexity and simplicity, offer significant pre-
dictive power by selecting relevant features.

In the example involving LASSO, Ridge, and Elastic Net regression (paragraph 6.2),
we demonstrated the interpolating power of regularized regression models. However,
it is important to further assess their interpretability and potential to provide insights
for the identification and/or discovery of patterns and equations hidden within data
sets.

7.1 Interpretable models and where to find them
This application deals with the investigation of whether it is possible or not to discover
interpretable models (governing equations) with extrapolative power using (regular-
ized) regression methods.
In particular, we mimic virtual experiments governed by a very simple equation and
consider additive noise simulating virtual statistical errors in a hypothetical data ac-
quisition system. The underlying governing equation is the (one-dimensional) pro-
jectile motion – i.e., the solution of the second-order ordinary differential equation
ẍ(t) + g = 0,

x(t) = x(0) + ẋ(0)t− 1

2
gt2,

where x, ẋ, and ẍ are the trajectory, velocity, and acceleration of the projectile, re-
spectively; t is the time, and g is the gravitational acceleration. The code hereinafter
integrates the differential equation with initial conditions: x(0) = 0 m and ẋ = 5 m/s.
As we are interested in making predictions within the range of values of some training
data and outside of it, we generate the data and split them in an interpolation (xi and
yi) and extrapolation (xe and ye) sets, depicted in Figure 18(a):
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import numpy as np

from scipy.integrate import solve_ivp

np.random.seed(42)

def projectile_motion(t, y):

# equations of motion

dydt = y[1] # velocity

dvdt = -g # acceleration

return [dydt, dvdt]

# Initial conditions

n_snapshots = 200

x0 = 0.0 # meters

v0 = 5.0 # meters per second

g = 9.81 # acceleration due to gravity

t0 = 0.0 # initial t

tf = 1.0 # final t

# time points solution

t = np.linspace(t0, tf, n_snapshots)

# solve ODE

sol = solve_ivp(projectile_motion, [t0, tf], [x0, v0], t_eval=t)

# define independent and dependent variables

X = np.float32(t)

y = np.float32(sol.y[0])

n = n_snapshots//2

xi = X[:n] # train time

xe = X[n:2*n] # test time

ytrain = y[:n] # train x = [0,0.5]

ytest = y[n:2*n] # test x = [0.5,1]

We continue by training a set of n polynomial regression models of degree 20. Every
model is trained against dependent variables lying between 0 and 0.5 (xi) and depen-
dent variables (yi) with a normally distributed measurement noise, randomly selected
at each loop (fni). In a nested for loop, we store the MSE values between the mod-
els predictions and yi for values of the independent variables within the interpolation
(mse int) and extrapolation (mse ext) range.

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.metrics import mean_squared_error

degree = 20 # polynomial

mse_int = np.zeros((n,degree))

mse_ext = np.zeros((n,degree))

poly_features = PolynomialFeatures(degree=degree, include_bias=False)

xi_poly = poly_features.fit_transform(np.expand_dims(xi,1))

xe_poly = poly_features.fit_transform(np.expand_dims(xe,1))

for deg in range(degree):

xi_poly_ = xi_poly[:,:deg+1]

xe_poly_ = xe_poly[:,:deg+1]

for j in range(n):

fni = ytrain + 0.3*np.random.normal(0,1,n) # y with normal noise

lin_reg = LinearRegression() # model

lin_reg.fit(xi_poly_,fni) # fit for x in [-0.5,1]

ynai = lin_reg.predict(xi_poly_)

ynae = lin_reg.predict(xe_poly_) # fit for t in [0.5,1]

mse_int[j,deg] = mean_squared_error(ytrain,ynai) # MSE train
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mse_ext[j,deg] = mean_squared_error(ytest,ynae) # MSE val

Figure 18 shows the MSE of the set of models in the interpolation and extrapolation
ranges. The results are clear: all the trained models massively overfit the data with
measurement noise and cannot generalize. When attempting to extrapolate beyond the
range observed in the training data, we are confronted with substantial errors, as shown
in Figure 18(c-d). The logarithmic plot in Figure 18(d) illustrates the exponential
growth of the error as the polynomial degree increases, reaching magnitudes as high
as 1010. This demonstrates the inability of overfitted models to make predictions in the
extrapolation range. Thus, we can say that (non-regularized) polynomial regression
does not offer an interpretable model for this simple case (except an obvious second-
order polynomial).

(a)

(c)

(d)

(b)

Figure 18: Regression of the motion of a projectile with measurement noise (a) using
100 different nonlinear regression models with polynomial basis (degree 20). Errors
for values within the training, interpolation range (b), and outside (extrapolation) (c-
d).
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Let us continue by employing cross-validation to mitigate the effects of overfitting. We
also extend the set of polynomial regression models – denoted with pinv, diminutive
of pseudoinverse – with regularized ones. The code below performs 100-fold cross-
validation for the same noisy data sets for the three different regression models (pinv,
LASSO, and Ridge) and stores the obtained parameters. Note that, as the measurement
noise is randomly select for each k-fold, the training data points may be considered as
virtual experimental measurements of the simplified system.

from sklearn.linear_model import Lasso,Ridge

from sklearn.model_selection import KFold

nfolds = 100

lin_reg = LinearRegression() # linear model

lasso = Lasso(alpha=3e-4) # LASSO model

ridge = Ridge(alpha=3e-4) # Ridge model

k_fold = KFold(nfolds)

# initialize for storing parameters

lasso_params = np.zeros((nfolds,degree+1))

ridge_params = np.zeros((nfolds,degree+1))

lin_params = np.zeros((nfolds,degree+1))

for k, (train, test) in enumerate(k_fold.split(xi_poly, ytrain)):

fni = ytrain + 0.3*np.random.normal(0,1,n) # y with normal noise

lin_reg.fit(xi_poly[train], fni[train]) # fit lin

ridge.fit(xi_poly[train], fni[train]) # fit RIdge

lasso.fit(xi_poly[train], fni[train]) # fit LASSO

# store models parameters

lin_params[k,0] = lin_reg.intercept_

lin_params[k,1:] = lin_reg.coef_

ridge_params[k,0] = ridge.intercept_

ridge_params[k,1:] = ridge.coef_

lasso_params[k,0] = lasso.intercept_

lasso_params[k,1:] = lasso.coef_

Figure 19 plots the values of the parameters θ obtained from the above code, for k-
th fold (k = 2, 10, and 100). Note how the parameters of the standard regression
model explode, with values of the order of 105, independently of the number of folds.
The phenomenon is intrinsic to polynomial regression which blows up as the poly-
nomial degree is increased and further enhanced by the intrinsic multicollinearity of
the (polynomial) features. In contrast, Ridge and LASSO identify parameters with
ranges of values comparable with underlying equation of motion. In addition, LASSO
also successfully identifies a parsimonious model, with a (more or less) predominant
quadratic term (depending on the number of folds).

In order to proceed to the evaluation of the three cross-validated models, we compute
the average of the parameters obtained from the optimization performed at each fold
(cf. paragraph 5.1.2):

# Compute models based on the mean over the 100-fold cross-validation

lin_theta = np.mean(lin_params[:,:],0)

lasso_theta = np.mean(lasso_params[:,:],0)

ridge_theta = np.mean(ridge_params[:,:],0)

# Set mean params for each model

lin_reg.coef_ = lin_theta[1:]
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Figure 19: Values of the parameters θ obtained using standard (pinv), LASSO, and
Ridge polynomial regression for different cross-validation folds: k = 2 (left), k = 10
(middle) and k = 100 (right).

lin_reg.intercept_ = lin_theta[0]

ridge.coef_ = ridge_theta[1:]

ridge.intercept_ = ridge_theta[0]

lasso.coef_ = lasso_theta[1:]

lasso.intercept_ = lasso_theta[0]

# Predictions within interpolation range

fy_lin_xi = lin_reg.predict(xi_poly)

fy_la_xi = lasso.predict(xi_poly)

fy_rid_xi = ridge.predict(xi_poly)

# Predictions within extrapolation range

fy_la_xe = lasso.predict(xe_poly)

fy_lin_xe = lin_reg.predict(xe_poly)

fy_rid_xe = ridge.predict(xe_poly)

Figure 20 compares the performances of the three models (pinv, LASSO, Ridge) in
terms of the mean squared error, while Figure 21 shows the predictions, in the inter-
polation and extrapolation range. As we might have expected, LASSO excels over
all other strategies by providing a model that can interpolate (without overfitting) and,
even, extrapolate with good accuracy. We can also observe that Ridge performs better
than the standard regression approach, although it rapidly fails in the extrapolation
range.

Whilst good generalization and extrapolation capabilities, LASSO has not identified
the exact underlying governing equation but just a very good approximation of it,

x̂(t) ≈ θ1t+ θ2t
2 + θ3t

3, θ1 = 4.33, θ2 = −2.93, θ3 = 1.32.
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Figure 20: Errors of the cross-validated regression models: pinv, LASSO, Ridge
within the: (a) interpolation range and (b-c) extrapolation range, where (c) presents a
detailed view.

Note that the true equation has θ1 = 5, θ2 = −4.9, and θ3 = 0. This implies that if we
ask the model to make predictions for a significantly distant time point, i.e., t≫ 1, the
accuracy of the extrapolation will not be as good as in the range that we considered
here.

Figure 21: Comparison between the projectile motion equation and the predictions of
the cross-validated models: pinv, LASSO and Ridge.

8 Bayesian regression

All regression methods discussed up to this point fall under the hat of the frequentist
approaches [Wak13] as they assume that there are enough measurements to say some-
thing meaningful about θ and provide a sigle best estimate for a given training set.
Such methods provide good models whenever the relationship between the indepen-
dent and dependent variables is well understood and relatively stable. However, in real
case scenarios, we are often confronted with uncertainty or variability in the data and
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deterministic methods are not appropriate. To this end, a powerful, alternative tool is
provided by Bayesian regression methods.

Bayesian regression is able to provide predictions in the form of probability distribu-
tions incorporating uncertainty estimates. This Section introduces the main ideas and
novelties characterizing such methodologies as compared to frequentist approaches
by focusing on linear Bayesian regression and Gaussian process regression. For more
details, we refer to [BN06, Mur18].

8.1 Linear Bayesian regression
In simple linear regression, we aim to find the best-fit line that explains the relation-
ship between two variables. Linear Bayesian regression extends this same concept by
considering uncertainty in both the model parameters and the predictions. Instead of
relying on a single line (cf. Section 2), it thus provides a distribution of possible lines,
accounting for the uncertainty in the data.

Linear Bayesian regression starts by assuming a linear relationship between the inde-
pendent variables X and the dependent variable y of the form

y = Xθ + ϵ, (27)

where θ are the model parameters and ϵ represents an error term assumed to follow a
zero-mean Gaussian distribution, ϵ ∼ N (0, σ2I), where I is the identity matrix and
σ2 is the variance.

8.1.1 Bayesian inference

Bayesian inference allows to infer a posterior distribution p(θ|X,y) – that of the
parameters – representing updated beliefs given the observed independent variables
X and dependent variable y. To this end, we use Bayes’ formula, i.e.,

p(θ|X,y) ∝ p(X,y|θ) p(θ), (28)

where p(θ) is the prior distribution over θ, incorporating prior beliefs about the pa-
rameters values before observing any data, while p(y|X,θ) is the likelihood function,
quantifying instead the probability of observing the dependent variable y given the
independent variables X and the parameters θ.

8.1.2 Prior and posterior

In principle, any prior p(θ) could be used, however the functional form of most priors,
when multiplied by the functional form of the likelihood in (28), results in an posterior
p(θ|X,y) with no closed-form solution.
In such scenarios, the solution is to resort to approximate Bayesian inference tech-
niques as Monte Carlo methods. But, certain priors are mathematically convenient
because they result in posteriors with tractable, well-known densities.
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The simplest and most widely used version of linear Bayesian regression is the normal
linear model, in which y given X – p(X,y|θ) – is distributed Gaussian. In this model,
and under a particular choice of the prior for the parameters – namely, when the prior
is conjugate, meaning that the prior and posterior share the same functional form – the
posterior can be found analytically. With more arbitrarily chosen priors, the posteriors
generally have to be approximated.

8.1.3 Posterior predictive

Once we have computed the posterior distribution p(θ|X,y), we can make predictions
for new, unseen data points. One common approach is to generate posterior predictive
samples by drawing parameter values from the posterior distribution and using them
to make predictions [BN06].

8.1.4 Example

Let us consider an intuitive example drawn from [BN06] and implemented as in
gwgundersen/bayesian-linear-regression. We start by generating 50 snap-
shots of the independent and dependent variables, according to

y = θ1x+ θ0,

where θ1 = 0.5 and the bias is θ0 = −0.7. Then, we perform Bayesian linear regres-
sion using as prior a normal-inverse-gamma distribution and consider an increasing
number of observations in the training data set.

Figure 22 depicts the evolution of the prior and posterior distributions of the pa-
rameters θ (left column) and six random posterior samples drawn from the vector
θ = [θ0, θ1]

T (right column). In the top row, the model has seen no data. The prior
places high and equal probability on both θ0 and θ1 being zero. In the subsequent
rows, the model is fit to more data. With more observations, the model inferred pos-
terior variance decreases, and the realizations of θ from the posterior become more
constrained and in agreement with the observed data.

8.2 Gaussian process regression
Before discussing about Gaussian process regression, it is important to distinguish
parametric from nonparametric models and recall the definition of a Gaussian pro-
cess.

Parametric versus nonparametric model Parametric models are all those regres-
sion models we have seen so far. More formally, parametric models assume a well-
defined functional relationship between dependent and independent variables and that
the distribution of the data can be entirely defined in terms of a finite set of param-
eters θ. Thus, once we have trained a parametric model, every future prediction is
independent of the particular set of new data for which we are making predictions.
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Figure 22: Evolution of the prior and posterior distributions of the parameters θ (left
column) and random samples of the vector θ = [θ0, θ1]

T (right column) at varying of
the number of observation (rows).

Nonparametric models do not prescribe any predetermined functional relationship (or
hypothesis fθ) between the dependent and independent variables [HM93]. Nonpara-
metric models thus have the freedom to calculate the probability distribution over all
admissible functions that fit the data, rather than, for instance, calculating the proba-
bility distribution of parameters of a specific function (cf. linear Bayesian regression).
However, even in nonparametric models, we must specify a prior (on the function
space), calculate the posterior using the training data, and compute the predictive pos-
terior distribution on the points of interest.
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Gaussian process A Gaussian process (GP) is a collection of random variables, any
finite number of which has a joint Gaussian distribution. In the context of regression,
we can think of a GP as an infinite-dimensional generalization of a multivariate Gaus-
sian distribution. Instead of representing a mean vector and a covariance matrix, a
GP is fully characterized by a mean function, denoted as µ(x), and a covariance func-
tion, also known as the kernel function, denoted as k(x,x), describing the relationship
between any given two data points xi and xj , for i, j = 1, 2, · · · ,m.

8.2.1 Inference

Gaussian process regression (GPR) is a nonparametric, Bayesian regression method.
In particular, GPR uses a Gaussian process prior to infer the distribution of possible
functions that could generate the observed data.

To fix the ideas, consider a set of training data {X,y} ≡ {(x(i), y(i))}ni=1, the ob-
jective is to estimate the function f(X) that minimizes y − f(X) = 0 by placing a
Gaussian process over it. Typically, a mean of zero is assumed, leading to the follow-
ing distribution

y = f(X) ∼ N (0,K), (29)

where K ≡ k(X,X) denotes the covariance matrix generated by the kernel function
k chosen (e.g. periodic, linear, radial basis function) and describes the general shape
of f(·). Note that the choice of the kernel is crucial in identifying a good (or a bad) fit
of the data.

To predict the values of a new set of dependent variables y∗, given a new set of inde-
pendent variables X∗, we need to estimate the conditional distribution p(y∗|X∗,X).
According to the properties of GP [Mur18], the joint distribution of the training and
test outputs follows a joint Gaussian distribution:

[
y
y∗

]
= f

([
x
x∗

])
∼ N

(
0,

[
K K∗
KT

∗ K∗∗

])
, (30)

where K∗ ≡ k(X,x∗), K∗∗ ≡ k(x∗,x∗). While the above joint distribution gives
some insight as to how f(x∗) relates to f(x), at this point no prediction for the new
datum x∗.
To obtain the posterior distribution of the predicted GP realizations f(x∗), we con-
dition the prior distribution on the training data [Mur18]. This leads to the following
mean and covariance predictions for the test point x∗ (see [Mur18] for the detailed
derivation):

µ
(
f(x∗)

)
= KT

∗K
−1y,

Cov
(
f(x∗)

)
= K∗∗ −K∗K

−1KT
∗.

(31)

These equations provide the mean and covariance predictions for the output f(x∗)
given the training data set and a new input x∗.
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8.2.2 Inference in the presence of noise

In real-world scenarios, we often encounter observations with measurement noise.
In such scenarios, it is more appropriate to model the training targets y to be noisy
realizations of a Gaussian process f(X),

y = f(X) ∼ N (0,K) + ϵ, ϵ ∼ N (0, σ2), (32)

where the noise ϵ is parameterized by a zero-mean Gaussian with positive noise co-
variance values given by σ2, which is a hyperparameter.

By repeating the steps above, we obtain the following joint distribution of the training
and new outputs

f

([
x
x∗

])
∼ N

(
0,

[
K+ σ2I K∗

KT
∗ K∗∗

])
. (33)

As before, but now with the noise term, we can obtain the predictive mean and vari-
ance, given by

µ
(
f(x∗)

)
= KT

∗
(
K+ σ2I

)−1
y,

Cov
(
f(x∗)

)
= K∗∗ −K∗

(
K+ σ2I

)−1
KT

∗ + σ2.
(34)

8.2.3 Example

Let us see how we can perform GRP using Scikit-learn. We consider the same poly-
nomial regression example in Section 5, with data generated from a combination of
trigonometric functions with random additive noise. In the code hereinafter, we first
fit a Gaussian process on the training data using a radial basis function (RBF) kernel
and, additionally, a noise parameter (alpha). Then, we use the kernel to compute the
mean predictions (norm y mean) for the train and test set and plot the 95% confidence
interval (defined as norm y mean ±1.96 norm y std).

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import RBF

# define a radial basis function kernel

kernel = 1 * RBF(length_scale=1.0, length_scale_bounds=(0.001, 10)) #

GPR = GaussianProcessRegressor(kernel=kernel,

alpha=0.5**2) # noise term

GPR.fit(norm_X_train, norm_y_train) # find mean and covariance matrix

# posterior distribution

norm_y_mean, norm_y_std = GPR.predict(norm_x, return_std=True) # see par. 5.1

The predictions are depicted in Figure 23 and compared with the training and test
data. Not only the fit in terms of the expected (mean) value is extremely good, but in
addition, due to the intrinsic probabilistic nature of GPR, we are also able to compute
confidence intervals and thus quantify uncertainties.

In summary, we have seen that Bayesian regression methods offer unique advantages
as compared to classical, frequentist ones as far it concerns uncertainty estimation.
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Figure 23: Gaussian process regression (with noise) for data generated from a com-
bination of trigonometric functions with random additive noise, see paragraph 5.1:
predictions and 95% confidence interval.

However, there exist some drawbacks associated with the former. First, both lin-
ear Bayesian and Gaussian process regression have high computational complexity –
higher than that of deterministic methods – and may be computationally expensive,
especially when dealing with large data sets and not only at training but also at infer-
ence. Second, we have seen that deterministic regression methods allow to identify
interpretable models that directly relate to the impact of each parameter on the depen-
dent variable predictions – especially in the case of regularized strategies (cf. Section
7). However, this is not usually true for linear Bayesian and Gaussian process regres-
sion: indeed, the parameters are expressed in the form of posterior distributions or
covariance matrices and their interpretation can be quite challenging.

9 Conclusions

This Chapter provided a comprehensive introduction to regression methods, which
serve as one of the foundational pillars of Machine Learning, together with classifica-
tion methods (cf. Chapters 1 and 4).

We covered linear and nonlinear regression models and their Bayesian counterparts
in Sections 2, 5, and 8, respectively. Together, such statistical tools allow to identify
relationships between inputs and outputs and deliver predictive models. To do so, the
starting point consists of defining a hypothesis – in linear and nonlinear regression –
or a kernel – in Gaussian process regression. Then, the process continues with the
identification of the hypothesis parameters – in the form of fixed values or posterior
distributions – or functionals, obtained through optimization strategies (gradient de-
scent) and/or as closed-form solutions, to finally obtain a predictive model through
learning from a training data set.

We also introduced concepts and strategies related to model validation and general-
ization, as well as features scaling (cf. Section 4). These are extremely important
and useful not only for regression methods but, in general, for any Machine Learning
approach – e.g., classification methods, artificial neural networks, and dimensionality
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reduction techniques.

Then, we emphasized the significance of regularization, particularly in the context of
nonlinear regression (cf. Section 6). Regularization techniques play a crucial role
in preventing overfitting, where the model becomes too complex and fits noise or
irrelevant patterns, leading to poor generalization. Note that regularization strategies
go well beyond regression models and are a good ally for enhancing the performance
and generalization abilities of Machine Learning models. Additionally, regularization
facilitates the identification of interpretable models by promoting simplicity and a
small number of dominant parameters. Interpretable models have the potential to
reveal hidden physical relationships or equations that may be obscured within vast
amounts of data (cf. Section 7).

However, we should pay attention in understanding the limitations of (non) regular-
ized regression models when addressing complex phenomena. For instance, if we
were asked to predict occurrences and magnitudes of earthquakes and landslides or
characterize the constitutive behavior of intricate materials like sand or clay, the inter-
pretable, but simplistic, approach developed in the case of the projectile motion (cf.
paragraph 7.1) will not be quite effective. The reason lies in challenges proper to the
above scenarios and related to an intrinsic chaotic nature and a high-dimensional state
space.
Every time we are confronted with the forecasting of a complex phenomenon or the
description of an intricate system achieving reliable generalization and extrapolation
performance becomes increasingly arduous when relying solely on Machine Learning
approaches that lack any knowledge bias. And this even in the case of sophisticated
neural networks that use regularization strategies (cf. Chapter 7). To address such
challenges, it becomes imperative to resort to physics-informed and thermodynamics-
based machine learning models (as explored in Chapters 7 and 9) or leverage data-
driven computing approaches (presented in Chapter 5). These alternative methodolo-
gies incorporate domain knowledge and physical principles into the learning process,
resulting in more robust and accurate predictions.
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1 Introduction

Machine learning (ML) approaches attracted significant interest in many scientific fields
due to their potential ability to uncover patterns, make predictions, and extract valuable
insights from large and complex body of data [EH21]. Web-based data collection
platforms, scientific instruments and computer simulations are creating exponentially
increasing data stores. they triggered new scientific methods to analyze and organize
huge amount of data, giving the possibility to find subtle effects missed previously
[HT20, HTTG09].

ML tools can be broadly categorized into three types: supervised, unsupervised, and
semi-supervised learning. Each type offers distinct approaches to learning from data,
with specific strengths and limitations [EH21, HTFF09]. Supervised learning is one of
the most used approach and involves training a model using labeled data, where both
input features and corresponding output labels are provided. The model learns to map
inputs to their respective outputs, generalizing to make predictions for new, unseen
data. Applications of supervised learning include regression and classification tasks
that will be be the subject of Chapters 2 and 4 of the present Book.

However, obtaining labeled data can be time-consuming and expensive, especially
for large datasets. Unsupervised learning, on the other hand, works with unlabeled
data, where the model discovers patterns and structures within the data without prior
knowledge of the desired output. It is particularly useful in exploratory data analysis,
clustering, dimensionality reduction, and anomaly detection. Finally, semi-supervised
learning combines aspects of both supervised and unsupervised learning, leveraging
a small amount of labeled data with a large amount of unlabeled data. The method
is based on unsupervised techniques to extract features from the unlabeled data, and
supervised learning is then applied to improve the trained model using the labeled
data. This approach often results in improved model performance compared to purely
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supervised or unsupervised learning, especially when labeled data is limited.

Unsupervised learning, at the heart of the present Chapter, is useful in situations
where labeled data are scarce, enabling insights from larger datasets. It can be useful
to deal with large datasets of unlabelled instance, and is particularly relevant when
hidden patterns and structures in data have to be extracted without prior knowledge
on any label or output. It plays a vital role in scientific fields such as materials
science [Cer19, SMBM19] and geophysics [WT10, KA21], where labeled data are
often unavailable, scarce or expensive to calculate or to measure. It enables to analyze
large datasets and identify essential relationships, leading to the discovery of new
materials or the understanding of complex geological processes.

The Chapter is mainly divided in two parts. The first part is devoted to the comprehen-
sive description of the basic concepts and most popular techniques of unsupervised
learning. For the latter, the choice was made to describe two main branches, which
are the Clustering and Dimensionality Reduction techniques [HTFF09]. Unsupervised
learning has numerous real-world applications in many domains. As an example of
applications, the second part of this Chapter illustrates an application of unsupervised
learning to the discovery of patterns in particles dynamics. A particular focus is made
on large scale molecular dynamics simulations performed with up to 10 million atoms
for the purpose of describing the early stages of solidification of a materials so-called
Homogeneous nucleation [SCC+16, BDMJ22b]. While specific to material science,
this example can surely transposed at higher scales with Discrete Particle Dynamics
(DPD) modelling in geophysics, which is at the heart of this Book.

2 Basic concepts

2.1 Representation of the data: Feature extraction and selection
Feature extraction and representation are fundamental aspects of unsupervised learning
as in most of the ML techniques. The basic idea sketched in Fig. 1 is to transform
raw data into a format, often a vector, that can be easily processed and analyzed by
ML algorithms, such a representation is so-called hereafter a descriptor. Having say
that, the major objective of this transformation is then to identify and extract the most
relevant and informative features from the data, intending to capture the underlying
patterns and structures while reducing noise and redundancy.

Feature extraction techniques can be divided into two categories: feature construction
and feature selection [KKN14]. As mentioned above, feature construction involves
creating new features from the original data, often through mathematical transforma-
tions or domain-specific knowledge. For example, in image processing, features can be
extracted using edge detection or texture analysis. In text analysis, natural language pro-
cessing techniques like tokenization, stemming, and term frequency-inverse document
frequency (TF-IDF) can be employed to extract meaningful features [NQY18] in the
so-called Bag of Words representation. In the application treated in the present Chapter
regarding atomic scale simulations of homogeneous crystal nucleation, a topological
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Figure 1: Typical machine learning flowchart that learns a predictive model from the
data.

descriptor is built [BDMJ22a] based on persistence homology (PH) in the framework
of the topological data analysis (TDA) [PSG+18, Car20].

This poses naturally the question of the dimensionality of the descriptor after extraction.
High-dimensional feature spaces can pose challenges for unsupervised learning algo-
rithms, as the increase in dimensions can lead to increased computational complexity,
reduced model interpretability, and over-fitting. This phenomenon is known as the
”curse of dimensionality” [HTFF09, EH21]. Feature selection addresses this problem
by selecting a subset of the original features that are most relevant to the task at hand,
in order to reduce the dimensionality of the data. There are three primary methods for
feature selection among others. Filter methods evaluate the relevance of individual
features based on their statistical properties, independent of any learning algorithm.
Examples of filter methods include correlation coefficients, mutual information, and
chi-squared tests. Wrapper methods use a specific learning algorithm’s performance to
guide the feature selection process, by iteratively adding or remove features based on
their impact on the model’s performance (i.e forward selection, backward elimination,
and recursive feature elimination).

Finally, embedded methods integrate feature selection into the model training process,
combining the advantages of both filter and wrapper methods. One advantage is the
assessment the importance of features during the training phase, automatically selecting
the most relevant ones. Emblematic examples of embedded methods include LASSO,
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ridge regression, and decision trees.

2.2 Distance and similarity metrics
In order to quantify the relationship between data points in the feature space of dimen-
sion D, defining metrics is at the heart of unsupervised learning. These metrics provide
a basis for comparing and grouping similar instances in clustering.

The most widely used distance metric, measuring the straight-line distance between
two points in Euclidean D-dimensional feature space. Considering two points p and q,
it is given by

d(p, q) =

√√√√
D∑

i=1

(pi − qi)2. (1)

This applies for continuous features and is sensitive to the scale of the data. A simpler
version is the Manhattan distance, also known as the L1-norm, which measures the
sum of the absolute differences namely

dL1(p, q) =

N∑

i=1

|pi − qi|, (2)

and is less sensitive to outliers compared to Euclidean distance. When the dimensional-
ity of the feature space is high or when the magnitude of the vectors is less relevant,
such as in text analysis, the cosine similarity metrics is relevant and measures the angle
between two feature vectors p and q as

cosine similarity(p,q) =
p · q
∥p∥∥q∥ =

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

. (3)

If sets of data have to be compared, the Jaccard similarity metrics can be used for
comparing binary or set-based data, measuring the ratio of the intersection to the union
of two sets A and B is given by:

J(A,B) =
|A ∩B|
|A ∪B| . (4)

Alternatively, Pearson correlation coefficient measures the linear relationship between
two variables of size n, ranging from -1 (perfect negative correlation) to 1 (perfect
positive correlation) with

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
. (5)

These are the most common ones, however the metrics to be used should be decided
given the specificity of the data at hand. The choice can affect the results of the learning.
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3 Unsupervised Learning Techniques

Unsupervised learning comprises a diverse range of methods and algorithms dealing
with unlabeled data [EH21]. This section provides an overview of some popular
unsupervised learning techniques and their applications, focusing only on clustering
and dimensionality reduction methods. A corresponding, comprehensive tutorial
through a JUPYTER notebook attached to this Chapter will explore the most common
ones.

What will not be treated in the present Chapter is the combination of powerful deep
learning models with unsupervised learning techniques [HWWT13]. These so-called
deep unsupervised techniques are Autoencoders and Variational Autoencoders (VAEs),
Generative Adversarial Networks (GANs), Self-supervised Learning and Deep Cluster-
ing.

3.1 Clustering
Clustering is the grouping process of data points based on their features. Many
clustering methods were already proposed [HTFF09]. The key notion is the degree of
similarity (or dissimilarity) between the individual objects being associated. Indeed,
the method attempts to group observations with respect to some similarity criterion.
Combinatorial methods were proposed to avoid a modeling through a probability
distribution function. However, an exact solution is computable only when the dataset
is very small. As a matter of fact, testing every combination of 20 observations into 4
clusters needs 1010 comparisons, which is basically unreachable).

Approximations of these methods, were proposed through iterative process. The
famousK-means method is a standard combinatorial algorithm, based on the Euclidean
distance given by Eq. (1). A standard version of the algorithm given in Al. 1. Given
a number K of points in the dataset of size n X = {x1, x2, . . . , xn} are randomly
denoted as the initial K centroids, and each observation is assigned to the cluster with
the closest centroid. Then, the centroids are updated, and the process is iterated. As an
illustration, Figure 2 schematize the application of the K-means to as dataset randomly
created as a collection of three distinct blobs 1 as a guide for the eyes, and with the
same color to indicate the fact that the data are unlabelled.

Adding a probabilistic view on this modeling with a soft assignment of each observation
to each cluster, leads to Gaussian Mixture Models, with spherical covariance matrices,
proportional to the identity matrix. The idea behind is that the data distribution can be
well approximated by a mixture of K multivariate Gaussian distributions:

K∑

k=1

πkΦ(µk,Σk), (6)

1see Scikit-learn blobs
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Algorithm 1 K-means
Require: Data points X = {x1, x2, . . . , xn}, number of clusters K
Ensure: Cluster assignments C = {c1, c2, . . . , cK}, centroids µ = {µ1, µ2, . . . , µK}

Initialize centroids µ1, µ2, . . . , µK randomly from X
repeat

Assign each point xi to the nearest centroid: ci = argmink ∥xi − µk∥2
Update centroids by computing the mean of assigned points: µk =∑n

i=1 I(ci=k)xi∑n
i=1 I(ci=k)

until Convergence (centroids do not change significantly or a maximum number of
iterations is reached)

with Φ the multivariate Gaussian distribution, where the cluster k ∈ {1, . . . ,K} is
described by its proportion πk among the full dataset, its mean µk and its covari-
ance matrix Σk. Estimation of parameters is classically done using the Expectation
Maximization (EM) algorithm [DLR77].

The main issue of most clustering methods is the number of clusters, that has to be set
beforehand by a human. To circonvent the arbitrariness of choosing a number of cluster,
and when there is a probability density function, the likelihood should be considered. It
consists in measuring how close the samples are to the specified clustering distribution.
However, this criterion will always be better for a higher number clusters, which lead to
the classical problem of over-fitting. If the well-known elbow criterion was largely used
to penalize such criterion, it is not related to any theoretical background, and is always
seem very objective. Model selection criterion can be used, adapting the likelihood by
penalizing it with respect to the dimension (related to the number of clusters) of each
model. Usually, Akaı̈ke Information Criterion (AIC) [Aka73] or Bayesian Information
Criterion (BIC) [Sch78] are proposed, but the Integrated Completed Likelihood ICL
[BCG00] should be preferred when focusing on clustering, because there is also a
penalty term about the purity of each cluster based on a Shanon entropy term.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [EKSX96] is
another famous clustering algorithm, known to be more robust. Observations lying in
low-density regions are labeled as outliers. No assumptions on the form of the clusters
is done, allowing for convex or non convex clusters. Contrarily to K-means and GMM,
DBSCAN does not directly rely on a given number of clusters, but on hyperparameters
that are closely related to the number of clusters: thresholds on the similarity and
outliers.

3.2 Dimensionality Reduction
Dimensionality reduction techniques aim to project high-dimensional data into a lower-
dimensional space while preserving the underlying structure and relationships in the
data at best. These techniques are widely used for visualization, data compression,
and noise reduction, for instance. This Section focuses on the Principal Component
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Figure 2: Schematic representation of a K-means clustering. Initial unlabeled (same
color) data points are shown in the left panel, on which the K-means is applied, choos-
ing obviously K = 3 cluster. After convergence, the K-means model is represented
on the right panel together with the blue points being the positions of the centroids.
The red dashed lines highlights the separation in the three domains given the Euclidean
distance metrics: the cluster space. Thus, with this model, each new point can now
unambiguously be associated to one of the three clusters given its position in the feature
space (here, the x- and y-axis in arbitrary units).

Analysis (PCA) and a non-linear variant, namely the t-Distributed Stochastic Neighbor
Embedding (t-SNE).

PCA is a widely-used linear technique that projects the data onto a lower-dimensional
subspace, maximizing the variance along the new axes. The principal components,
which form the basis of the new subspace, are orthogonal and capture the directions
of maximum variance in the data. The measure of the variance in the data is based on
the calculation of the covariance matrix of the n data points in D-dimensional feature
space. For two points x and y, it is given by:

Σ =

(
σ2
x σxy

σyx σ2
y

)
, (7)

where σ2
x and σ2

y are the variances of x and y, respectively, and σxy and σyx are the
covariances between x and y. The variances read

σ2
x =

1

D − 1

D∑

i=1

(xi − x̄)2, (8)

where x̄ is the mean of x, and the same for Y . The covariance between x and Y reads

σxy = σyx =
1

D − 1

D∑

i=1

(xi − x̄)(yi − ȳ). (9)
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Algorithm 2 Principal Component Analysis
Require: Data points of dimension D, X = {x1, x2, . . . , xn}target dimensionality k
Ensure: Transformed data points Y = {y1, y2, . . . , yn}

Compute the mean vector µ = 1
n

∑n
i=1 xi

Center the data points by subtracting the mean: Xcentered = X − µ
Compute the covariance matrix Σ
Calculate eigenvectors and eigenvalues of Σ: (λ1, v1), . . . , (λn, vn)
Sort eigenvectors by decreasing eigenvalues: v1, . . . , vn
Select the top k eigenvectors: Vk = [v1, . . . , vk]
Project the centered data onto the principal components: Y = XcenteredVk

Figure 3: Principal Component analysis of simple bivariate random Gaussian dataset
with two different variances, and having a linear correlation between the two random
variables. The left panel shows the point-cloud of the 200 point dataset in the x-y plane
together with the eigenvector with the largest eigenvalue in red, and the second one in
blue, from the PCA analysis. Center panel displays the dataset in the basis of these two
eigenvectors red and blue, respectively denoted PC11 and PC2, and called the first and
second principal components. The right panel shows in blue the PCA representation
of the point cloud along PC1 only. The red line is a linear regression model that was
learned on the same dataset (see Chapter 2).

The lower-dimensional representation Y = {y1, y2, . . . , yn} with target dimension-
ality k of a dataset X = {x1, x2, . . . , xn} of dimensionality D is obtained through
Algorithm 2. The n data points are projected on the space of the k eigenvectors whose
eigenvalues are the largest and sorted by decreasing values.

Figure 2 illustrates the application of the PCA on a simple arbitrary bivariate random
Gaussian dataset with 200 point-cloud using the Scikit-learn PYTHON package 2.
Interestingly, projection of the data on the first principal component, PC1, is compared
to a linear regression model learned on the same dataset. The good comparison indicates
indeed that PC1 carry the most important part of the information about the dataset.

Contrarily to PCA, t-SNE is a nonlinear dimensionality reduction technique. It is often
used for visualizing high-dimensional data, such as images or text embeddings, and

2PCA decomposition module of the Scikit-learn package
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is effective at revealing clusters and structures in the data, most often in 2D and 3D
for visualization purposes [VdMH08]. t-SNE works by minimizing the divergence
between two probability distributions, one representing pairwise similarities in the
high-dimensional space

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
(10)

pij =
pj|i + pi|j

2n
(11)

using a Gaussian kernel and the other representing pairwise similarities in the low-
dimensional space

qij =
(1 + ||yi − yj ||2)−1

∑
k ̸=l(1 + ||yk − yl||2)−1

(12)

using the Student t-statistics. The algorithm consists in minimizing the Kullback-
Leibler divergence between the two similarity matrices using gradient descent [HR02,
VdMH08]. The perplexity parameter p is a user-defined parameter that balances the
focus on local and global structure in the data.

4 Application to particle dynamics

Unsupervised learning has a broad range of applications across various domains, as it
can uncover hidden structures and relationships in data without the need for labeled
examples. We restrict here to a specific cased in materials science, namely the atomic
scale description of homogeneous nucleation, for which the unsupervised learning
together with a topological descriptor was applied successfully for the first time very
recently [BDMJ22b, BDMJ22a]. Interestingly enough, this concerns particle dynamics
and therefore could undoubtedly be applied at larger scales in geophysics.

Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon
undercooling, initiates at the atomic level on nanometer length and sub-picoseconds
time scales and involves complex multidimensional mechanisms with local symmetry
breaking that can hardly be observed experimentally in the very details. In such
cases, atomic-level simulations and more particularly molecular dynamics (MD) with a
suitable interaction model [AT17] is the dedicated tool. However, reaching statistically
meaningful nucleation events, large scale simulations up to million-to billion-atom
scale is required [SCC+16].

In this Section, an analysis is proposed for the MD simulations performed previously
on the solidification of pure zirconium [BDMJ20]. The liquid state above the melting
point (approximately TM = 2128 K) was quenched down to the deep undercooled
liquid at T = 1250 K, using a simulation box of 1 million atoms. The technical details
of the MD simulation are beyond the scope of the present Chapter, and the reader is
referred to Ref. [BDMJ20]. During the simulation, the liquid undergoes homogeneous
nucleation on this isotherm as shown in Figure 4. In order to unveil their structural
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Figure 4: Snapshot of a one-million atom MD simulation of zirconium during nu-
cleation along the T = 1250 K isotherm in the undercooled states at different times
after cooling (upper panels). Only atoms having a bcc or distorted bcc crystalline
ordering are drawn as detected by the unsupervised topological learning approach (see
text). From the snapshots, independent local atomic environment up to the second
nearest-neighbors defined by the second minimum of the radial-distribution g(r) (lower
right panel), so-called local structures, are sampled by an the algorithm given in the
lower left panel (After Ref. [BDMJ22b]).

features during nucleation in such huge simulations, without a priori, an unsupervised
learning approach founded on topological descriptors loaned from persistent homology
concepts was built, and will be described in the following.

4.1 Topological description of local structures
Topological data analysis (TDA) [CM21, Mot18] is a growing mathematical field with
applications in a wide range of other field such as biology, computer science, physics,
and materials science. Persistent homology is an effective and flexible tools to study the
underlying topological shapes of a point cloud. In atomic-scale simulations considered
here, the point cloud usually corresponds to an atom assembly in a simulation box.
Let’s consider a dataset as the point-cloud denoted X0 in a vector space and a parameter
r ≥ 0. The topological space Xr is defined by the union of all the balls (Euclidean
or with another metric) of radius r, each of them being centered on a each point of
the point-cloud. It consists in following the evolution of the topology of Xr, or more
precisely the persistence of its topological features as r grows from 0 about the initial
set of points X0, to r big enough so that Xr has a the topology of a big ball containing
all the points.

To encode or quantify the algebraic topology, a dedicated tool is homology [Hat02],
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Figure 5: Persistence of a local structure consisting of a central atom and its two
neighbourhood shells by means of a barecode description. The local structures with
the ball growing as the radius increase are shown on the top. The barecode gives
the lifespan of all topological features with colors corresponding to the homological
dimension. In the bottom left corner there is the corresponding persistent diagram
(with the same corresponding colors for the dimensions).

which derives vector spaces Hn(X ), n ≥ 0, from a space X , generated by n-
dimensional topological features. 0-dimensional features correspond to connected
components, 1-dimensional ones correspond to ”holes” in the space, 2-dimensional to
cavities and so on. Then persistent homology gives the persistence of these topological
features, i.e. their lifespan when r is growing. The tracking of this persistence is
commonly represented either through a barecode, with each bare corresponding to the
lifespan of a specific topological feature, or a persistence diagram (PD) where each
topological feature is associated to the point (birth, death) in the plane as can be seen
in Figure 5).

While persistent homology in molecular dynamics simulations usually consists in
determining the persistence diagram from all atoms of the box as the point cloud. The
originality here to define from the PH a topological descriptor of the local environment
of each atom as shown in Figure 4. In this case, the point cloud is the local environment
and contains a bit less than one hundred atoms for the second neighbor shell. Finally a
persistence diagram is obtained for each local structure as a description of its topology,
and is associated to its central atom.

Among the various representations of these PDs as a vector, a classical method that has
been successfully used to study 3D-shapes [COO15] is chosen here. Each coordinate
of the topological vector is associated to a pair of points (x, y) in a persistence diagram
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Figure 6: TDA-GMM clustering model of undercooled liquid Zirconium during nu-
cleation with 7 clusters C1 to C7, which are closest to the centroids. Evolution of the
Integrated Completed Likelihood (ICL) criterion (lower left panel) as a function of
number of clusters predicting the optimal number of 7 clusters, trained on the configu-
ration in lower right panel. Adapted from Ref. [BDMJ22a]

D for a fixed level of homology, except the infinite point, and is calculated by

mD(x, y) = min{∥x− y∥∞, d∆(x), d∆(y)}, (13)

where d∆(·) denotes the ℓ∞ distance to the diagonal, and those coordinates are sorted
by decreasing order. The resulting topological space is high-dimensional with often
between 100 and 300 components.

4.2 Clustering local environments during nucleation
For the clustering, a model-based method is used, namely Gaussian Mixture Models
(GMM) [HTFF09] and its estimation by an Expectation Maximization (EM) algorithm
[DLR77] as mentioned in Section 3.1. The number of clusters is selected by Inte-
grated Criterion Likelihood (ICL, [BCG00]), a refinement for clustering of Bayesian
Integrated Likelihood (BIC, [Sch78]).

In a first step, a training set is built from a configuration during the nucleation, where
the supercooled liquid coexists with crystalline nuclei, to capture all structural atomic
events of interest. This is done by sampling a number of approximately 5000 indepen-
dent atom centred local structures as described in Figure 4. Using PYTHON packages
gudhi [MBGY14] and ripser [TSBO18], the PD of each individual local atomic
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Figure 7: analysis of a configuration of undercooled Zr during nucleation with the PCA
(left panel) and t-SNE (right panel) after each atom being labelled according to the
TDA-GMM model with 7 clusters.

structures of the training set computed up to homological dimensions H0 , H1 , and
H2 and the topological feature is calculated using Eq. 13.

In a second step, the unsupervised learning with the Gaussian Mixture Model is
performed in the topological space iteratively with cluster numbers 2 to 30. The ICL
criterion is computed for each of them giving rise to the curve shown in Figure 6. The
optimal number of clusters is chosen from the minimum of ICL, leading to a model
with seven clusters numbered C1 to C7 whose representative local structure (closest
to the centroids) are show in Figure 6. The inferred model from this method is called
hereafter TDA-GMM.

Finally, with the learned TDA-GMM as such, each atom of the simulation box is
assigned to C1 to C7 for any given configuration that enable one to identify and
describe the structural properties of the system and morphological properties of the
nuclei as can be seen on the specific configuration shown in Figure 6. Moreover, the
crystal nucleation and its evolution as a function of time as can be seen strikingly
in Figure 4 where only the crystalline local structures (C1 and C2) are drawn. All
the results and findings can be found in Refs. [BDMJ22b, BDMJ22a], and probably
the main physical outcome in these works is that the liquid in the undercooled state
appears very heterogeneous and the nucleation is triggered from fluctuations with
lowest icosahedral ordering, always present in the liquid at various degrees, the latter
being known as incompatible with the long-range ordering of the crystalline state
[Fra52, Tur52].

To close this Section, a question arise from the relevance of the TDA-GMM unsuper-
vised modeling and especially the chosen number of clusters (seven for zirconium) in
such a high-dimensional topological descriptor space with roughly D ≈ 200. This can
be visualized by performing a dimensionality reduction with the PCA or the t-SNE.
Figure 7 displays a two-dimensional analysis for the two principal components of the
topological vectors for all atoms in the simulation box shown in Figure 6. They are
colored with the cluster they belong to. Interestingly, both methods lead to a similar
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representation, in which the clusterized local structures vary as a quasi continuum but
do not overlap mainly (except very partially for C4 and C5) in the t-SNE represenation).
The PCA and tSNE distinguishe the liquid on one component and the crystal on the
second one. Clusters C3, C4, and C5 that are known to retain partially liquid and
crystalline orderings are located as expected at the crossover of the two components.

5 Conclusion

This Chapter was devoted to unsupervised learning approaches that emerged as a
powerful approach for uncovering hidden patterns, relationships, and structures in
data without the need for labeled examples. The key concepts and techniques in
unsupervised learning were discussed, focusing only on the basic approach clustering
and dimensionality reduction, letting aside association rule mining and unsupervised
deep learning methods, which could be treated as topics in themselves. The power of
clustering was highlighted through a application in materials science that helped us to
monitor efficiently the structural evolution during crystal nucleation of a liquid metal,
and uncover hidden correlations without a priori in this process from the huge amount
of data of these large-scale molecular dynamics simulations with millions of atoms.
Such an unsupervised approach is deemed to be sufficiently general to be transposed to
discrete particle dynamics at a larger scale in geophysics.
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1 Introduction

At the turn of the 21st century, machine learning (ML) techniques aroused a growing
interest across various scientific disciplines due to their inherent capacity to identify
trends, forecast outcomes, and draw invaluable knowledge from vast and intricate
datasets [HT20, HTTG09]. Tools designed for collecting data online, scientific appara-
tus, and computer-simulated environments are generating data at an exponential rate.
This has spurred new scientific methodologies for dissecting and structuring enormous
volumes of data, while simultaneously detecting subtle effects that were previously
hidden. These techniques have become increasingly prevalent in areas such as materials
science [SMBM19] and geophysics [KA21].

ML approaches can be primarily grouped into three categories: supervised learning,
unsupervised learning, and semi-supervised learning. Each category presents unique
ways of deriving knowledge from data, each possessing their own benefits and limita-
tions. Among these, supervised learning is widely adopted, where a model is trained
using labeled data, consisting of both input attributes and associated output labels. The
model is trained to associate inputs with their corresponding outputs, enabling it to
make predictions for novel, unobserved data.

This Chapter is devoted to classification, which has numerous applications across
many domains, including spam detection, medical diagnosis, and image recognition to
name only some of the most emblematic ones. Like regression, being the subject of
Chapter 2, classification belongs to supervised learning techniques. The objective is
to build models that can predict the class label of an unseen data, after being trained
on a representative set of labeled data. An application of classification of crystalline
structure in materials science and more particularly soft matter is briefly mentioned to
highlight the power of the method [RLH+17, RP18].

Machine learning algorithms generally require large training sets to get a high perfor-
mance, but labeling such large amounts of data represents substantial human effort
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and often costly experimental or numerical resources. Active learning proposes effec-
tive ways to reduce the size of training sets while maintaining the same performance.
It represent an attractive strategy in scenarios where data labeling is expensive or
time-consuming, which is particularly the case for materials exploration in the vast
composition space to accelerate their discovery and development [LBXY19].

This Chapter does not deal with Neural Networks and Deep Learning Techniques for
Classification. They gained significant momentum in recent years due to their ability
to learn complex hierarchical representations from large datasets, and take advantage
of the tremendous increase of computer power.

The remaining part of the Chapter provide an overview of the most commonly used
classification techniques, their strengths and limitations, as well as important technical
aspects like pre-processing, evaluation metrics, and cross-validation. More advanced
technique for classification are then presented briefly, namely Ensemble Methods.
finally, the basic aspects of active learning is presented.

2 Classification techniques

2.1 General considerations
In this section, some of the most popular classification techniques and their characteris-
tics will be described. The general classification problem can be described as follows.
Let’s consider a set of n labeled data

{Xi, yi, i = 1, . . . , n}. (1)

Each data instance Xi is labeled with a class yi. Without loosing generality, let’s con-
sider that Xi for all i are points in the d-dimensional reals space Rd. For classification,
labels take discrete values and two situations are considered:

• binary classification with yi ∈ C = {−1, 1}, thus having a so-called positive
class and negative class. Note that alternately, classes can be defined as yi ∈
C = {0, 1}.

• multi-class classification with K classes when yi ∈ C = {1, . . . ,K}.
It is worth mentioning that if yi ∈ R reduces to the case of regression, which will be
the subject of Chapter 2, and needs a model such as in neural networks (see Chapters 7
and 8). The objective of classification is to predict the class value y+ ∈ C for each new
X+ not in the training set. For this purpose the training data are used to construct a
classifier ĉ such that

y+ = ĉ(X+) (2)

One of the main aspects of classification is that it relies on labeled data to learn the
relationship between input data and class labels that are identified in the training set.
This is in contrast with unsupervised learning that deals with unlabeled data and is
treated in Chapter 3.
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Figure 1: Classification can be subjective. Image generated by the Author with
OpenAI DALLE-E with order: realistic painting with white and black horses, pigs,
cows, and chicken in a field.

Labeling of data play therefore a crucial role in supervised learning either for classifica-
tion or regression, as they provide to the machine learning algorithm the relationships
between inputs and output labels. The quality and quantity of labeled data can signif-
icantly impact the performance of the obtained model, so-called the classifier. This
is why acquiring an as large, diverse, and representative dataset as possible is often
essential.

Finally, classification methods implies categorizing data instances into distinct classes.
There are subjective aspects that can influence the model, which stem from human
decisions, interpretations, and biases in the choice of the classes, as illustrated in Figure
1. The way a classification problem is formulated and how classes are defined such
as, animals, their color, type, etc. often depends on the domain knowledge, goals, and
preferences of the researchers. It leads to discrepancies between different formulations
of the same problem.
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Figure 2: Schematic representation of a typical workflow for classification. A training
dataset is build, featurized, scaled and normalized. A classifier is then trained with
a chosen learning algorithm. It can then be used to recognize unseen hand written
digit. Note that the new digits shown to the classifier for recognition have also to
be transformed with the same feature model, scaling and norm used for the training.
Example: Optical Recognition of Handwritten Digits Data Set.

2.2 Typical workflow for classification
The general machine learning scheme is described in Chapter 3 devoted to unsupervised
learning. In Figure 2 the typical workflow for classification is described schematically.
After having clearly defined the problem that needs to be solved including the choice
of the labelling, the first crucial step consists in data collection and preprocessing to
prepare the training and test data that will be used to train and evaluate the machine
learning model. Collection of raw data that can come from various sources, such as
databases, APIs, sensors, or web scraping. Then preprocessing typically includes data
cleaning (e.g., handling missing values, removing duplicates, or fixing errors). The
second step consists in the data transformation such as normalization, standardization,
or feature transformation and extraction as well as associated dimensionality reduction
(see the Chapter 3). In particular, normalization typically scales features to a range of
[0, 1], while standardization scales features to have a mean of 0 and a standard deviation
of 1.

With the data prepared as such, the third step is to select an appropriate machine
learning algorithm and train the model that best suits the problem formulation and the
characteristics of the data. Finally After training the model, it is important to evaluate
its performance on a separate dataset (test set) that was not used during training. This
helps to assess the model’s ability to generalize to new, unseen data. Various evaluation
metrics, such as accuracy, precision, recall, F1-score, can be used to quantify the
classification model’s performance, depending on the type of machine learning task as
will be seen in Section 2.3. In addition to evaluating the model’s performance, it might
be necessary to tune the parameters of the learning algorithm so-called Hyperparameter.
Tuning them involves searching for the optimal combination of their values that yields
the best model performance. This typically consists in using techniques such as grid
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search, random search, or Bayesian optimization [RW+06, SSL+21].

2.3 Evaluation metrics

2.3.1 Standard metrics

Accuracy is the most straightforward and simple evaluation metric, measuring the
proportion of correctly classified instances in the dataset. It is defined as the ratio

Accuracy =
Number of Correct Predictions
Total Number of Predictions

. (3)

However, accuracy can be misleading in cases of class imbalance, as it may overem-
phasize the performance on the majority class. A confusion matrix for a binary
classification problem can then be considered. The confusion matrix is a table that sum-
marizes the performance of the classifier by showing the counts of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). A true positive is a
case in which the classifier correctly predicts the positive class, while false positive is a
case in which the classifier incorrectly predicts the positive class. The same definition
holds for the true and false negatives. The accuracy can then be calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)

Moreover, this matrix allows for a deeper understanding of the model’s strengths and
weaknesses of the chosen classes in the model. To do so, precision and recall metrics
can be used to account for false positives and false negatives, respectively. Precision,
also known as positive predictive value, is the ratio of true positive predictions to the
total number of positive predictions made. Precision can be calculated as:

Precision =
TP

TP + FP
. (5)

Recall, also known as sensitivity or true positive rate, is the ratio of true positive
predictions to the total number of actual positive instances. Recall can be calculated as:

Recall =
TP

TP + FN
(6)

Finally, the F1-score is the harmonic mean of precision and recall, providing a balanced
measure of both metrics. It can be calculated as:

F1-score = 2× Precision× Recall
Precision + Recall

. (7)

The F1-score ranges from 0 to 1, with 1 being the best possible score, indicating perfect
precision and recall.

The Area Under the ROC Curve (AUC-ROC) is an evaluation metric often used
for binary classification problems, that at least should be mentioned. It measures
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Algorithm 1 Cross-validation
Require: Randomly shuffle the dataset.
Ensure: Divide the dataset into k equally sized (or approximately equal) folds.

for i = 1, 2, ..., k do
Use fold i as the testing set, and the remaining k-1 folds as the training set.
Train the model on the training set.
Evaluate the model on the testing set, and compute the evaluation metric.

end for
Calculate the average of the evaluation metric values over all k iterations.

the performance of a classifier across different decision thresholds, plotting the true
positive rate (recall) against the false positive rate. AUC-ROC provides a single scalar
value representing the overall performance of the classifier, with a value of 1 indicating
perfect classification and a value of 0.5 corresponding to random chance.

2.3.2 Cross-Validation

Cross-validation or folding is a concept used for evaluating the performance of machine
learning models in general. It consists in estimating statistically the average of an
evaluation metrics of the model, such as accuracy, over multiple training and testing
sets. It consists in dividing the dataset into multiple subsets and iteratively train and
test the model on different combinations of these subsets so-called folds. This process
allows for a more reliable estimation of the model’s performance, especially when the
amount of available data is limited. One advantage is that it reduces the likelihood of
going into overfitting and provides a better understanding of the model’s generalization
capabilities.

In most of the cases, the k-fold cross-validation approach is used, for which the dataset
is randomly divided into k equally sized subsets, thus leading to k train and test steps
as described in Algorithm 1. Each step uses a different fold as the testing set and
the remaining k − 1 folds as the training set. The evaluation metric (e.g. accuracy,
precision, recall, or F1-score mentioned just above) is computed for each iteration, and
the final result is obtained by averaging the metric values over all iterations. Typically,
k is set to values such as 5 or 10, as these values were empirically shown to provide a
good balance between bias and variance.

Leave-one-out cross-validation (LOOCV) is a limiting case of k-fold cross-validation,
where k is set equal to the number of instances in the dataset. In other words, each in-
stance is used as a testing set exactly once. Therefore, LOOCV can be computationally
expensive, especially for large datasets, as it requires training and evaluating the model
as many times as there are instances in the dataset.
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Algorithm 2 k-Nearest Neighbors
Require: Training set T , query point x, number of neighbors k

for each instance x(i) in T do
Compute d(x,x(i))

end for
Identify the k instances x(i1), . . . ,x(ik) with smallest distances to x
ŷ = argmaxy

∑k
j=1 I(y = y(ij)) return ŷ

2.4 Standard classification algorithms

2.4.1 k-Nearest Neighbors (k-NN)

Let’s first consider the k-Nearest Neighbors, which is a non-parametric, instance-based
classification algorithm, and is among the simplest of all machine learning algorithms,
both conceptually and in terms of implementation. Given a query point x in a training
set T with m samples, {(x(i), y(i)), i = 1, . . . ,m}, each with a label y, the objective
of k-NN is to assign x the label most commonly associated with its k nearest neighbors
in T .

The algorithm is given in Al. 2 consists in computing the distance d(x, x(i)) between
x and each training instance x(i), i = 1, . . . ,m. The choice of distance function
typically depends on the problem under consideration. Common choices include the
Euclidean distance and the Manhattan distance as described in Chapter 3. The k
instances x(i1), . . . ,x(ik) that are closest to x are identified and the most common
label among these k neighbors is assigned to x . The assigned label ŷ can be formally
expressed as:

ŷ = argmax
y

k∑

j=1

I(y = y(ij)), (8)

where I(·) is the indicator function, which equals 1 if the condition inside the parenthe-
sis is true and 0 otherwise.

The choice of hyper-parameter k is very critical to the performance of the algorithm.
A small value of k means that noise will have a higher influence on the result and a
large value make it computationally expensive. Usually an odd number is chosen if the
number of classes is 2 (binary classification) and another simple approach to select k is
set k =

√
n.

As an example, Fig. 3 shows the results on a binary classification task using the k-NN
classifier. Let’s consider a dataset consisting in n = 600 points distributed in a plane
with axis x1 and x2 using a Gaussian bivariate distribution of similar variance. Positive
and negative class labels are colored in red and blue, respectively. In a first step, the
dataset is plotted as a point-cloud and analyzed with Linear Discriminant Analysis
(LDA, similar to the Principal Component Analysis described in Chapter 3). It shows
indeed that the points of each class follow a Gaussian distribution along x1 as well as
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Figure 3: Classification task on a Gaussian bivariate distribution of n = 600 points
with the same variance in two dimensions x1 and x2, using the k-NN classifier. (a)
The dataset with labels in red and blue color respectively for the positive and negative
classes. Yellow stars are the respective centroids and ellipses materialize the standard
deviation of the Gaussian distributions about the centroids. Red and blue lines are
the Gaussian distributions of the respective classes projected onto x1 and x2 using a
Linear Discriminant Analysis. The dashed line is the total distribution. (b) Test set with
positive and negative classes in red and blue respectively as well as predictions of the
best k-NN classifier, namely k = 10, highlighted by the light red and blue background.
(c) F1-score of the test set and training set for k-NN classifiers, trained with k in the
range [1, 30]. (d) Predicted probabilities of each points in the test set and the horizontal
line represent the decision line with probability p = 0.5 used for attributing class labels
on the unseen points.

x2 axis. The ellipses, with radii corresponding to the distance of the standard deviation
from the centroids, do not overlap, indicating that the classes should be efficiently
separated. The LDA further reveals that x2 is the most relevant one to discriminate the
classes, while the two classes are mostly superimposed along x1.

Using the Package SCIKIT-LEARN1 in PYTHON. the dataset {Xi, yi, i = 1, . . . , n} is
first split into a training set and a test set as the following snippet:

1https://scikit-learn.org/
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from sklearn.model_selection import train_test_split

random_state = 42

X_train, X_test, y_train, y_test = train_test_split(X,y,

test_size=0.20, random_state=random_state)

The usual size of the training set is 80% of the data points, leaving 20% of them for
the test set to measure the performance of the trained model. Here the random state is
fixed in order to compare different models on strictly the same training set. The k-NN
model is set up with desired hyper-parameters, leaving most of them to the default
values, and fixing only k = 10 neighbors corresponding the best classifier shown in
Fig. 3(b)

from sklearn.neighbors import KNeighborsClassifier

n_neighbors = 10

knn = KNeighborsClassifier(n_neighbors=n_neighbors)

The, the model is trained by providing to the learning algorithm inputs X and outputs
y of the training set

knn.fit(X_train, y_train)

Once trained, the model can be used to predict the class of unseen data, let’s say those
of the test set at first from the command

y_pred = knn.predict(X_test)

The performance of the model is measured by comparing the predictions on the text set
against the true known values, using the F1-score for instance:

from sklearn.metrics import f1_score

Score = f1_score(y_test, y_pred)

so that Fig. 3 (b) indicates the value of 0.99, which is close to the perfect value of
1. Prediction made now on the whole (x1, x2) plane leads to the colored background
corresponding to the obtained classes. The boundary separating the two colored areas
is the decision lines, which separates appropriately the two classes horizontally in the
vicinity of the dataset as inferred initially from the LDA.

The model with k = 10 was not chosen by chance. A simple model selection was
performed by iterating on k-values between 1 and 30, training the k-NN for each k,
and evaluating the performance using the F1-score. Fig. 3 (c) displays the performance
of k-NN as a function of k measured on the test set (blue curve), showing that k = 10
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performs the best in that case. The rule of thumb k =
√
n with n = 240 (the size of

the training set) gives a value of 14, which is a bit higher than the best value of k but
remains relevant. A validation test can be performed (orange curve) by predicting the
classes on the training set itself, which can be indicative on how the model learns. It
can be seen that the validation score becomes somewhat stationary above k = 15. An
increase towards high values is often characteristic to over-fitting, which is typically
the case for k = 1. The model learned the training data very well but when it comes to
the prediction, it appears to perform the worst.

Finally, Fig. 3(d) describes the mechanism by which the classes are chosen by the
algorithm, given the predicted probability obtained as

p = knn.predict_proba(X_test)

For each point to predict, the negative class is chosen if p(X) > 0.5, and positive class
is chosen otherwise. The Figure shows that most of the points are classified correctly.

2.4.2 Logistic and softmax regressions

Logistic Regression is a linear model for binary classification that uses the logistic
function to model the probability of an instance belonging to a particular class. The
model is trained by minimizing the negative log-likelihood (cross-entropy loss) using
gradient descent or Newton-Raphson method. For prediction, the model computes the
probability of the instance belonging to the positive class and assigns the class label
based on a threshold, typically 0.5.

The method uses the logistic function, also known as the sigmoid function denoted as
σ(z):

σ(z) =
1

1 + e−z
(9)

The function takes a real-valued input z and maps it to a value between 0 and 1, making
it suitable for modeling probabilities. Given a set X of input features {x1, x2, ..., xn},
the logistic regression model computes the probability P (Y = 1|X) of an instance
belonging to the positive class in Y using the following equation:

P (Y = 1|X) = σ(w0 + w1x1 + w2x2 + ...+ wnxn), (10)

where w0, w1, . . . , wn are the model parameters (also known as weights) that need to
be estimated from the training data, and σ denotes the logistic function given by Eq. 9.

Optimisation of the parameters is based on the maximum likelihood estimation (MLE)
method. The objective is to find the parameter values that maximize the likelihood of
the observed data. For a given dataset with m samples, {(x(i), y(i)), i = 1, . . . ,m},
the likelihood function is defined as:

L(w) =
m∏

i=1

P (Y = y(i)|X = x(i)). (11)
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Algorithm 3 Logistic regression
Require: Initialize the model parameters w0, w1, ..., wn with small random values or

zeros
repeat

Calculate the predicted probability of the positive class for each instance using
the logistic function.

Compute the negative log-likelihood and its gradient with respect to the model
parameters.

pdate the model parameters using the gradient descent update rule.
until convergence or the maximum number of iterations is reached.

To simplify the optimization problem using a gradient based method, the negative
log-likelihood is minimized instead:

J(w) = −
m∑

i=1

[y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))], (12)

where ŷ(i) denotes the predicted probability of the positive class for instance i. The
corresponding algorithm is described in Al. 3

To classify an unseen instance, its predicted probability of belonging to the positive
class is compared to a threshold, typically 0.5 as mention above. If the probability is
greater than or equal to the threshold, the instance is classified as positive; otherwise, it
is classified as negative, as

ĉ =

{
1 if P (Y = 1|X) ≥ 0.5

0 otherwise
(13)

For multi-class problems, the classifier reads:

ĉ = argmaxk∈{1,...,K}#{i : Yi = k} (14)

The limitations of this method includes sensitivity to outliers, inability to model non-
linear relationships, and the assumption of class label independence for multi-class
problems.

As mentioned above, the extension of logistic regression to handle multi-class clas-
sification problems directly is the so-called softmax regression. In this scheme, the
probability of an instance belonging to each class is estimated using a generalized
logistic function for multiple classes. The probability of the instance belonging to class
k is calculated using:

P (Y = k|X) =
e(w

T
k x)

∑K
j=1 e

(wT
j x)

, (15)

where wTk represents the weight vector for class k.
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Figure 4: Classification tasks using the logistic regression classifier. (a) binary
classification with the same dataset and same coloring as in Fig. 3. (b) Multi-class
classification using the softmax method with a dataset containing three classes in
the two dimensional space colored in red, blue and green respectively for class 1, 2
and 3. In both cases, boundary decisions are materialized by the background colors
corresponding to the predictions.

Fig. 4(a) shows the logistic regression for the binary classification using the same
dataset as for the k-NN models. The same scheme as described before is applied here
(not repeated). The logistic regression model is included in the SCIKIT-LEARN and
setup as the following:

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(solver='liblinear',

multi_class='ovr')

The decision curve is linear, as expected, and separates the two classes horizontally
as inferred by the LDA with a score of 0.99. Fig. 4(b) shows a multi-class logistic
regression with a dataset created with 3 classes using:

from sklearn.datasets import make_classification

n_classes = 3

Xm, ym = make_classification(n_samples=1000,

n_features=2,

n_redundant=0,

n_classes= n_classes,

n_clusters_per_class = 1,

class_sep = 1.7)

The reader is referred to the SCIKIT-LEARN documentation for the parameters of the
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make classification function. The set up of the model is done with the same function
as for the binary classification, but with different hyper-parameters.

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(multi_class='multinomial',

solver='lbfgs')

}

Here the (x1, x2) plane is divided in three area by linear decision boundaries, and a
score of 0.92.

2.4.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) represent a class of linear models that aim to find the
optimal separating hyperplane between classes by maximizing the margin between sup-
port vectors, i.e. those instances closest to the decision boundary. They are particularly
well suited for high-dimensional and small-to-medium-sized datasets. However, for
large datasets, SVMs can be computationally expensive.

let’s consider a training set {(x(i), y(i)), i = 1, . . . ,m}, where x(i) ∈ Rn represents
the feature vector of instance i, and y(i) ∈ {−1, 1} is its corresponding class label in
binary classification. The goal of SVM is to find the optimal separating hyperplane
that maximizes the margin between the classes. The equation of the hyperplane can be
represented as:

wTx+ b = 0, (16)

where w ∈ Rn is the weight vector normal to the hyperplane, and b is the bias. The
margin is defined as the distance between the hyperplane and the closest instances from
each class, so-called the support vectors. The margin M can be written as:

M =
2

|w| . (17)

Finding the optimal hyperplane given by Eq. 16, consists in solving the following
constrained optimization problem:

minimize
1

2
|w|2 subject to y(i)(wTx(i) + b) ≥ 1, i = 1, . . . ,m (18)

For non-linearly separable data, SVM can be extended using kernel functions. Kernel
functions allow SVM to operate in a higher-dimensional feature space, where the
data may become linearly separable. A common kernel function is the Radial Basis
Function (RBF) kernel used in many ML techniques:

K(x,x′) = exp(−γ|x− x′|2), (19)
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Algorithm 4 Support Vector Machine

Require: Training set {(x(i), y(i)), i = 1, . . . ,m}
Choose a kernel function K(·, ·) and its parameters
Formulate the constrained quadratic optimization problem:

min
w,b

1

2
∥w∥2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, . . . ,m

Solve the optimization problem to obtain the optimal weight vector w and bias term
b (or the dual variables in the kernel-based case)
for each new instance x do

Compute the decision function:

f(x) = wTx+ b (or the corresponding kernel-based version)

Classify the instance based on the sign of the decision function:

ŷ =

{
1 if f(x) ≥ 0

−1 otherwise

end for

where γ > 0 is a parameter that controls the shape of the decision boundary. The
corresponding algorithm is given in Al. 4

It should be noted that SVMs can be extended to multi-class classification problems
using the One-vs-Rest (OvR) or One-vs-One (OvO) approaches. In the OvR approach,
a separate SVM is trained for each class against all the other classes. In the OvO
approach, a separate SVM is trained for each pair of classes. In both cases, the class
with the highest score or the most votes is chosen as the predicted class.

Fig. 5 shows SVM classifications for the binary and multi-class classifications using the
same datasets as for the k-NN and logistic regression models. The set up of the SVM is
done as the following, listing also the available kernels that can be chosen:

from sklearn.svm import SVC

kernels = ['linear', 'poly','rbf','sigmoid']

k = 1

svmk = SVC(kernel=kernels[k])

The linear version performs similarly to the logistic regression with similar perfor-
mances. The non-linear kernels gives rise to models quite different performances and
prediction as can be seen on the decision boundaries. It appears that the RBF kernel
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Figure 5: Classification tasks using the support vector machines classifiers with various
kernel functions. (upper panels) binary classification with the same dataset and same
coloring as in Fig. 3. (lower panels) Multi-class classification with the same dataset as
in Fig. 4 and the same coloring. In both cases, boundary decisions are materialized by
the background colors corresponding to the predictions.

performs the best, while the sigmoid one seems not to be appropriate in the studied
cases, either for binary or multi-class classifications. The decision in choosing a given
kernel should be based on the dataset at hand.

2.4.4 Improvements and Ensemble Techniques

One significant improvement was brought by the so-called bootstrapping, which is
a powerful re-sampling technique used in statistics and machine learning [HTFF09].
Given a dataset of size n, it consists in drawing a sample of size n with or without
replacement (replacement means that the same data point can be picked up more than
once), to infer descriptive statistics on this new sample. Repeated many times (each
time drawing a new sample from the original dataset and computing the statistic), it
results in a distribution of the computed statistic as an approximation of its sampling
distribution. Bootstrapping is commonly used when it is difficult to make assumptions
about the population or when the sample size is small. It allows us to estimate the
uncertainty of our statistics without making any assumptions about the data distribution
by creating multiple subsets of the original dataset, with replacement, and train a
separate model on each subset. The final prediction is then made by aggregating the
predictions of each model. This process helps to reduce variance and improve the
model’s robustness.

Ensemble techniques enhance predictive performance compared to standard classifica-
tion techniques as those considered above. More precisely they increase generalizability
and robustness of standard methods on which they are based [HTFF09]. The most
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common techniques are bagging, boosting, and stacking, are particularly effective at
reducing overfitting by introducing diversity, reducing variance and therefore dealing
with noise in the data. For instance, Random Forest (RF), is a popular technique based
on bagging that uses decision trees as its base classifier. Decision Trees recursively
split the input space based on feature values to form a tree-like structure. Each node in
the tree represents a decision rule based on a feature, and the leaf nodes represent the
class labels. In addition to using bootstrap re-sampling for training, Random Forest
introduces an additional layer of randomness by selecting a random subset of features
for splitting at each node. This process reduces the correlation between the trees,
further improving the ensemble’s performance.

3 Active Learning in classification

Active learning (AL) is an approach where the learning algorithm actively queries the
user (or an oracle) to provide labels for specific instances during the training process.
This approach is particularly useful for classification tasks when labeled data is scarce or
expensive to obtain, which is often the case in materials science either, experimentally
of numerically, and geophysics. Then, AL aims at minimizing the number of labeled
examples required to achieve a desired level of performance, focusing on acquiring the
most informative and useful examples for the learning process.

Various active learning strategies have been proposed of which common ones include:

• Uncertainty sampling: In uncertainty sampling, the learner selects the instances
for which it is least certain about the correct label. This is often quantified using
the model’s predicted class probabilities, with instances with the highest entropy
or lowest maximum probability being chosen for labeling.

• Query-by-committee: In query-by-committee, multiple models (the committee)
are trained on the current labeled dataset. The learner selects instances for which
the committee members disagree the most, measured by the disagreement in
their predicted labels or class probabilities.

• Expected model change: This strategy selects instances that are expected to have
the largest impact on the current model if their true label were known. This can
be quantified by estimating the expected change in the model parameters or loss
function after incorporating the labeled instance.

• Expected error reduction: In this strategy, instances are selected based on their
expected reduction in the model’s generalization error. This can be estimated
using techniques such as Monte Carlo sampling or Bayesian model averaging.

The typical active learning workflow for classification tasks is described in Al 5. After
an initial training with given classification algorithms such as those described above,
adding more instances in the training set is done until a criterion is reached. The latter
is very problem dependent, but one has to bear in mind that the final dataset has to be
as small as possible for a given performance or accuracy that is required. Therefore,
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Algorithm 5 Active Learning workflow
Require: Initialize the labeled dataset with a small set of labeled instances, either

selected randomly or using prior knowledge.
Train the classification model on the labeled dataset.
repeat

Select a batch of instances from the unlabeled dataset using the chosen active
learning strategy.

Query the user to provide labels for the selected instances.
Update the labeled dataset with the newly labeled instances and retrain the model.

until a stopping criterion is met.

Figure 6: Active learning for classification on a Gaussian bivariate distribution of
n = 600 points with the same variance in two dimensions x1 and x2, used above.

a challenging task is to find a trade-off between exploring the space to discover new
informative instances and exploiting the current knowledge to improve the model’s
performance.

Other challenges comes into play in AL. Model complexity is a bottleneck for Active
learning such as deep learning networks, due to their non-convex loss surfaces and high
computational requirements for training and evaluation. AL assumes that the labeling
is ”perfect”. In practice, labeling mechanisms may be prone to errors or inconsistencies,
which can adversely affect the performance of the active learning process.
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A working example is illustrated in Fig. 6. The bivariate Gaussian distribution dataset
with n = 600 points (see Fig. 3) was considered as a basis of the following simple
implementation:

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size= 0.2, random_state=42)

initial_idx = np.random.choice(range(len(X_train)),

size=int(len(X_train) *0.1), replace=False)

X_pool = np.delete(X_train, initial_idx, axis=0)

y_pool = np.delete(y_train, initial_idx, axis=0)

X_initial = X_train[initial_idx]

y_initial = y_train[initial_idx]

model = SVC(kernel='rbf')

model.fit(X_initial, y_initial)

y_pred_test = model.predict(X_test)

initial_accuracy = accuracy_score(y_test, y_pred_test)

#Start the AL loop

n_queries = 40

for i in range(n_queries):

query_idx = random.sample(range(len(X_pool)), 10)

query_instances = X_pool[query_idx]

y_pred = model.predict(query_instances)

X_initial = np.append(X_initial, query_instances, axis=0)

y_initial = np.append(y_initial, y_pred)

X_pool = np.delete(X_pool, query_idx, axis=0)

y_pool = np.delete(y_pool, query_idx, axis=0)

model.fit(X_initial, y_initial)

y_pred_test = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred_test)

y_pred_test = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred_test)

The goal is to highlight through this basic active learning implementation the impor-
tance as well as limitations that led to the various strategies listed above. The question
that can be asked is the following: are the 80% of the dataset needed to train the model?
In other words, what is the minimum number of points required to reach the same
accuracy? An AL simulation was performed with the Support Vector Machine using
the RBF Kernel as a classifier. This SVM was shown to give the best performance for
this dataset in the previous Section.

An initial training set containing 10% of the full training set (80% of the dataset) is
used to train a first SVM model. The latter is iteratively refined by queering each

110 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



time 10 additional points and retrain the SVM using the true output, namely extracted
from the training set (usually the queried data points are unlabelled, but here labels
are taken from the full training set as they were given from an oracle). Fig. 6 show
that the performance increases progressively in that case, and reach the one from the
full training with a significantly lower number of data points (around 300 instead 480).
The averaged accuracy curve shown was obtained by repeating 200 times this process.

Nevertheless, as mentioned above this is not the true story of active learning. In a real
scenario, a first model is trained with all the labelled data at hand, and increasing the
performance of the model is done by adding new a priori unlabelled data for which a
label has to be given by an oracle (like a human expert or a reference method to get
’perfect’ or ’true’ labels). Another idea could be to use the last trained model to predict
the labels. This is precisely what is done for the ’predicted labels’ curve in Fig. 6 that
progressively worsen. This shows that the random sampling for new queries associated
to prediction with the last trained model is not efficient. Both the wise sampling of new
data points as well as the labelling are crucial and should be designed carefully, taking
care for instance on the diversity in the input and output spaces [WLH19].

3.1 Application of classification
An interesting application of classification in materials science is briefly mentioned
here [RLH+17, RP18]. This work aims at identifying and differentiating relevant
ordered structures in data derived from molecular simulations or particle tracking.
In contrast to other commonly used structure identification methods, this approach
does not necessitate any predetermined description of the structures being sought.
Features vectors of structures are first build based on graph theory and adjacent matrices
to generates impartial structural data, that enable to measure the crystalline nature
of particles located near defects, grain boundaries, and interfaces. A multi-layer
perceptron (see the Chapter 7 and 8) to classify structural relationships among particles
based on their local environmental topology. This method is used to categorizing
particles in a colloidal crystallization simulation and demonstrating that structural
elements that go unnoticed when using conventional methods.

4 Conclusion

Classification together with regression are the two pillars of supervised learning, with
applications in many scientific fields, including but not limited to, material science and
geophysics. Classification techniques like logistic regression, SVMs, and ensemble
methods were covered in this Chapter together with, focusing on the most common
ones for the sake of comprehensiveness.

Classification problems can benefit significantly from active learning, a technique
where the algorithm selectively queries the user (or some other information source) to
obtain new data points considered as the most informative. This is all the more true for
regression problem, where AL is more emergent. In material science, active learning
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can help in predicting properties of new, yet untested materials, thereby speeding up
the discovery process at a minimal cost in time and financial means. In the same spirit
in geophysics, it can aid in tasks like seismic monitoring or subsurface exploration,
where obtaining labeled data can be costly or time-consuming.
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Data-Driven Modeling in Geomechanics

Konstantinos Karapiperis

ETH Zürich

The theoretical framework of data-driven computational mechanics presents an alter-
native formulation of mechanics, whereby optimal material states are sought within
a dataset that most closely satisfy momentum and energy conservation principles.
We review the framework for the case of simple and nonsimple (polar), elastic and
inelastic media, which represent common descriptions for geomaterials. Data min-
ing from experiments and high-fidelity lower-scale simulations (DEM,FEM) are dis-
cussed, while remedies for data scarcity (adaptive data sampling) are also high-
lighted. Representative examples of a flat punch indentation and a rupture through
a soil layer are presented, and a link to open-source Python code is provided.

1 Introduction

Predictive models in geomechanics have traditionally relied on continuum model-
ing via the formulation constitutive equations [DL82, MA91, VA91, OP04, DM04,
DN05, BA06, HP06], discrete particle-based models [CS79, Bar94, KAVA18], as well
as multiscale techniques that bridge the continuum and discrete scales [CMNN81,
NDR05, KRB07, AT09, GZ14, RY11]. Initially informed by macroscopic experi-
ments [RSW58, Ros70], and later by high-fidelity grain-scale resolved experiments
[HBD+10, AHV+12], these models have been succesful in capturing essential aspects
of granular materials and, more generally, geomaterials including pressure-dependent
elasticity, history-dependence and critical state, fabric evolution, nonlocality. Despite
their success, further progress has been hindered by numerous challenges including
the uncertainty related to the models at different scales, as well as their complexity
and the associated laborious process of calibration.

Recently, a variety of data-driven approaches have been developed in order to tackle
the challenges outlined above, most importantly the bias, complexity or inefficiency of
these methods, while incorporating information about the underlying mechanics and
physics. These include physics-informed neural networks [HRM+21] with a built-in
structure of elastoplasticity [EPW22, HAV23, VS23], or with incorporated thermody-
namics constraints [MSVMB21, HHR22]. Despite the physical basis of these models,
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they are often hard to interpret, and could suffer from generalization errors for unseen
stress-strain paths. An alternative approach which is not based on learning a consti-
tutive law, but rather relies directly on the raw data is furnished by the framework of
Data-Driven Computational Mechanics (DDCM), introduced Ortiz and co-workers.
In DDCM, the mechanical problem is reformulated in terms of distances between a
material dataset obtained from experiments, and an equilibrium set where the states
that satisfy the physics reside. The method has been extended in various directions in-
cluding inelasticity [EKR+19], nonlocality [KOA21], stochasticity [PRO23], fracture
[CDLSO20] and breakage mechanics [UGK+23], and has been coupled with model-
based approches [BS21] and machine-learning techniques [ESOR21, BS22] have also
been developed in an effort to boost the efficiency and robustness of the method. The
source of the data can be experiments [LCR+18] or high-fidelity micromechanical
calculations [KSOA20].

The chapter is organized as follows. In Section 2.1, the framework of data-driven
mechanics is presented for simple continua, which is then extended to micropolar
continua with a microstructure in Section 2.2. The enhancement of the framework to
inelasticity is addressed in Section 2.3. Then, the source of data (experiments, mi-
cromechanical simulations) is discussed (Section 2.4), focusing also on data scarcity
and how it can be efficiently overcome. We finish with representative examples and a
link to an open-source code repository (Section 3).

2 Data-Driven Computational Mechanics

2.1 Cauchy Continuum - Elasticity
Let’s first restrict our attention to the geometrically linear mechanical problem of a
simple (nonlinear) elastic body that is discretized into N nodes and M material points
(Fig 1). The body is subject to applied forces f = {fα}Nα=1, and undergoes displace-
ments u = {uα}Nα=1 at its nodes. The state of each material point is described by a
stress-strain pair indicating a point in the local phase space i.e., ze = (εe,σe) ∈ Ze,
and the state of the entire system is collectively a point in the global phase space
z = {ze}Me=1 ∈ Z. The system is subject to the following discretized compatibility
and equilibrium constraints:

εeij =
1

2

∑

α

(
Neα
,j u

α
i +Neα

,i u
α
j

)
, e = 1, . . . ,M (1)

M∑

e=1

weσ
e
ijN

eα
,j = fαi , α = 1, . . . , N (2)

where Nea is the shape function of node α evaluated at the material point e within a
finite element approximation scheme, and {we}Me=1 are elements of volume. The set
of global states satisfying the above constraints define the equilibrium set E.

116 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



Instead of relying on a constitutive relation of the form σe = σe(εe) for closure,
the Data-Driven formulation of the problem consists of finding the global state z that
satisfies the compatibility and equilibrium constraints and, at the same time, mini-
mizes the distance to a given material data set D. Therefore, the local phase spaces
Ze are equipped with an appropriate metric:

|ze| = Ce εe ·εe + Ce
−1

σe ·σe (3)

where Ce is a symmetric positive-definite tensor. Although the purpose of this tensor
is numerical, and does not represent actual material behavior, it is typically given as
the isotropic linear elasticity tensor:

Ceijkl = λδijδkl + µ(δikδjl + δilδjk) (4)

Note that this introduces two parameters λ, µ to the problem, the choice of which may
generally affect how well the comparibility or equilibrium constraints are satisfied. To
avoid this issue, and at the same time, obtain a parameter-free scheme, one can alter-
natively introduce a nested optimization problem within the definition of the distance
as follows (e.g. [KOA21]):

|ze| = min
λ,µ>0

Ce(λ, µ) εe ·εe + Ce
−1

(λ, µ)σe ·σe (5)

In the following, we will assume that a constant Ce is used, for the definition of the
distance in the phase space. As a result, a metrization of the global phase space Z is
induced by means of the norm:

|z| =
N∑

e=1

we|ze|

The problem is mathematically formulated as:

min
y∈D

min
z∈E
|z− y| (6)

where z denotes the mechanical state of the system i.e., the set of stress-strain pairs
that satisfy equilibrium and compatibility, and y denotes the material state of the
system i.e., the set of stress-strain pairs in the dataset.

The compatibility constraints are imposed by means of direct substitution, while the
equilibrium constraints are enforced using Lagrange multipliers, resulting in the sta-
tionary problem:

δ

[∑

e

we|ze|
(1
2

∑

α

(
Neα
,j u

α
i +Neα

,i u
α
j

)
, σeij

)

−
∑

α

(∑

e

weσ
e
ijN

eα
,j − fαi

)
ηαi

]
= 0 (7)
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Figure 1: a) Simple continuum with granular microstructure. b) Illustration of the
stress-strain states in the material data set (D), and their projections on the equilibrium
set (E) with highlighted iterative procedure leading to a minimum distance solution.

Taking all possible variations (δuαi , δσ
e
ij , δη

a
i ), and manipulating the resulting equa-

tions, one obtains a system of Euler-Lagrange equations [KO16]:

∑

b

∑

e

weC
e∗
ijklN

eα
,j N

eb
,l u

b
k =

∑

e

weC
e∗
ijklN

eα
,j ε

e∗
kl (8)

∑

b

∑

e

weC
e∗
ijklN

eα
,j N

eb
,l η

b
k = fαi −

∑

e

weN
eα
,j σ

e∗
ij (9)

where ze
∗
= (εe

∗
,σe

∗
) are the optimal local data points in the data set De that result

in the closest possible satisfaction of the constraints. Eqs 8 and 9 represent two
standard linear elasticity problems, one in terms of u , and one in terms of η.

Solution algorithm
Note that the optimal local points ye = (εe

∗
, σe

∗
) in the data set De are not known a

priori, which therefore calls for an iterative solution scheme. The simplest algorithm
involves a fixed point iteration, where a fixed material state y(k) is projected onto
E (i.e. Eqs 8, 9 are solved) to obtain the updated mechanical state z(k), where k
denotes the iteration number. Then a search through the data set is carried out to
find the closest material state y(k+1), and the process is repeated until the material
states remain unchanged. For more details the interested reader is referred to [KO16,
KSOA20].

2.2 Micropolar continuum - Elasticity
The simple or Cauchy continuum is known to have limitations when it comes to mod-
eling geomaterials especially in the failure regime (shear localization), due to the ab-
sence of an internal length scale [MV87]. In this section we describe the extension
of the data-driven computational mechanics framework to the micropolar continuum,
following [KOA21]. We therefore proceed to consider the mechanical problem of a
(nonlinear) elastic micropolar body that is discretized into N nodes and M material
points, similar to Section 2.1. However, the body is now subject to not only applied
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forces f = {fα}Nα=1 but also moments m = {mα}Nα=1 (Fig. 2). Its kinematics are
described by displacements u = {uα}Nα=1 and microrotations θ = {θα}Nα=1 at its
nodes. Analogously, The state of each material point is described by a stress-strain
pair (εe,σe) and couple stress-curvature pair (κe,µe), which alltogether constitute a
point in the local phase space i.e., ze = (εe,κe,σe,µe), and the state of the entire
system is collectively a point in the global phase space z = {ze}Me=1 ∈ Z. The mi-
cropolar system is subject to the following discretized compatibility and equilibrium
constraints:

εeij =
∑

α

(
Neα
,j u

α
i + εijkN

eαθαk
)
, e = 1, . . . ,M (10)

κeij =
∑

α

Neα
,j θ

α
i , e = 1, . . . ,M (11)

M∑

e=1

weσ
e
ijN

eα
,j = fαi , α = 1, . . . , N (12)

M∑

e=1

we
(
µeijN

eα
,j + εijkσ

e
jkN

eα
)
= mα

i , α = 1, . . . , N (13)

where, besides the quantities already introduced in Section ??, εijk is the third-order
permutation tensor. The set of global states satisfying the above constraints define the
equilibrium set E.

Analogously, we assume that a data set D is available, where material states reside.
The micropolar formulation of the data-driven problem involes finding the global state
z that satisfies the compatibility and equilibrium constraints and, at the same time,
minimizes the distance to the material data set. To this end, we shall extend the met-
ric introduced in the Cauchy continuum, to account for the additional kinematic and
conjugate kinetic measures present in the micropolar continuum:

|ze| = Ce εe ·εe + De κe ·κe + Ce
−1

σe ·σe + De
−1

µe ·µe (14)

where Ce, De are the isotropic micropolar elasticity tensors, which once again do
not reflect actual material properties, but are introduced for solely distance-inducing
purposes:

Ceijkl = λδijδkl + (µ+ κ)δikδjl + (µ− κ)δilδjk (15)

Deijkl = αδijδkl + (γ + β)δikδjl + (γ − β)δilδjk (16)

The Data-Driven problem retains the the same mathematical formulation as in the
Cauchy problem:

min
y∈D

min
z∈E
|z− y| (17)
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Figure 2: a) Micropolar continuum with granular microstructure. b) Illustration of the
stress-strain states in the material data set (D), and their projections on the equilibrium
set (E) with highlighted iterative procedure leading to a minimum distance solution.

with the difference that the state space has higher dimensions, due to the presence of
the additional conjugate quantities related to the field of microrotations.

The stationary problem reads:

δ

[∑

e

we|ze|
(∑

α

Neα
,j u

α
i +

∑

α

εijkN
eαθαk ,

∑

α

Neα
,j θ

α
i , σ

e
ij , µ

e
ij

)
(18)

−
∑

α

(∑

e

weσ
e
ijN

eα
,j − fαi

)
ηαi −

∑

α

(∑

e

we(µ
e
ijN

eα
,j + εijkσ

e
jkN

eα)−mα
i

)
ζαi

]
=0

Taking all possible variations (δuαi , δθ
α
i , δσ

e
ij , δµ

e
ij , δη

a
i , δζ

a
i ), we obtain the following

system of coupled Euler-Lagrange equations:

∑

b

∑

e

we
(
CeijklN

eα
,j N

eb
,l u

b
k + CeijklN

eα
,j N

ebεklmθ
b
m

)
=
∑

e

weC
e∗
ijklN

eα
,j ε

e∗
kl (19)

∑

b

∑

e

we
[
CeijklN

eαNeb
,l εijmu

b
k +

(
CeijklεijmεklnN

eαNeb +De∗
mjnlN

eα
,j N

eb
,l

)
θbn
]

=
∑

e

we
(
CeijklεijmN

eαεe
∗
kl +De

mjklN
eα
,j κ

e∗
kl

)
(20)

∑

b

∑

e

we
(
CeijklN

eb
,j N

eα
,l η

b
i + CeijklN

ebNeα
,l εkijζ

b
k

)
= fαk −

∑

e

weN
eα
,l σ

e∗
kl (21)

∑

b

∑

e

we
[
CeijklN

eαNeb
,l εijmη

b
k +

(
CeijklεijmεklnN

eαNeb +De
mjnlN

eα
,j N

eb
,l

)
ζbn
]

= mα
m −

∑

e

we
(
Neα
,l µ

e∗
ml + εmklN

eασe
∗
kl

)
(22)

where ze
∗
= (εe

∗
,κe

∗
,σe

∗
,µe

∗
) are the optimal local data points in the data set

De that result in the closest possible satisfaction of the constraints. Eqs (19,20) and
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(21,22) represent two micropolar linear elasticity problems, one in terms of u,θ , and
one in terms of η, ζ.

2.3 Extension to inelasticity
Practical applications in geomechanics often concern deformations beyond the elastic
regime, which involve history-dependence and irreversibility. For conciseness we will
present the extension to inelasticity for the Cauchy problem, but the inelastic extension
for the micropolar problem follows analogously [KOA21]. To this end, we attend to a
time-discrete formulation, whereby the Data-Driven problem of at time tk+1 reads:

min
yk+1∈Dk+1

min
zk+1∈Ek+1

|zk+1 − yk+1| (23)

where zk+1 = {zek+1}Me=1 ∈ Z and zek+1 = (εek+1,σ
e
k+1). The time-dependent

constraint set Ek+1 arises from the time-dependent applied forces fk+1. Accordingly,
the behavior at a material point is described by a material data set De

k+1 of points that
is attainable at time tk+1 given its past local history of deformation:

De
k+1 = {(εek+1,σ

e
k+1) | past history} (24)

In practical terms, this implies that one has to deal with evolving material data sets.
The conceptually simplest yet computationally expensive parametrization of the his-
tory relies on keeping a (potentially truncated) memory of the strain history at a ma-
terial point [EKR+19]. This mathematically translates to:

De
k+1 = {(εek+1,σ

e
k+1) | {εel }l≤k} (25)

which resembles a data-driven formulation focusing on trajectories – rather than points
– in stress-strain space.

An alternative approach relies on enhancing the state space with a suitable set of inter-
nal variables q, which represent the evolving internal structure of the material at hand,
and encapsulates its history [KSOA20, EKR+19]. In this case, the material data set
admits the parametrization:

De
k+1 = {(εek+1,σ

e
k+1) | (εek,σek, qek)} (26)

The internal variable parametrization outlined above can be replaced or enhanced with
an energy-based parametrization, whereby the state space is augmented with the free
energy A and dissipation D, which are related to the state variables ε,σ via the prin-
ciple of conservation of energy and the second principle (Clausius-Plank inequality),
stated in a time-discrete setting as:

Dek+1 −Dek =
σek + σ

e
k+1

2
: (εek+1 − εek)− (Aek+1 −Aek) ≥ 0 (27)
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The local material data set at time tk+1 is then represented as:

De
k+1 = {(εek+1,σ

e
k+1) | (εek,σek), (27)} (28)

The above relation states that the admissible stress-strain pairs at time tk+1 are those
that are thermodynamically consistent with the material state at time tk. The special
case where Dek+1 − Dek = 0 defines a bounded equilibrium set (or elastic domain)
on the augmented state space. More details about the various options for history
parametrization can be found in [EKR+19, KSOA20]. Note that in the case of the
internal variable and energy-based parametrization, the necessary quantities can be
obtained directly from lower scale models, e.g., as we will address in Section 2.4.

Regardless of the particular choice of parametrization of the local material data sets,
the global material data set then follows as:

Dk+1 = D1
k+1 × . . .×DM

k+1 (29)

2.4 Data sampling
So far, we have assumed that material data are available, but we have not addressed
the source of the data, or their potential scarcity. In principle, data can be obtained
from various sources, either experimental or computational, and potentially combined
within the same simulation. The experimental identification of material data sets has
been addressed in [LCR+18], whereby a database of stress-strain couples is compiled
from a given displacement field – obtained though imaging techniques – and known
boundary conditions, by solving a distance minimization problem (Fig. 3 a). Alter-
natively, data can be compiled from high-fidelity lower scale simulations [KSOA20],
which for geomechanical problems typically amount to discrete element models in
case of granular assemblies, or finite element models of heterogeneous porous ma-
terials (Fig. 3 b). This approach gives rise a multiscale interpretation of data-driven
computing. In the latter case, homogenization principles shall be used to derive the
macroscopic quantities that describe the material states (stress, structural variables,
energetical quantities). These principles are reviewed below in the case of discrete
assemblies (e.g. granular media) and continuum representative volume elements (e.g.
porous rocks).

Homogenization of granular ensemblies
In the case where discrete element simulations (e.g. [KHA+20]) are used for the pur-
pose of generating the data, then the macroscopic material states (stress, strain, free
energy, dissipation, microstructural variables) need to be obtained from the discrete
quantities (particle displacements, interparticle forces). Assuming quasi-static condi-
tions, the average stress tensor of the granular assembly is given by [CMNN81]:

σ =
1

V

∑

c

f c ⊗ lc (30)
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Figure 3: a) Identification of material data sets from in-situ experiment. b) Material
data sets extracted from micromechanical RVEs, with examples showing a granular
ensemble and a porous rock.

where the summation is performed over all contacts c of all particles in the assembly
(unit cell), f c is the interparticle force, and lc is the branch vector connecting the
centroids of contacting particles, and V is the volume of the granular assembly. The
average strain ε is obtained from the boundary deformation of the unit cell, and the
free energy density due to local deformation at the contacts is given by:

A =
∑

c

Ac = 1

2V

∑

c

(‖f cn‖2
kn

+
‖f ct‖2
kt

)
(31)

where kn, kt are the normal and tangential contact stiffnesses at an interparticle fric-
tional contact, respectively, and f cn, f

c
t are the normal and tangential components of

the interparticle force.

The dissipation can be computed incrementally by energy balance:

dD = σ : dε− dA (32)

or, from the frictional slip at the interparticle contacts,

dD =
∑

c

dDc = 1

V

∑

c

f ct · duc, slip (33)

where duc, slip = (f c,tt − f c,t+dtt )/kt.

Microstructural measures acting as internal variables augmenting the state space (Sec-
tion 2.3) may similarly be obtained by averaging microscopic quantities. For example,
the commonly used contact normal fabric tensor [Oda72]:

F =
1

2Nc

∑

c

nc ⊗ nc (34)
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where Nc is the number of contacts in the assembly, and nc is the contact normal vec-
tor. Analogous quantities can be obtained for nonsimple (polar) continua, as discussed
in [KOA21].

Homogenization of heterogeneous porous geomaterials
In the case where continuum microstructural RVEs are used to generate material data
sets, then similar principles apply. Assuming quasistatic conditions, the average stress
tensor of the micromechanical RVE is given as:

σ =
1

V

∫

∂V

t⊗ x dS (35)

where t denotes the traction acting on the boundary of the continuum RVE, and x
denotes the position of the material point on the boundary.

The free energy, and dissipation are given simply by averaging, and energy balance
respectively:

A =

∫

V

A(x) dx (36)

dD = σ : dε− dA (37)

while continuum texture tensors, similar to Eq. 34, may analogously be defined.

Adaptive sampling
In the above, it was assumed that micromechanical calculations are carried out along
predetermined stress paths. In practice, these predetermined paths may not sufficiently
cover the state space as needed for a specific application or boundary value problem.

σy
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σx
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σ

Figure 4: Adaptive sampling procedure for multiscale data-driven computational me-
chanics.
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In this case, we can leverage the formulation of data-driven computational mechanics
as a distance minimization problem, and identify, using unsupervised learning, regions
in state space with such poor data coverage. As shown in Fig. 4, these regions may
then be targeted with additional experiments or lower-scale simulations, in an active
learning manner. The result is a better coverage of the phase space for a given appli-
cation or problem. The interested reader is referred to [GKS+23] for details on this
adaptive sampling technique.

3 Applications

We present here two representative examples that leverage the theoretical and algo-
rithmic depevelopments discussed above. The first one is a 2D flat punch indentation
of a model elastic medium, as shown in Fig. 5 a). For simplicity, we restrict our at-
tention to a simple and history-independent material behavior, by generating a dataset
of N = 106 stress-strain pairs via evaluating an isotropic linear elastic law. The
prediction was repeated using a sequence of successively larger datasets, until con-
vergence of the predicted response was obtained. This convergence can be verified
in Fig. 5 b), where the indenter force-displacement relation is plotted for increasing
dataset size. The code needed to reproduce the example is openly available in the au-
thor’s Github repository (github.com/kkarapiperis/ddcm-2D/). In the second example,
shown in Fig. 5 c), a rupture propagates into a model granular material. In this case,
the material behavior is furnished by the homogenized response of a discrete element
assembly (Section 2.4), following the multiscale interpretation of the framework. The
resulting surface deformation profile at the end of the simulation is shown in Fig. 5
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Figure 5: a) Example of a 2D flat punch indentation into an elastic medium. b) Inden-
ter force-displacement curve prediction for increasing size of the dataset. c) Example
of a fault rupture through a layer of model granular material. d) Predicted surface dis-
placement profile, and comparison with a fully resolved discrete element simulation.
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d), which compares well with a fully resolved discrete element simulation of the same
problem.

4 Conclusions

In summary, the framework of data-driven computational mechanics, offers a novel
avenue to solving problems in geomechanics, including challenging ones that involve
failure and localized deformation. Free from the uncertainty of the classical con-
stitutive modeling approach and the caveats of machine learning models, the data-
driven formulation offers an alternative paradigm for computation. The need for large
amounts of data represents a potential pitfall of the method, which may be addressed
by the use of high-fidelity micromechanical simulations, augmenting data sets avail-
able from experiments. Finally, an additional remedy to the problem is furnished by
the use of adaptive sampling techniques.
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granular materials. Géotechnique, 37(3):271–283, 1987.

[NDR05] F. Nicot, F. Darve, and RNVO Group: Natural Hazards and Vulnera-
bility of Structures. A multi-scale approach to granular materials. Me-
chanics of Materials, 37(9):980–1006, 2005.

[Oda72] M. Oda. Initial fabrics and their relation to mechanical properties of
granular materials. Soils and Foundations, 12(1):17–36, 1972.

[OP04] M Ortiz and A Pandolfi. A variational cam-clay theory of plas-
ticity. Computer Methods in Applied Mechanics and Engineering,
193(27):2645–2666, 2004. Computational Failure Mechanics for Geo-
materials.

[PRO23] Erik Prume, Stefanie Reese, and Michael Ortiz. Model-free data-driven
inference in computational mechanics. Computer Methods in Applied
Mechanics and Engineering, 403:115704, 2023.

[Ros70] K. H. Roscoe. The influence of strains in soil mechanics.
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Non-Euclidean machine learning for
geomechanics

WaiChing Sun

Columbia University, New York, USA

This book chapter is intended to provide a concise review on how to train, verify
and validate constitutive models enhanced by graph-theoretic data. We begin our
discussion by reviewing basic concepts of the various types of graphs and under what
situations does a graph may serve as an ideal data structures for representing data.
We then outline a few usages on how to use graph convolutional neural networks to
perform embedding and how these embedding can be potentially useful for constitutive
modeling, material designs, and inverse problems.

1 Motivations

In 1736, Mathematician Leonhard Euler was asked to solve one of the most famous
mathematics problems – Is it possible to visit all the seven bridges at Königsberg,
Prussia, on both sides of the Preger River without repeating any path. This is the
Seven Bridges of Königsberg problem (see Fig. 1). The issue Euler faced was that
there has not yet been techniques invented to formulate the problem in proper abstract
terms. Euler solved this problem by inventing these abstract terms, which laid the
foundations of modern graph theory. His conclusion is that such a route, which is now
referred to as the Eulerian path, does not exist in the Seven Bridges of Königsberg
problem.

The abstract terms Euler invented the vertex(or node) set V, which are all the stops a
pedestrian may take, and the edge set, which are the seven bridges E. Together, they
form a 2-tuple, which is nowadays referred as an undirected graph, or simply a graph,
which is often denoted as G(V,E). Here, the graph Euler invented represents the
topology of the seven bridges, as whether the Eulerian path exists depends on how the
bridges are connected. On the other hand, information such as how long the bridges
span, and whether the bridges are safe are irrelevant to the existence of the Eulerian
path.

Now let’s think of a different case. Consider the polycrystal structure, shown in Fig.
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Figure 1: The Seven Bridges of Königsberg problem that leads to the birth of graph
theory. Figure obtained from Wikipedia

Figure 2: Polycrystal interpreted as a connectivity graph. The graph is undirected and
weighted at the nodes. Figure reproduced from Vlassis et al. (2020).

2. Let’s say our goal is to determine the effective Young’s modulus of this polycrystal.
We are given only (1) the orientation of each crystal in this assemble as well as a
database which contains the effective Young’s modulii of many other polycrystals
formed by the same type of crystals.

What should we do?

In this case, we involve in a different type of problem in which we are no longer
concerning finding a sequence from the edge set E, but we are interested in predictions
where we take the micro-structure represented by a graph as the input and output the
Young’s modulus, i.e.,

f : G→ R+. (1)

The mapping defined in Eq. (1) may look like a function that maps a vector to a real
number. However, unlike a vector, where we can get a sense of proximity between
two vectors via the inner product or norm equipped by the vector space, it is not trivial
to measure the distance between two graphs properly. This issue makes it difficult to
perform any interpolation or extrapolation.
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In the history of classical mechanics, our intellectual ancestors often bypass this issue
by introducing descriptors that implicitly describe some aspect of the microstructures.
For instance, void ratio is one of the most used measures of microstructures in soil
plasticity model (Schofield and Wroth, 1968; Mitchell et al., 2005; Zhu et al., 2016;
Borja, 2013). With this descriptor, we then hypothesize the existence of a critical state
as a function of void ratio and stress. Other material models, such as the bounding
surface model with critical state that evolves with fabric tensors (Dafalias and Man-
zari, 2004), breakage theory (Einav, 2007) can be considered as other instances of
this descriptor-driven modeling approach. The central idea is to explain the physics
by building models that can corroborate well with experimental observations by sup-
plementing a set of hypotheses formulated around these descriptors. Remarkably, the
hierarchy of these hypotheses can also be abstracted as a graph, i.e., a directed graph,
in which the direction of the edge is defined to represent a hierarchical relation such
as cause-and-effort, and orders of a sequence, as shown in Fig. 3.

Figure 3: Directed graph used to represent different models of traction-separation law
generated by artificial intelligence. Figure reproduced from Wang and Sun (2019).

However, an important issue central to this formalism is that the set of descriptors in-
corporated into the constitutive laws could be insufficient to accurately and precisely
describe the microstructures. For example, if void ratio are the only physical quanti-
ties incorporated into the hardening law of a plasticitiy model, then the two specimens
with completely different fabrics but with the same void ratio will be considered iden-
tical. In other words, the capacity of a model to make accurate, robust and precise
predictions depends strongly on the expressivity of the set of descriptors.
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1.1 Why machine learning?
Consider again the polycrystal structure shown in Fig. 2. What if we can formulate a
method in which we can put all the different graphs that represent the microstructures
in a vector space such that the microstructures that are close are given position vectors
that are close to each other and microstructures that are distant are given position
vectors that are far apart? If this can be achieved, we can leverage the properties of
the N-dimensional Euclidean space RN to perform regression to formulate material
models (Vlassis et al., 2020). This technique is often referred as graph embedding in
the literature (Hamilton et al., 2017).

In Vlassis et al. (2020), for instance, a modeling framework is formulated to combine
unsupervised learning, which embeds high-dimensional data onto simpler geometry
with sufficient smoothness, and supervised mapping, which introduces mapping for
labeled data (see Fig. 4) which involves Sobolev training, a technique used for training
hyperelasticity material models with gradient data (Vlassis and Sun, 2021; Vlassis
et al., 2022). This setup can be considered as a standard pipeline for building models
not only in mechanics but in almost every applications including but not limited to
computational chemistry, biology, recommendation system and games (Chami, 2021)
(see Fig. 4).

Figure 4: Overview of a typical machine learning pipeline. Figure reproduced from
Chami (2021).

1.2 Organization of this Chapter
This chapter provides a brief review on the state-of-the-art of graph embedding and
autoencoder techniques used for computational mechanics. We will begin by review-
ing the basic terminology for graphs in Section 2. Then, we explain the concepts
of graph autoencoder and graph embedding in Section 3 and provide an example in
which internal varialbes are generated from the graph neural network (Section 4).
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2 Basic terminology of graphs

In this section, a brief review of several terms of graph theory is provided to facilitate
the illustration of the concepts in this current work. More elaborate descriptions can
be found in Graham et al. (1989); West et al. (2001); Bang-Jensen and Gutin (2008):

Definition 2.1. A graph is a two-tuple G = (V,E) where V = {v1, ..., vN} is a
non-empty vertex set (also referred to as nodes) and E ⊆ V × V is an edge set. To
define a graph, there exists a relation that associates each edge with two vertices (not
necessarily distinct). These two vertices are called the edge’s endpoints. The pair of
endpoints can either be unordered or ordered.

Definition 2.2. An undirected graph is a graph whose edge set E ⊆ V×V connects
unordered pairs of vertices together.

Definition 2.3. A loop is an edge whose endpoint vertices are the same. When all the
nodes in the graph are in a loop with themselves, the graph is referred to as allowing
self-loops.

(a) (b) (c) (d)

Figure 5: Different types of graphs. (a) Undirected (simple) binary graph (b) Di-
rected binary graph (c) Edge-weighted undirected graph (d) Node-weighted undi-
rected graph.

Definition 2.4. Multiple edges are edges having the same pair of endpoint vertices.

Definition 2.5. A simple graph is a graph that does not have loops or multiple edges.

Definition 2.6. Two vertices that are connected by an edge are referred to as adjacent
or as neighbors.

Definition 2.7. The term weighted graph traditionally refers to graph that consists of
edges that associate with edge-weight function wij : E → Rn with (i, j) ∈ E that
maps all edges in E onto a set of real numbers. n is the total number of edge weights
and each set of edge weights can be represented by a matrixW with components wij .

In this current work, unless otherwise stated, we will be referring to weighted graphs
as graphs weighted at the vertices - each node carries information as a set of weights
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that quantify features of microstructures. All vertices are associated with a vertex-
weight function fv : V → RD with v ∈ V that maps all vertices in V onto a set of
real numbers, where D is the number of weights - features. The node weights can be
represented by aN×D matrixX with components xik, where the index i ∈ [1, ..., N ]
represents the node and the index k ∈ [1, ..., D] represents the type of node weight -
feature.

Definition 2.8. A graph whose edges are unweighted (wε = 1 ∀ε ∈ E) can be called
a binary graph.

To facilitate the description of graph structures, several terms for representing graphs
are introduced:

Definition 2.9. The adjacency matrixA of a graph G is the N ×N matrix in which
entry αij is the number of edges in G with endpoints {vi, vj}, as shown in Eq. 2.

αij =

{
1, vi is adjacent to vj
0, otherwise. (2)

Definition 2.10. If the vertex v is an endpoint of edge ε, then v and ε are incident.
The degree d of a vertex v is the number of incident edges. The degree matrix D of
a graph G is the N ×N diagonal matrix with diagonal entries di equal to the degree
of vertex vi, as shown in Eq. (3).

degij =

{
di, i = j
0, otherwise. (3)

Definition 2.11. An isomorphism from a graph G to another graph H is a bijection g
that maps V(G) to V(H) and E(G) to E(H) such that each edge of G with endpoints
u and v is mapped to an edge with endpoints g(u) and g(v). Applying the same
permutation to both the rows and the columns of the adjacency matrix of graph G
results to the adjacency matrix of an isomorphic graph H.

Definition 2.12. The unnormalized Laplacian operator ∆ is defined such that:

(∆f)i =
∑

j:(i,j)∈E
wij(fi − fj) (4)

= fi
∑

j:(i,j)∈E
wij −

∑

j:(i,j)∈E
wijfj . (5)

By writing the equation above in matrix form, the unnormalized Laplacian matrix ∆
of a graph G is the N ×N positive semi-definite matrix defined as ∆ = D −W .
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In this current work, binary graphs will be used, thus, the equivalent expression is used
for the unnormalized Laplacian matrix L, defined as L = D −A with the entries lij
calculated as:

lij =





di, i = j
−1, i 6= j and vi is adjacent to vj
0, otherwise.

(6)

Definition 2.13. For binary graphs, the symmetric normalized Laplacian matrix
Lsym of a graph G is the N ×N matrix defined as:

Lsym = D−
1
2LD−

1
2 = I −D− 1

2AD−
1
2 . (7)

The entries lsym
ij of the matrix Lsym are shown in Eq. 8.

lsym
ij =





1, i = j and di 6= 0

−(didj)
− 1

2 , i 6= j and vi is adjacent to vj
0, otherwise.

(8)

3 Graph embedding

Graph embedding is a technique in which one attempts to create a mapping that maps a
graph onto a geometry, which in most case is an Euclidean space. This mapping must
be constructed in a way such that the distance between any two graphs are preserved
to prevent information loss. In fact, one may consider convolutional neural network
also as a special case of graph embedding where the grid is regarded as a graph. This
special case is simpler in the sense that a node at any point in the grid system has a
fixed number of neighbors (2 for one-dimensional cases, 4 for 2D cases,...etc).

However, there are many systems in mechanics, such as granular assembles, knowl-
edge represented in graphs, where the topology is not fixed. In such a case, the topol-
ogy of the graphs must be considered in the embedding process. Earlier attempts
on graph embedding often relies on the eigen-decomposition of the graph Laplacian
to obtain vector representations of graphs. However, the major drawback of this ap-
proach is that the the eigen-decomposition only makes sense to compare graphs of the
same number of nodes. The eigen-decomposition also makes it difficult to focus on
specific local effects in the graphs, which can be quite important for applications, such
as fracture or strain localization (Goyal and Ferrara, 2018).

An alternative approach, which we will describe in this section, is to introduce a two-
step procedure where one first perform node embedding, i.e., mapping each node of
the graphs to a vector in the embedding space (see Fig. 6), then introduce a graph
pooling to aggregate information of the entire graph into a single encoded feature
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vector. This technique is commonly referred as message-passing graph neural network
in the literature.

Earlier work of message-passing graph embedding does not necessarily involve any
neural network. For instance, in DeepWalk, Perozzi et al. (2014) uses truncated ran-
dom walk to aggregate relations among nodes in a graph and use a similarity metric
to embed data from social networks. Later work, such as graph convolution neural
network (Kipf and Welling, 2016), graph attention neural network (Velickovic et al.,
2017), and graph isomorphism network (Xu et al., 2018), all introduce neural net-
works to aggregate information for the node embedding. A key result for this change
in design is to improve the expressivity of the embedding. In particular, we want to
be able to distinguish graphs that are different by avoiding them to be mapped onto
the same encoded feature vectors. As we will see in the latter discussion, the success-
ful embedding with an expressive neural network is the necessary (but not sufficient)
condition for the successful downstream tasks, including the building the decoder (i.e.
the inverse mapping from the embedding vector space back to the graph), as well as
other prediction or classification problems.

Figure 6: Graph autoencoder architecture. Notice that the input and output graphs are
not necessarily sharing the same adjacency matrix.

The rest of this section is organized as follows. We first provide an example of repre-
senting finite element solution as a weighted graph (Section 3.1). We then introduce
the neural network architecture used in Section 3.2. Then, we present the formulation
of these learning tasks: Section 3.3 shows how we learn the mapping for building

h
G̃

and then find the reduced ordered latent space; Section 3.4 shows how to predict the
finite element solutions with p based on the latent space.

3.1 Finite element solution represented by graphs
We consider each node of the finite elements as a graph vertex. Graph edges are as-
signed for each pair of vertices that are nodes of a finite element edge (Vlassis and
Sun, 2023). Accordingly, each nodal solution can be stored as the weight of the cor-
responding vertex such that the finite element solution can be stored as an undirected
node-weighted graph. By assuming that we only use the same set of bases for the
testing and interpolating functions of all finite elements, we eliminate the need to in-
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troduce edge weights for the edge set. This setting simplifies the graph representation
of the finite element solutions.

In the following part of this section, we will introduce the mathematical expression of
finite element node graph as a foundation for our machine learning model. A finite
element node graph is an undirected graph G = (V,E), where V = {vi| i = 1, ..., N}
is the node set of the graph as vi corresponding to individual finite element nodes,
and E = {(v1j , v2j)| j = 1, ...,M ; v1j , v2j ∈ V} is the edge set where the ex-
istence of each individual edge indicates that node v1j and v2j belong to the same
element. N and M indicate the size of the node set and edge set. In order to
deal with geometrical features to be incorporated in the machine learning model, we
enrich the graph representation as a node-weighted graph: G′ = (V,E,X) where
X = {xi ∈ RD|i = 1, ..., N} is the nodal feature set as xi indicates the geomet-
rical feature vector at node vi with a dimension of D. We may enforce D ≥ 3 as the
manifold reconstruction task requires at least the three spatial coordinates of the finite
element point cloud.

3.2 Graph autoencoder architecture
We adopt the graph isomorphism network (GIN) (cf. Xu et al. (2018)) to perform the
embedding task. We would like to discuss GIN, because it is a message-passing model
capable of discriminating different graph structures identified by the Weisfeiler-Lehma
isomorphism test (Weisfeiler and Leman, 1968). Providing that we use a proper graph
pooling layer, the embedding of GIN is inherently permutation invariance, which
means that the ordering of the nodes will not affect the predictions. More importantly,
the fact that GIN passes the isomorphism test enables us to distinguish non-isomorphic
subgraphs by mapping them onto different encoded latent vectors and vice versa – a
feat that cannot be achieved by the conventional graph convolutional network and
GraphSAGE (Xu et al., 2018). These two features combined improve the expressive
power of the GIN such that the relationships among finite element nodes can be cap-
tured by the neural network. Fig. 7 shows the architecture of the graph autoencoder
designed for the finite element problems. The encoder part of this architecture takes
in the adjacency matrix and feature matrix of the input graph G′in : (Ain,X in) and
produces an encoded feature vector henc, which is denoted as a functional expres-
sion: henc = Enc(X in,Ain). The decoder part of this architecture then utilizes the
encoder output to produce a decoded feature matrix X̃ . The adjacency matrix of the
output graph Aout can be assumed as a prior (since each dataset shares one same A)
in order to complete an output graph G′out : (Aout, X̃), which could be written as
X̃ = Dec(henc). Problem formulation is generally based on supervision of the de-
coded output X̃ , which will be the focus of the following sections. The rest of this
section will present details about how the layer components shown in Fig. 7 operate.

We first introduce one of the most widely-used architectures called multi-layer percep-
tron (MLP), which is included as a substructure in our graph autoencoder architecture.
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Figure 7: Graph autoencoder architecture. Notice that the input and output graphs are
not necessarily sharing the same adjacency matrix.

MLP is a functional approximation expressed as follows:

MLP(X) = W (K) ·act(W (K−1) ·act( ...act(W (1) ·X+b(1))...)+b(K−1))+b(K)

(9)
whereW and b are called the weight matrix and the bias vector of the MLP substruc-
ture, respectively. The superscript (K) indicates the K-th layer of the MLP substruc-
ture. act(·) is called the activation function of individual layers; here we adopt the
rectified linear unit (ReLU) for act(·) such that ReLU(x) = x if x > 0 otherwise
ReLU(x) = 0.

We then focus on the GIN convolution layers, which take in some adjacency matrix
and feature matrix and output an embedded feature matrix. The matrix formulation of
a GIN layer is:

H(k) = MLP(k)
(

(A+ (1 + ε)I) ·H(k−1)
)

(10)

where the superscript (k) indicates the k-th layer in the architecture;H is the embed-
ded nodal feature matrix coming from the output of the previous layer withH(1) = X
at the input layer. ε is a learnable parameter. For consecutive GIN convolution layers,
the following layer accepts the same A as the previous layer. For the beginning GIN
layer in both the encoder and the decoder, A should be prescribed as either Ain or
Aout.

Our architecture also includes global operations on the graph. The graph global mean
pooling operation in the encoder performs the following computation:

havg =
1

N

N∑

i=1

hi (11)

where hi is the embedded nodal feature of vi corresponding to the i-th row ofH , and
havg is the resultant graph feature vector from global mean pooling.

The broadcasting operation in the decoder is a matrix reshape operation that converts
a row vector hdec of size NDenc coming from the output of an MLP substructure in
the decoder, to an embedded nodal feature matrix of size N ×Denc such that:

hij = (hdec)j+(i−1)Denc
(12)
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where hij indicates the j-th component of the embedded nodal feature vector hi after
broadcasting.

3.3 Learning problem for the finite element or discrete element
simulations

In the previous section, we discuss the strategy to construct the mapping F(
l
G′j) =

h
G̃′j such that

h
G̃′j ∼ l

G′j to establish an augmented data set
h
G̃. We assume that

F is learned in a supervised manner: we aim to minimize the discrepancy between
the nodal feature matrix of training labels and the approximated nodal feature matrix
output by the neural network. We intuitively construct the training labels with hG,
and thus we required that for each snapshot in hG there exist some snapshot in lG
corresponding to the results with the same loading condition, which is summarized as
follows:

∃ lhG ⊂ lG s.t. hG =
{
F(

lh
G′j)|

lh
G′j ∈ lhG

}
(13)

The subset lhG then constructs the training input set. We next approximate F with
the graph autoencoder proposed in Section 3.2 mainly computing the decoded nodal
features as X̃ = F̂ (X). The loss function is adopted as the node-wise mean square
error of the nodal feature matrix, which leads to the following training objective:

min
ΘF

1

N lh
s

N lh
s∑

i=1

∥∥∥F̂ (X lh
(i))−Xh

(i)

∥∥∥
2

fro
, F̂ (X) = DecF (EncF (X,Al)) (14)

where ΘF is the collection of all trainable network parameters of F̂ (·). N lh
s is the

size of lhG as well as hG. The subscript (i) indicates the i-th sample in hG or
lhG, while the sample sequence satisfies h

G′i ∼ lh
G′i with h

G′i : (Ah,Xh
(i)) and

lh
G′i : (Al,X lh

(i)). The operator ‖ · ‖fro indicates the Frobenius norm of a matrix.
The subscript F of Dec and Enc indicates the decoder and encoder function for the
graph autoencoder approximating F, in order to differentiate from the reconstruction
autoencoder mentioned in the following part. The approximated mapping F̂ (·) helps
us to enrich the high-fidelity dataset as follows:

h
G̃ =

{
h
G̃′j : (Ah, X̃

h

(j)) | X̃
h

(j) =

{
F̂ (X l

(j)),
l
G′j : (Al,X l

(j)) ∈ lG \ lhG,
X l

(j),
l
G′j : (Al,X l

(j)) ∈ lhG.

}

(15)

Here we realize the significance of having a low-fidelity dataset lG and the mapping
F: we are now able to construct a relatively large high-fidelity dataset to improve the
reduced ordered model without spending too much effort performing experiments on
the high-fidelity scales.

With
h
G̃ populated from lG, we are ready to formulate the graph embedding problem

that determines the reduced ordered latent space. The general idea is to construct
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a graph autoencoder function R̂(·) whose output approximates its input itself. We
still adopt the loss function as the node-wise mean square error for the feature matrix
between the labels in

h
G̃ and the output from R̂(·), which yields the following training

objective:

min
ΘR

1

Nhh
s

Nhh
s∑

i=1

∥∥∥R̂(X̃
h

(i))− X̃
h

(i)

∥∥∥
2

fro
, R̂(X) = DecR(EncR(X,Ah)) (16)

where ΘR is the collection of all trainable network parameters of R̂(·). Nhh
s is the

size of
h
G̃ as well as lG. The subscript R indicates the encoder and decoder function

of the reconstruction autoencoder. The reduced ordered latent space L is then defined
as the space spanned by henc = EncR(X,Ah) for arbitrary X coming from an
admissible deformed configuration G′, where L ⊂ RDenc .

3.4 Predicting the high-fidelity results without full-scale simula-
tions

This section presents how we utilize the parametrized load p to predict the actual de-
formed configuration G′. As we find the reduced ordered latent space L in the previous
section, we may notice that L is generally entangled, which does not ideally captures
the reduced ordered dynamics in the maximum sense. We here propose to construct a
response controlling law on L based on p corresponding to the configuration of inter-
est to disentangle the reduced ordered latent space, denoted as a functional expression
henc = f(p). We then approximately parametrize the response controlling law func-
tion as f̂(·) by a simple feed-forward neural network with MLP architecture. We fit
f̂(·) with the mean square error loss between the encoded feature vector obtained from
the graph autoencoder and that computed by f̂(·), which yields the following learning
objective:

min
Θf

1

Nhh
s

Nhh
s∑

i=1

∥∥∥f̂(p(i))− EncR(X̃
h

(i),A
h)
∥∥∥
2

2
(17)

where Θf is the collection of all trainable network parameters of f̂(·). p(i) is the

loading condition corresponding to the i-th snapshot
h
G̃′i : (Ah, X̃

h

(i)). The operator
‖ · ‖2 is the vector Euclidean norm.

After we learn the neural network approximation of f(·), the prediction of high-
fidelity results is to determine the nodal feature matrix X̄ given some loading con-
dition p̄ as follows:

X̄ = DecR(f̂(p̄)) (18)

In essence, we introduce a graph neural network approach to construct a response
surface. Since (1) the data are obtained from the simulations that obey the balance
principles and (2) a successful embedding should be capable of preserving the rela-
tionships among nodes, we hypothesize that this will give us more accurate and robust
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predictions than other alternatives that employ basis functions that directly interpolate
the hypersurface in the ambient space RN+P .

4 Numerical Example: Training of interpretable graph
embedding internal variables

In this section, we describe a procedure of embedding field simulation data to con-
struct graph-based internal variables. The content of this section is revised from a
section in Vlassis and Sun (2023).

A graph convolutional autoencoder is used to compress the graph structures that carry
the plastic deformation distribution of a microstructure. In Section 4.1, we demon-
strate the process of generating the plasticity data through finite element method
(FEM) simulations and post-processing them into weighted graph structures. In Sec-
tion 4.2, we showcase the performance capacity of the autoencoder architecture as
well as its ability to reproduce the plasticity graph structures. Finally, in Section 4.3,
we perform a sensitivity training test for the autoencoder architecture on different
FEM meshes for the same microstructure.

4.1 Generation of the plasticity graph database
In this work, the autoencoders used for the generation of the graph-based internal vari-
ables and the neural network constitutive models used for the forward predictions are
trained on data sets generated by FEM elastoplasticity simulations. To test the autoen-
coders’ capacity to generate encoded feature vectors regardless of the microstructure
and plastic strain distribution patterns the FEM mesh represents, we test the algorithm
with two microstructures of different levels of complexity. The two microstructures
A and B are demonstrated in Fig. 8 (a) and (b) respectively. The outline of the mi-
crostructures is a square with a side of 1 mm. This figure also shows the meshing of
the two microstructures. The microstructures A and B are discretized by 250 and 186
triangular elements respectively with one integration point each. An investigation of
different mesh sizes and the sensitivity of the encoded feature generation is demon-
strated in Section 4.3. Each integration point of mesh corresponds to a node in the
equivalent graph (also shown in Fig. 8). The integration points of the neighboring
elements - elements that share at least one vertex - are connected with an edge in the
constructed graph.

The constitutive model selected for the local behavior at the material points was lin-
ear elasticity and J2 plasticity with isotropic hardening. The local behavior is pre-
dicted with an energy minimization algorithm. The local optimization algorithm
is omitted for brevity. The local linear elastic material has a Young’s modulus of
E = 2.0799MPa and a Poisson ratio of ν = 0.3. The local J2 plasticity has an initial
yield stress of 100kPa and a hardening modulus of H = 0.1E. During the simulation,
the elastic, plastic, and total strain as well as the hyperelastic energy functional and
stress are saved for every integration point.
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(a)

(b)

Figure 8: Two microstructures represented as a finite element mesh and an equivalent
node-weighted undirected graph.

To capture varying patterns of distribution of plastic strain, the finite element simula-
tions were performed under various combinations of uniaxial and shear loading. The
loading was enforced with displacement boundary conditions applied to all the sides
of the mesh for both microstructures A and B. The combinations of displacement
boundary conditions are sampled by rotating a loading displacement vector from 0◦

to 90◦ whose components are the uniaxial displacements in the two directions for the
pure axial displacement cases and the uniaxial and shear displacements for the com-
bined uniaxial and shear loading. The maximum displacement magnitude for axial
and shear loading vector components are ugoal = 1.5 × 10−3 mm. We sample a total
of 100 loading combinations/FEM simulations for each microstructure. During each
of these simulations, we record the constitutive response at every material point and
post-process it as a node-weighted graph and a volume average response. For every
simulation, we record 100 time steps, thus collecting 10000 training sample pairs of
graphs and homogenized responses for each microstructure.

4.2 Training of the graph autoencoder
In this section, we demonstrate the training performance of the autoencoder architec-
ture on the two microstructure data sets described in Section 4.1. We also show the
capacity of the autoencoder to reproduce the plasticity graphs in the training samples.
The dimension of the encoded feature vector in this example is set to Denc = 16. An
examination of the effect of the encoded feature vector size is described in Section 4.3.

The training curves for the autoencoder’s reconstruction loss function is shown in
Fig. 9. The autoencoder appears to have similar loss function performance for both
microstructures. The autoencoder performs slightly better for microstructure A as
it is tasked to learn and reproduce patterns for a seemingly simpler microstructure
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Figure 9: Autoencoder reconstruction training loss for microstructures A and B (a and
b respectively).
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Figure 10: Prediction of the autoencoder architecture of the microstructure A for two
loading paths (a and b). The graph node size and color represent the magnitude of the
accumulated plastic strain εp. The node-wise predictions for εp are also demonstrated.

compared to microstructure B. The training loss curves in this figure demonstrate the
overall performance of the autoencoder architecture – the encoder and decoder compo-
nents of the architecture are trained simultaneously. The capacity of the autoencoder
to reconstruct the plasticity distribution patterns is explored in Fig. 10 and Fig. 11 for
microstructures A and B respectively. In these figures, we showcase the reconstruction
capacity of the plastic strain for two different time steps for each microstructure. The
time steps selected are from two different loading path combinations resulting in dif-
ferent plasticity graph patterns. We demonstrate how the autoencoder can reproduce
these patterns by comparing the internal variable graph data – the autoencoder input –
with the graph reconstruction – the autoencoder output. We also show the accuracy of
the node-wise prediction of the accumulated plastic strain for these microstructures. It
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is noted that the autoencoder predicts the values of the full plastic strain tensor at the
nodes. However, these plots show the accumulated plastic strain εp values calculated
from the predicted strain tensor at the nodes for easier visualization.
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Figure 11: Prediction of the autoencoder architecture of the microstructure B for two
loading paths (a and b). The graph node size and color represent the magnitude of the
accumulated plastic strain εp. The node-wise predictions for εp are also demonstrated.

The autoencoder architecture provides the flexibility of utilizing its two components,
the encoder Lenc and the decoder Ldec, separately. In this section, we demonstrate the
encoder’s ability to process the high-dimensional graph structure in encoded feature
vector ζ time histories. In Fig. 12 (a) & (c) and Fig. 13 (a) & (c), we show the predicted
encoded feature vector ζn for a time step of a loading path for microstructures A and
B respectively. These encoded feature vectors specifically correspond to the graphs
shown in Fig. 10 and Fig. 11 respectively. In Fig. 12 (b) & (d) and Fig. 13 (b) & (d),
we demonstrate the time series of plasticity graphs encoded in time series of encoded
feature vectors. It is highlighted that the encoded feature vector values do not change
during the elastic/path-independent part of the loading. This is directly attributed to
the fact that the plasticity graph is constant (zero plastic strain at the nodes) before
yielding for all the time steps. The benefit of separately using the decoder Ldec as a
post-processing step to interpret the predicted encoded feature vectors is also explored
in the following sections.

4.3 Mesh sensitivity and Encoded Feature Vector dimension
In this section, we investigate the behavior for different dimensionality of the graph
data set and the compression of the graph information. In the first experiment, we
test the effect of the size of the input plasticity graph that will be reconstructed by
the autoencoder. We generate three data sets from finite element simulations with
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Figure 12: Prediction of encoded feature vector ζ by the encoder Lenc for microstruc-
ture A. (a,c) The encoded feature vector ζn for a single time step for the plastic graphs
shown in Fig. 10a and Fig. 10b respectively. (b,d) The encoded feature vector ζ history
for all the time steps in the loading paths of Fig. 10a and Fig. 10b respectively.

different mesh sizes for microstructure A. All meshes consist of the same triangular
elements described in the previous section. The number of elements in the mesh and
the corresponding nodes in the post-processed graphs are N = 100, N = 250, and
N = 576. For the mesh generation, we start with the N = 100 mesh and refine once
to obtain the N = 250 mesh and twice to obtain the N = 576 mesh. The refinement
was performed automatically using the meshing software library Cubit (Blacker et al.,
1994). The data sets for the meshes of N = 100, N = 250, and N = 576 nodes
mesh were generated through the same FEM simulation setup and a subset of the
combinations of uniaxial and shear loading paths described in Section 4.1 gathering
2500 training samples of graphs.

The results of the training experiment on the mesh sensitivity are demonstrated in
Fig. 14. The figure shows the reconstruction loss for the three mesh sizes. The re-
construction loss exhibits a minor improvement as the number of nodes in the graph
increase. This is attributed to the density of the information available for the au-
toencoder to learn the patterns from – there is a higher resolution of adjacent nodes’
features. However, an increase in graph size may increase the duration of the training
procedure. Since the benefit of increasing the mesh size is not significant in this set of
numerical experiments, we opt for the N = 250 node mesh to use for the rest of this
work.
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Figure 13: Prediction of encoded feature vector ζ by the encoder Lenc for microstruc-
ture B. (a,c) The encoded feature vector ζn for a single time step for the plastic graphs
shown in Fig. 11a and Fig. 11) respectively. (b,d) The encoded feature vector ζ history
for all the time steps in the loading paths of Fig. 11a and Fig. 11b respectively.

In a second numerical experiment, we examine the effect of the size of the encoded
feature vector on the capacity of the autoencoder to learn and reconstruct the plasticity
distribution patterns. We re-train the autoencoder using the data set of 10000 graphs
generated on theN = 250 node mesh for microstructure A as described in Section 4.1.
We perform three training experiments selecting different sizes Denc for the encoded
feature vector – Denc = 2, Denc = 16, and Denc = 32. All the convolutional filters
and the Dense layers have the same size. The only Dense layers that are affected are
those around the encoded feature vector whose input and output sizes are modified to
accommodate the different sizes of encoded feature vector.

The training performance for these three training experiments is demonstrated in
Fig. 15. Compared to encoded feature vector sizes Denc = 16 and Denc = 32, the
Denc = 2 autoencoder architecture seems to fail to compress the information as well
with a loss performance difference of about two orders of magnitude. The maximum
compression achieved for this autoencoder architecture setup appears to be two fea-
tures. This dimensionality appears to be the smallest feasible encoding limit for this
particular data set. It is also possible that more sampling from different loading paths
may also increase this minimal dimensionality. Jumping fromDenc = 16 toDenc = 32
encoded feature vector components, only a small improvement in the reconstruction
capacity is observed. The reconstruction capacity is also illustrated in Fig. 16. The
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Figure 14: Autoencoder reconstruction training loss for microstructure A with the size
of the encoded feature vector Denc = 16 and graph sizes of N = 100, N = 250, and
N = 576 nodes.
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Figure 15: Autoencoder reconstruction training loss for microstructure A with the size
of the encoded feature vector Denc = 2, Denc = 16, and Denc = 32.

decoder fails to accurately reconstruct the plasticity graph from the Denc = 2 encoded
feature vector (Fig. 16 a). However, for Denc = 16 and Denc = 32 the decoder accu-
rately reproduces the plasticity patterns (Fig. 16 b and c). It is expected for dimensions
larger than Denc = 32 the benefit in reconstruction capacity will me minimal. Thus,
the encoded feature vector dimension selected for the rest of this work isDenc = 16 for
which the dimension reduction capacity is considered adequate and computationally
efficient.

It should be noted that the relatively small losses observed in Fig. 14 only indicate
that the three reconstructions are independently successful in the sense that the recon-
structed graphs are all sufficiently close to the original ones.

4.4 Return mapping algorithm
In this section, we provide the implementation details for the return mapping algo-
rithm to make forward elasoplasticity predictions. The fully implicit stress integration
algorithm allows for the incorporation of the graph-based internal variables gener-
ated from the autoencoder architecture in the prediction scheme. The return mapping
algorithm designed in the principal strain space is described in Algorithm 1.
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Figure 16: Comparison of the autoencoder architecture’s capacity to reconstruct the
accumulated plastic strain pattern of the microstructure A with the size of the encoded
feature vector (a) Denc = 2, (b) Denc = 16, and (c) Denc = 32. The graph node size
and color represent the magnitude of the accumulated plastic strain εp. The node-wise
predictions for εp are also demonstrated.

This formulation of the return mapping algorithm requires all the strain and stress
measures are in principal axes. However, this is not limiting for the choice of strain
and stress space formulation of the constitutive law components as the framework
allows for coordinate system transformation through automatic differentiation. The
automatic differentiation is facilitated with the use of the Autograd library (Maclaurin
et al., 2015). Through automatic differentiation and a series of chain rules the consti-
tutive model predictions are expressed in the principal axes, allowing for any invariant
formulation of the yield function during training.

The elastoplastic behavior is modeled through a predictor-corrector scheme that inte-
grates the elastic prediction with the corrections by the yield function neural network.
It is noted that the elastic update predictions for the hyperelastic energy functional
and the plasticity terms encountered in the return mapping algorithm are evaluated as
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neural network predictions using the offline trained energy functional, yield function,
and kinetic law. The hyperelastic neural network is based on the prediction of an en-
ergy functional with interpretable first-order and second-order derivatives (stress and
stiffness respectively).

Besides the capacity to predict the values of the approximated functions, these libraries
also allow for the automatic evaluation of the approximated function derivatives that
are required to perform the return mapping constitutive updates and constructing the
local Newton-Raphson tangent matrix as well as the necessary coordinate set trans-
formation chain rules.

Algorithm 1 Return mapping algorithm in strain-space for encoded feature vector
internal variable plasticity.

Require: Hyperelastic energy functional ψ̂e neural network, yield function f̂ neural
network, the encoded feature vector neural network ζ̂, and the plastic flow network
ĝ.
1. Compute trial elastic strain

Compute εe trn+1 = εen + ∆ε.
Spectrally decompose εe trn+1 =

∑3
A=1 ε

e tr
A ntr,A ⊗ ntr,A.

2. Compute trial elastic stress
Compute σtr

A = ∂ψ̂e/∂εeA forA = 1, 2, 3 and the corresponding ptr, qtr at εe trn+1.

3. Check yield condition and perform return mapping if loading is plastic
if f̂ (ptr, qtr, ξn) ≤ 0 then

Set σn+1 =
∑3
A=1 σ

tr
An

tr,A ⊗ ntr,A and exit.
else

Compute encoded feature vector ζn = ζ̂(εphistn).
Compute plastic flow direction ∂ϑ̂

∂σA
= ĝ(δζn) for A = 1, 2, 3.

Solve for εe1, ε
e
2, ε

e
3, and ξn+1 such that f̂ (p, q, ξn+1) = 0.

Compute σn+1 =
∑3
A=1

(
∂ψ̂e/∂εeA

)
ntr,A ⊗ ntr,A and exit.

The return mapping also incorporates a non-associative flow rule to update the plas-
tic flow direction instead of using the stress gradient of the yield function. This is
achieved by incorporating the predictions of the plastic flow ĝ network. Through the
local iteration scheme, the solution for the true elastic strain values can be retrieved
using the solved for discrete plastic multiplier ∆λ and the predicted flow direction as
follows:

εeA = εe trA −∆λ
∂ϑ̂

∂σA
= εe trA −∆λĝA(δ̂ζ), A = 1, 2, 3. (19)

The return mapping algorithm requires a hyperelastic energy functional neural net-
work ψ̂e, a yield function f̂ , a kinetic law ζ̂, and a plastic flow ĝ neural network that
are pre-trained offline. Given the elastic strain tensor at the current loading step, a
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trial elastic stress state is calculated using the hyperelastic energy functional neural
network. The yield condition is checked for the trial elastic stress state and the current
plastic strain level. If the predicted yield function is positive, the trial stress is the in
the elastic region and is the actual stress. The encoded feature vector remains con-
stant. If the yield function is non-positve the trial stress is in the inadmissible stress
region and an Newton-Raphson optimization scheme is utilized to correct the stress
prediction. The current encoded feature vector is predicted from the time history of
plastic strain tensors and is used to predict the current plastic flow directions. The
goal of the return mapping algorithm is to solve for the prinicipal elastic strains and
the plastic strain such that the predicted yield function is equal to zero and the stress
updates is consistent with the plastic flow. The encoded feature vector at every step
can be converted back into the corresponding weighted graph via the graph decoder
Ldec neural network. This weighted graph can be converted back into information in
a finite element mesh and therefore enable us to interpret the microstructure.

It is noted that the return mapping algorithm is formulated via the principle direction
is provided in this section for the generalization purpose. This setting is sufficient for
isotropic materials. In our numerical examples, we only introduce two-dimensional
cases to illustrate the ideas for simplicity. The generalization of the return mapping
algorithm for anisotropic materials is straightforward, but the training of the yield
function and the plastic flow model in the higher dimensional parametric space is not
trivial. This improvement will be considered in the future but is out of the scope of
this study.

4.5 Interpretable multiscale plasticity of complex microstructures
In this last section, we demonstrate the capacity of the models to make forward pre-
dictions for unseen loading paths and interpret them in the microstructure. The return
mapping algorithm does not only predict the strain-stress response of the material but
also the plastic strain response and the encoded feature vector variables. These can
then be decoded by the graph decoder Ldec to interpret the microstructures’ elastoplas-
tic behavior. We provide tests of unseen loading path simulations for both microstruc-
tures A and B. The training of the constitutive models used to make the forward pre-
dictions is described in Section 4.2.

We first test the models’ capacity to make predictions of the plastic state on monotonic
data. We demonstrate the result for the predicted stress state in Fig. 17 (a & b) and
Fig. 18 (a & b) for microstructures A and B respectively. We also record the homoge-
nized plastic strain tensor of the microstructures. For simplicity, we are demonstrating
the predicted accumulated plastic strain measure εp in Fig. 17 (c) and Fig. 18 (c). Us-
ing the trained kinetic law neural network, we can make forward predictions of the
encoded feature vectors ζ̂ that are consistent with the current predicted homogenized
plastic state. The results of these predictions are shown in 17 (d) and Fig. 18 (d). These
predicted curves are a close match to the benchmark data and can closely capture the
behavior in the macroscale. We can now interpret this homogenized behavior as the
corresponding one in the microscale. Using the trained decoder for each microstruc-
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Benchmark Prediction

Figure 17: (a,b,c) Prediction of stress invariants p, q, and accumulated plastic strain
εp using the return mapping algorithm for a monotonic loading of microstructure A.
(d,e) Prediction of all the encoded feature vector ζ components and the corresponding
decoded internal variable graph for a monotonic loading of microstructure A.

Benchmark Prediction

Figure 18: (a,b,c) Prediction of stress invariants p, q, and accumulated plastic strain
εp using the return mapping algorithm for a monotonic loading of microstructure B.
(d,e) Prediction of all the encoded feature vector ζ components and the corresponding
decoded internal variable graph for a monotonic loading of microstructure B.
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(a) (b) (c) (d)

Figure 19: Prediction of the plastic flow components for two loading cases for mi-
crostructures A and B (a & b respectively). Both the predicted via yield function
stress gradient ∂f̂

∂σA
and the non-associative plastic flow ∂ϑ̂

∂σA
predictions are shown.

Figure 20: Prediction of deviatoric stress q, accumulated plastic strain εp, and the
encoded feature vector ζ components using the return mapping algorithm for a cyclic
loading of microstructure A.

Figure 21: Prediction of deviatoric stress q, accumulated plastic strain εp, and the
encoded feature vector ζ components using the return mapping algorithm for a cyclic
loading of microstructure B.

ture, we can recover the plastic strain distributions as shown in Fig.17 (e) and Fig. 18
(e) for microstructures A and B respectively. It is noted that while only the node-wise
prediction of the accumulated plastic strain εp is shown, the decoded recovers the en-
tire plastic strain tensor εp. This is done for simplicity of presentation. The node-wise

154 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



predictions of the plastic strain are accurate and the decoder can qualitatively capture
the general plastic distribution patterns and the plastic strain localization nodes in the
microstructure.

We also demonstrate the capacity of the model to predict the plastic flow with the help
of the encoded feature vector internal variables. In Fig. 19, we compare the computed
plastic flow components using the neural network yield function stress gradient ∂f̂

∂σA

prediction and the plastic potential stress gradient ∂ϑ̂
∂σA

as predicted by the plastic flow
ĝ network with the benchmark simulations. The results demonstrated are for two
blind prediction curves for each microstructure – Fig. 19(a) corresponds to Fig. 17
and Fig. 19(c) corresponds to Fig. 18. The accuracy of the ĝ network predictions on
the flow is higher than that of the yield function stress gradient. This is attributed to
the decoupling of the yielding and hardening from the plastic flow directions allowing
for more flexibility of the neural networks to fit these complex laws. Network ĝ also
utilizes the highly descriptive encoded feature vector ζ̂ input that allows for more
refined control of the plastic flow than the volume averaged accumulated plastic strain
metric used in the yield function formulation.

Finally, we conduct a similar blind test experiment but with added blind unloading
and reloading elastic paths in the loading strains. The results for microstructures A
and B are demonstrated in Fig. 20 and Fig. 21 respectively. The model does not have
any difficulty recognizing the elastic and plastic regions of the loading path since the
behaviors are distinguished with the help of the neural network yield function. This
also constrains the evolution of the plastic strain and the encoded feature vector to
happen only during the plastic loading. Since the kinetic law neural network is a feed-
forward architecture, there is no history dependence and no change in the plastic strain
corresponds to no change in the encoded feature vector. The decoder architecture is
also path-independent so no change in the encoded feature vector corresponds to no
change in the respective decoded plastic graph. This is also achieved by the specific
way the encoded feature vectors are constructed. The input node features in the au-
toencoder are the mesh node coordinates and the plastic strains. This specific design
ensures that the plastic graph does not evolve during elastic unloading/reloading and
prevents any artificial memory effect in the elastic regime. The lack of memory effect
in the elastic regime is necessary for the encoded feature vector to be internal variables
for rate-independent plasticity models where the history-dependent effect is only trig-
gered once the yield criterion is met. This would not be the case if other integration
point data, such as the total strain or stress, are incorporated into the graph encoder.

Note that this switch between path-independent and path-dependent behaviors may
also have implications for other neural network constitutive laws. In particular, if a
black-box recurrent neural network is used to forecast history-dependent stress-strain
responses, then one must ensure that the history-dependent effect is not manifested in
the elastic region. For instance, if the LSTM architecture is used, then one must ensure
that the forget gate is trained to turn on to filter out any potential artificial influence of
the strain history.
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5 Conclusion

This book chapter reviews the applications of the message-passing graph neural net-
work for mechanics problems. We provide an example of how we can use graph
embedding to create encoder that compress history-dependent spatial pattern into de-
scriptors and state variables for plasticity models.
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Artificial Neural Networks: layer
architectures, optimizers and automatic
differentiation

Filippo Gatti

Université Paris-Saclay
CentraleSupélec, ENS Paris-Saclay, CNRS
LMPS Laboratoire de Mécanique Paris Saclay UMR 9026

This chapter is meant to provide a basic yet solid understanding of artifi-
cial neural networks, to a heterogeneous readership. In particular, the chap-
ter presents three major types of neural networks, namely: feed-forward multi
layer perceptrons (MLP ), convolutional neural networks (CNN ) and recurrent
neural networks (RNN ). The chapter describes how deep is the relationship
between each of these neural networks and the specific data science task they
aim at tackling: from regression to classification, from images to time-series,
with practical tutorials on real datasets and mechanics-inspired examples. The
neural network optimization is described in its general statistical framework,
focusing on the most popular algorithms tailored to efficiently “train” such neu-
ral metamodels, through the so called “back-propagation”. The chapter explains
how in practice the back-propagation occurs, by automatizing the derivative
chain rule and by efficiently exploiting the computational graph constructed to
predict. The chapter’s last sections provide practical recipes on how to effi-
ciently optimize the learning algorithms, by duly initializing the neural network
parameters, by adopting design strategies that avoid vanishing or exploding gra-
dients and by pursuing deeper architectures to achieve data disentanglement,
parsimony and generalizability. The chapter is featured by several practical ex-
amples, with corresponding code snippets, in order to practice the theoretical
aspects presented in the main text. For expert readers, this chapter serves as
a recap. We defer to the chapter Artificial Neural Networks: advanced topics,
for further more technical and theoretical insights on the vast world of artificial
neural networks. The chapter is largely inspired, among others, by Stéphane
Mallat’s Data Science lecture notes at Collège de France, as well as by different
lecture notes of CentraleSupélec’s engineering curriculum.
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1 Why PyTorch?
The scope of these chapters is to provide a basic understanding of the most
important notions of artificial neural networks, for a non-expert readership
with a strong background in computational geomechanics. Major theoretical
aspects are outlined and supported by detailed examples and tutorials, in or-
der to reinforce the learning curve of basic and advanced concepts with the
help of practical and commented hands-on sessions, accessible to everybody.
This approach follows the same paradigm followed by the scientific community
since a decade ago, when the AI revolution started, thanks to the deployment
of cumbersome algorithms on large databases on specific hardware, such as
GPUs (Graphic Processing Units) and, from 2016, TPUs (Tensor Processing
Units). GPU, followed by TPU, took advantage of powerful CPU (Central
Processing Units) because of their proneness to solve the same sequence of op-
erations on a continuous stream of data, progressively offloaded from the host
(the CPU, accessing large memory but at a slow pace) to the device (GPU or
TPU respectively), with limited memory capacity, but leveraging the possibil-
ity of performing massive parallel computations on naively parallel problems
(such as processing large databases of independent data realizations). AI and
machine learning took advantage of the long tradition in computer vision of
leveraging GPU computation to render graphical content. However, in order
to exploit such techniques for statistical learning, several libraries have been
developed, with alternate fortunes. A decade after the start of the AI revolu-
tion in 2012 - the year in which Krizhevsky et al. [KSH17] beat the state-of-art
reference in image classification - two major libraries have survived and have be-
come extremely popular for the design of neural networks and complex machine
learning techniques: PyTorch and TensorFlow. The development of those two
libraries has been featured by several extra contributions of prototype libraries
(DistBelief, Caffe2, Theano, Keras to cite a few) that have been progres-
sively integrated in either one of two leading libraries, developed by Meta AI
and Google Brain Team respectively.
PyTorch was firstly released in 2016, originally developed by Adam Paszke,
Sam Gross, Soumith Chintala, Gregory Chanan, as a python interface to the
Torch open-source library, initially created by Idiap Research Institute and
École polytechnique fédérale de Lausanne (EPFL) and migrated to PyTorch in
2017. Torch provides a LuaJIT interface to deep learning algorithms written in
C. LuaJIT leverages the Lua lightweight, high-level, multi-paradigm program-
ming language in the context of tracing just-in-time compilation, to optimize
the execution of a program at runtime by tracking frequent linear sequences of
code, compiling them to native machine code and executing them. On the con-
trary, TensorFlow was released in late 2015 by the Google Brain Team, based
on its proprietary ancestor called DistBelief, started in 2011. The name
TensorFlow was inspired by the archetype on which the library is based, i.e.
the multidimensional data array referred to as tensors. In 2016, Google even
developed an application-specific integrated circuit (ASIC), the TPU, specifi-
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cally tailored for TensorFlow applications and oriented toward using or running
models on low floating-point precision (8-bit) rather than training them. Both
PyTorch and TensorFlow are at their second versions, released in 2023 and
2019 respectively.

From a mere technical standpoint, the main differences between the two li-
braries is the way they assemble computational graphs. Whilst TensorFlow
distinguishes itself for using static graphs (compiled before running them) to
perform back-propagation, PyTorch adopts dynamic graph that are assembled
at run time. However, in its brand new version 2, recently released, PyTorch
introduced an experimental tool to compile graphs. The difference between
static and dynamic graphs is that the static graphs are based on fixed tensor
shapes and graph connections, that allows to optimize the graph operations
before running it. However, certain optimization features cannot be applied
to dynamic graphs assembled and modified at runtime, possibly reducing their
overall speedup. Nevertheless, the PyTorch’s dynamic approach eases the cod-
ing part for non-expert users, since memory requirements (often unknown) need
not to be defined before hand. Static graphs, on the contrary, allow secure
model building with high-level API that enables portability on cloud, in the
browser, on-device, multiple CPUs and multiple GPUs or TPUs. Static graphs
can be used by other supported languages, such as C++ and Java, facilitating
cross-platform deployment. On the contrary, PyTorch has its own API for sav-
ing trained model in a serialized way and its own API for distributed training
on parallel architectures (DistributedDataParallel or ModelParallel.

As described in THE INTRODUCTORY CHAPTER, TensorFlow dominated
the AI scene at the very beginning (2012-2017) and rapidly left the step to
PyTorch after release, due to its friendly interface and ease to code, that at-
tired new coming AI practitioners with poor background in machine learning
and python coding in general. Therefore, the Google team released TensorFlow
v2.0 in 2019, completely turning v1.0 upside down. The most intriguing novelty
was the introduction of the “eager” mode, which introduced the possibility of
switching from default static graph computation to the “Define-by-Run”. More-
over, TensorFlow 2.0 performances on GPU drastically improved, enabling its
use to those popular (compared to TPU at least) hardware. This allowed
TensorFlow to regain a consistent portion of the market.

All in all, both TensorFlow and PyTorch are incredibly user-friendly and pow-
erful machine learning libraries. TensorFlow is definitely more mature, with
advanced features for optimizing complex machine learning algorithms. How-
ever, PyTorch seems more adapt to the ALERT school’s purpose of providing
a first lookup at the basic AI and neural networks fundamentals.
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2 Neural networks
Neural Networks (NN ) have shown outstanding capabilities either for clas-
sification, either for regression problems. Given a labeled dataset DXY =
{(xi,yi)}N

i=1, with xk ∈ X ⊂ RdX and yk ∈ Y ⊂ RdY , the problem they aim
at solving is the following:

Problem. Empirical loss minimization(P)
Find hθ : X → Y, hθ ∈ Hθ such that:

h
θ̂

(DXY ) = arg min
h

θ
∈Hθ

LDXY
(hθ )

whereHθ is the chosen class of classifiers or regression functions (i.e., the neural
network architecture), LDXY

the empirical loss (corresponding to the sample
average of i.i.d. realizations) defined as:

LDXY

(
hθ

)
= 1
N

N∑

i=1
l (hθ (xk) ,yk) , (xi,yi) ∈ DXY (1)

with l (h (x) ,y) : Y × Y → R+ being a measure of the “distance” between
“true” label and prediction, such that l (y ,y) = 0. LDXY

(hθ) is an approx-
imation of the “true” loss L

(
hθ

)
= E(x,y)∼p [l (hθ (X ) ,Y )] that cannot be

computed directly since p(X ,Y ) is not known a priori. The theory of informa-
tion exposed in Section 1.6 draws the analogy between empirical loss LDXY

and
the negative log-likelihood of the conditional probability distribution pθ (y|x),
induced by parametrization of theMLP hθ by identifying l with the negative
log-likelihood of the conditional probability pθ (y|x), defined as follows:

l
(
y, hθ (x)

)
= − ln pθ (y|x) = NLL

(
y, hθ

)
(2)

In otherthe negative log-likelihood of . Minimizing LDXY
corresponds therefore

to minimize the

A NN is a particular statistical model hθ ∈Mθ (see Section 1.3) that depends
on a set of weights and biases θ ∈ Θ. The most common NN model is the
Multi-Layer Perceptron (MLP ), that consists into a directed acyclic graph
(feed-forward), with an input layer, several hidden layers and an output layer
of neurons (the graph’s edges) stacked upon each other (see Figure 1).

Every node in one layer is connected to every other node in the next layer. The
MLP gets deeper as many more hidden layers are stacked-up. The fundamen-
tal elementary brick of any MLP is the neuron.
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Figure 1: Simple example of Multi-Layer Perceptron (3 hidden layers h(ℓ) and 1 output
y). The figure was drawn with tikz.net.

2.1 The artificial neuron
Artificial neural networks have been formulated by the pioneering work of Pitts
and McCulloch [MP43] and Rosenblatt [ROS57]. A neuron (or unit) essentially
performs the following non-linear transformation on its input x:

hθ (x) = g(a(x)) = g(⟨w,x⟩+ b) = g

(
dX∑

c=1
wc · xc + b

)
; θ := {w; b} (3)

where a is the linear pre-activation, w the weights and b the bias. g is the non-
linear activation function and it can be chosen in the list (non-exhaustive):

• Sigmoid:
g(a) = σ(a) = 1

1 + e−a
(4)
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Properties of the Sigmoid function:

– it is bounded in [0; 1]

– it is positive

– it is strictly increasing

– it serves as probability distribution, i.e., g (a) = PY [Y = a|x]

– it has a “squashing” effect

– it is a smooth version of binary classifier with linear decision bound-
ary (Logistic regression)

Figure 2: Sigmoid activation function g(a) and its derivative ∂g
∂a

.

• Hyperbolic Tangent:

g(a) = tanh (a) = e2a − 1
e2a + 1 (5)

Properties of the Hyperbolic Tangent:

– it is bounded in [−1, 1]

– it is skew-symmetric

– it is strictly increasing

– it has a “squashing” effect (vanishing gradients, see Section 4.2)

– it is preferred to Sigmoid because it has 0 steady state (tanh (0) =
0) [LeC+98; GB10].

• Rectified Linear Unit [GBB11]:

g(a) = ReLU (a) = max(0, a) (6)
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Figure 3: Hyperbolic tangent activation function g(a) and its derivative ∂g
∂a

.

Properties of the Rectified Linear Unit:

– closer to real biological activity since indicates that cortical neurons
are rarely in their maximum saturation regime [GBB11]

– it is bounded to 0 by below for a < 0

– it is positive ∀a ∈ R

– it is strictly increasing ∀a ∈ R

– it does not enforce a sign symmetry or antisymmetry

– it promotes sparsity in combination with a ℓ1-norm penalty on the
weights (see Section 2.3 and [GBB11])

– the deactivation for a < 0 is robust to noise

• Leaky Rectified Linear Unit:

g (a) =LeakyReLU(a)=
{

a,a ≥ 0
−α · a,a < 0(α > 0)

(7)
(8)

Properties of Leaky Rectified Linear Unit:

– it is not bounded

– it maintains the sign of a

– it has no “squashing” effect

• Exponential Linear Unit [CUH16]

g (a) =ELU (a) =
{

a,a > 0
α · (ea − 1) ,a ≤ 0

(9)
(10)
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Figure 4: ReLU activation function g(a) and its derivative ∂g
∂a

.

Figure 5: LeakyReLU activation function g(a) and its derivative ∂g
∂a

.

Properties of the Exponential Linear Unit:

– it equals the identity for a > 0

– it is not bounded for a > 0

– it is strictly increasing ∀a ∈ R

– it has a “squashing” effect for a ≤ 0

– noise-robust deactivation state (µw → 0) [CUH16] (see Section 4.2)

• Scaled Exponential Linear Unit [Kla+17]

g(a) = SELU(a) = s (max(0, a) + min (0, α (ea − 1))) (11)
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Figure 6: ELU activation function g(a) and its derivative ∂g
∂a

.

Properties of the Scaled Exponential Linear Unit:

– α =1.6732632423543772848170429916717

– s =1.0507009873554804934193349852946

– identity for a > 0

– bounded to −α by below for a < 0

– self-normalizing weights (µw → 0, Cw,w → I) even for noisy in-
put [Kla+17] (see Section 4.2)

Figure 7: SELU activation function g(a) and its derivative ∂g
∂a

.

The functions g(⟨w,x⟩) are ridge functions, which is constant on the hyper-
plane a(x) = ⟨w,x⟩ = c and on each hyperplane a(x) = ⟨w,x⟩ + b = c (see
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Figure 8).

a b

Figure 8: Examples of linear separation made by a single neuron on an input dataset
X ⊂ R2. (a) activation function g(a) = σ(a); (b) activation function g(a) = tanh(a).

From Figure 8, one notices that b makes the ridge hθ translate along the in-
put space, whereas w determines the orientation of the ridge (in-plane rota-
tion). The activation function adds non-linearity and if g(·) = σ(·), hθ can
be interpreted as the likelihood pθ (x). In a binary classification context with
y ∈ Y := {0, 1} (if g(·) = σ(·)) or y ∈ Y := {−1, 1} (if g(·) = tanh(·)), the
combination of b, w and g determines decision boundary, i.e., the hyperplane
that separates the samples of class y = 0 (or y = −1) if hθ (x) > 0.5 from those
labeled as y = 1, if hθ (x) ≤ 0.5. In a regression context, the combination of b,
w and g represents a non-linear ridge regression.

Example 1. Create a single neuron network in PyTorch

1 import␣torch
2 import␣torch.nn␣as␣nn␣#␣library␣for␣predefined␣NN␣classes
3 #␣assure␣reproductibility
4 torch.manual_seed(0)
5 class␣neuron(nn.Module):
6 ␣␣def␣__init__(self,␣x_size=28*28,␣h_channels=10):
7 ␣␣␣␣␣␣super(neuron,self).__init__()
8 ␣␣␣␣␣␣#␣hidden␣nodes␣in␣each␣layer
9 ␣␣␣␣␣␣self.x_size␣=␣x_size

10 ␣␣␣␣␣␣self.h_channels␣=␣h_channels
11 ␣␣␣␣␣␣#␣This␣is␣the␣1st␣hidden␣layer␣(784␣->␣hidden_1)
12 ␣␣␣␣␣␣self.a␣=␣nn.Linear(self.x_size,␣self.h_channels)
13 ␣␣␣␣␣␣self.g␣=␣nn.ReLU(inplace=False)
14 ␣␣␣␣␣␣#␣Inplace␣in␣the␣code␣explains␣how␣the␣function
15 ␣␣␣␣␣␣#␣should␣treat␣the␣input.␣Inplace␣as␣true␣replaces
16 ␣␣␣␣␣␣#␣the␣input␣to␣output␣in␣the␣memory.␣Though␣this␣helps
17 ␣␣␣␣␣␣#␣␣in␣memory␣usage,␣this␣creates␣problems␣for␣the␣code
18 ␣␣␣␣␣␣#␣being␣used␣as␣the␣input␣is␣always␣getting␣replaced␣as
19 ␣␣␣␣␣␣#␣output.␣It␣is␣better␣to␣set␣in␣place␣to␣false␣as␣this
20 ␣␣␣␣␣␣#␣helps␣to␣store␣input␣and␣output␣as␣separate␣storage
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21 ␣␣␣␣␣␣#␣spaces␣␣in␣␣the␣␣memory.
22 ␣␣␣␣␣␣#␣The␣␣dropout␣␣layer␣␣(p=0.2)
23 ␣␣␣␣␣␣self.droput␣␣=␣␣nn.Dropout(0.2)
24 ␣␣def␣␣forward(self,x):
25 ␣␣␣␣␣␣␣␣#␣␣flattening␣␣the␣␣input␣␣image
26 ␣␣␣␣␣␣␣␣x␣␣=␣␣x.view(-1,self.x_size)
27 ␣␣␣␣␣␣␣␣#␣␣adding␣␣the␣␣hidden␣␣layer,␣␣for␣␣activation␣␣we␣␣are␣␣using␣␣relu␣␣activation
28 ␣␣␣␣␣␣␣␣ho␣␣=␣␣self.droput(self.g1(self.a1(x)))
29 ␣␣␣␣␣␣␣␣return␣␣ho
30 x_size␣␣=␣␣28*28
31 y_size␣␣=␣␣10
32 h_theta␣␣=␣␣neuron(x_size,␣y_size)

2.2 The Multi-Layer Perceptron
A single neuron is not sufficient when the decision boundary is not linear.
For instance, in a classification problem with input x = (x1, x2) ∈ {0, 1}2

and associated true label y = f(x) a neuron such as the one described in
Figure 8 can successfully draw a linear decision boundary and separate the
dataset into two clusters if f = fOR(x) = {x1} ∪ {x2}, f = fAND1(x) =
{x1}∩{{0, 1} / {x2}} and f = fAND2(x) = {{0, 1} / (x1)}∩{x2} (see Figures 9b
to 9d). However, one neuron cannot linearly separate the data labeled with the
function f = fXOR(x) = {{x1} ∪ {x2}} / {{x1} ∩ {x2}} as shown in Figure 9d.

Instead of one single neuron, the classifier hθ (x) can be improved by stacking
two layers of neurons one upon each other: a hidden layer made of two neurons
and an output layer, made of one neuron only (the architecture is depicted in
Figure 10a). As shown in Figure 10b, hθ (x) can now successfully separate the
boundary induced by fXOR.

But how is that possible? Adding hidden layers reveals to be crucial to raise
the complexity of the predictor, thanks to intermediate transformations ϕ :
x 7→ Rdϕ that map the input x into the space of hidden features of size dϕ:

hθ (x) = g(a(ϕ(x))) = g(⟨w,ϕ(x)⟩+b) = g




dϕ∑

c=1
wc · ϕc(x) + b


 ; θ := {w; b}

(12)
In the case of XOR classification, the architecture in Figure 10a is conceived in
order to map x into the intermediate hidden representations, one per hidden
neuron, h1 (x) = fAND1(x) and h2 (x) = fAND2(x). Figure 10b show that the
XOR decision boundary is linear in the (h1, h2) plane.
It is clear that the choice of ϕ adds flexibility to the predictor. The size and
properties of this intermediate representations can be chosen via regression
kernels k : X × X 7→ X such that

∫
RdX

k(x1,x2)ϕ(x2)dx2 = λM−1ϕ (x1)
with a metric M such that

∫
RdX

〈
ϕ (x) ,M−1ϕ (x)

〉
dx = 1 (see Chapter 2 -

Introduction to regression methods).
Alternatively, one can stack several layers of neurons one upon each other, so
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b

x1

x2

0 1

1

0

AND(x1, x̄2)
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1

0

XOR(x1,x2)

??
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Figure 9: Solved and unsolved decision boundaries for different binary operations. (a)
fOR(x) = {x1} ∪ {x2}, (b) fAND1(x) = {x1} ∩ {{0, 1} / {x2}}, (c) fAND2(x) =
{{0, 1} / (x1)} ∩ {x2}, (d) fXOR(x) = {{x1} ∪ {x2}} / {{x1} ∩ {x2}} (unsolved).
Reprinted from the video-lecture notes by Hugo Larochelle (https://www.youtube.com/
watch?v=iT5P4z6Fzj8&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH&index=3).

x1

x1

AND1

AND2

XOR1

input
layer hidden layers

output
layer

a

AND(x̄1,x2)

AND(x1, x̄2)

0 1

1

0

XOR(x1,x2)

b

Figure 10: Simple example of Multi-Layer Perceptron (1 hidden layers h(1) and 1 output
y ∈ R). layer. The figure was drawn with tikz.net.

that the final predictor results in a composition of hidden layers h(ℓ) and one
output function h(o). For instance, in case of one hidden neuron, the NN
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output reads:

hθ (x) = h(o) ◦ h(1)(x) = g(o)(a(o)(h(1)(x))) = g
(〈
w(o),h(1)(x)

〉
+ b(o)

)
=

= g(o)




dh1∑

c=1
w(o)

c · h(1)
c (x) + b(o)


 ; θ :=

{
w(1),w(o); b(1), b(o)

}

(13)

with

h(1)
c = g(1)(a(1)

c (x)) = g(1)
(〈
w(1),x

〉
+ b(1)

)

= g(1)

(
dX∑

c=1
w(1)

c · xc + b(1)

) (14)

More in general,MLP gathers several layers of neurons, with each neuron c in
a layer ℓ being fully-connected (a connection means a composition) with all the
neurons in the layer ℓ−1 - as its input - and with all the neurons in layer ℓ+1,
as its output. Figure 11 shows an example of fully-connected MLP , focusing
on the connections between a hidden layer ℓ and the successive one layer ℓ+ 1.
For each connection c, a weight vector wc and a bias bc are adopted. The
weight vectors, stacked column-wise, constitute the weight matrix W , with
W c,: = wc.

Some crucial aspects of a fully-connected (or dense) feed-forward NN such as
the standard MLP must be noted:

• the activation function g(ℓ) is the same for all neurons belonging to the
same layer ℓ;

• all neurons (or units) belonging to the ℓth layer receive the same input,
i.e., a the vector h(ℓ−1) of size u(ℓ)1, representing the input units to the
ℓth layer of the graph;

• the output of each of the u(ℓ+1) neurons the ℓth layer neuron (or unit)
belonging to the ℓth layer h(k)

i of size 2, representing the input units of
the graph.

Example 2. Create a single neuron network in PyTorch

1 #␣Chapter␣7␣-␣Example␣2
2 import␣torch
3 import␣torch.nn␣as␣nn␣#␣library␣for␣predefined␣NN␣classes

1u(ℓ) is commonly indicated in the literature as fanin
2u(k) is commonly indicated in the literature as fanin
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Figure 11: Scheme of the last output layer of a fully-connected Multi Layer Perceptron.
The figure was drawn with tikz.net.

4 #␣assure␣reproductibility
5 torch.manual_seed(0)
6 class␣MLP(nn.Module):
7 ␣␣␣␣def␣__init__(self,␣x_size=28*28,␣y_size=10):
8 ␣␣␣␣␣␣␣␣super(MLP,self).__init__()
9 ␣␣␣␣␣␣␣␣#␣hidden␣nodes␣in␣each␣layer

10 ␣␣␣␣␣␣␣␣self.x_size␣=␣x_size
11 ␣␣␣␣␣␣␣␣self.y_size␣=␣y_size
12 ␣␣␣␣␣␣␣␣self.hn_1␣=␣512
13 ␣␣␣␣␣␣␣␣self.hn_2␣=␣512
14
15 ␣␣␣␣␣␣␣␣#␣This␣is␣the␣1st␣hidden␣layer␣(784␣->␣hidden_1)
16 ␣␣␣␣␣␣␣␣self.a1␣=␣nn.Linear(self.x_size,␣self.hn_1)
17 ␣␣␣␣␣␣␣␣self.g1␣=␣nn.ReLU(inplace=False)
18 ␣␣␣␣␣␣␣␣#␣Inplace␣in␣the␣code␣explains␣how␣the␣function
19 ␣␣␣␣␣␣␣␣#␣should␣treat␣the␣input.␣Inplace␣as␣true␣replaces
20 ␣␣␣␣␣␣␣␣#␣the␣input␣to␣output␣in␣the␣memory.␣Though␣this␣helps
21 ␣␣␣␣␣␣␣␣#␣␣in␣memory␣usage,␣this␣creates␣problems␣for␣the␣code
22 ␣␣␣␣␣␣␣␣#␣being␣used␣as␣the␣input␣is␣always␣getting␣replaced␣as
23 ␣␣␣␣␣␣␣␣#␣output.␣It␣is␣better␣to␣set␣in␣place␣to␣false␣as␣this
24 ␣␣␣␣␣␣␣␣#␣helps␣to␣store␣input␣and␣output␣as␣separate␣storage
25 ␣␣␣␣␣␣␣␣#␣spaces␣in␣the␣memory.
26
27 ␣␣␣␣␣␣␣␣##␣This␣is␣also␣linear␣layer␣but␣(n_hidden␣->␣hidden_2)
28 ␣␣␣␣␣␣␣␣self.a2␣=␣nn.Linear(self.hn_1,␣self.hn_2)
29 ␣␣␣␣␣␣␣␣self.g2␣=␣nn.ReLU(inplace=False)
30
31 ␣␣␣␣␣␣␣␣#␣This␣is␣the␣linear␣output␣layer␣with␣(n_hidden␣->␣10)
32 ␣␣␣␣␣␣␣␣self.ao␣=␣nn.Linear(self.hn_2,␣self.y_size)
33
34 ␣␣␣␣␣␣␣␣#␣The␣dropout␣layer␣(p=0.2)
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35 ␣␣␣␣␣␣␣␣self.droput␣=␣nn.Dropout(0.2)
36
37 ␣␣␣␣def␣forward(self,x):
38 ␣␣␣␣␣␣#␣flattening␣the␣input␣image
39 ␣␣␣␣␣␣x␣=␣x.view(-1,self.x_size)
40
41 ␣␣␣␣␣␣#␣adding␣the␣hidden␣layer,␣for␣activation␣we␣are␣using␣relu␣activation
42 ␣␣␣␣␣␣h1␣=␣self.droput(self.g1(self.a1(x)))
43
44 ␣␣␣␣␣␣#␣adding␣the␣hidden␣layer,␣for␣activation␣we␣are␣using␣relu␣activation
45 ␣␣␣␣␣␣h2␣=␣self.droput(self.g1(self.a1(h1)))
46
47 ␣␣␣␣␣␣#␣adding␣the␣output␣layer
48 ␣␣␣␣␣␣ho␣=␣self.a3(h2)
49
50 ␣␣␣␣␣␣return␣ho
51
52 x_size␣=␣28*28
53 y_size␣=␣10
54 h_theta␣=␣MLP(x_size,␣y_size)

2.3 Possible solutions to the curse of dimensionality
According to [Mai99] (see Theorem 27), the number of hidden neurons NK

demanded to assure that a MLP with a sole hidden layer approximates a
function f : x 7→ y, provided that at least f ∈ W k,23 and with an accuracy ε
is of the order of:

NK ≈ ε
1−dX

k (15)

with dX =dim(X ), and k being the highest order of weak derivative of f . The
curse of dimensionality of the Universal Approximation Theorem (expressed
in Theorem 24) resides in the fact that the larger is the dimension of the data
space X and the poorer is the regularity of the function (i.e., the lower is the
highest order of weak derivative k), the larger would be the number of hidden
neurons of a 1-hidden-layer MLP demanded to approximate the labeling or
regression function f . [Bac17] proposed an interesting strategy to break the
curse of dimensionality presented in Section 2.1. The strategy consists in several
countermeasures that are detailed in the following paragraphs

Reduce the dimensionality In other words, one should select a subset
S ⊂ X with dimension dS < dX . In this sense, one possible strategy is
the Principal Component Analysis (PCA) or other Reduced Order Methods
(ROM). PCA and other linear methods for dimensionality reduction are adopt
an linear transform of the type a (x) = Wx, with W ∈ M(dS ,dX ) (R), with
rank(W ) = dS < dX (see related chapters for further detail).

Separate the interactions (disentanglement) The separation of interac-
tion is a widely adopted assumption in physics. It postulates that the function

3W k,2 is the Sobolev space defined in Equation (234)
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f : X → R is a the sum of functions fi acting on local subdomains. For in-
stance, the Markov processes assume the separability of the interaction, since
they postulate that the transition probability from a state to another strictly
depend on those two states only. Future and long-time past interactions are
neglected. The separability of interaction can be formulated as follows:

∃ {fn}n∈I , fn : Xn → R,Xn ⊂ X f (x) =
∑

n∈I

fn (x) |x∈Xn
,∀x ∈ X (16)

The separability of interactions is also called disentanglement. Disentangling
the data representations consists into mapping the data set into a latent rep-
resentation (see Section 1.6) spanned by a basis that depends on the so called
factor of variation of the data set at stake [KM18]. For instance, a dataset
composed of force-displacements values issued from a traction test on a steel
sample of Young modulus E, under different temperature values T (within the
limits of thermoelasticity), could ideally be represented by a latent representa-
tion z = zEeE + zTeT , where zE only varies whenever the Young’s modulus of
the sample changes, at fix temperature, whereas zT changes whenever the same
sample undergoes the traction test at different temperature. More in general,
assuming that the database can be generated by a set of semantic meaningful
features, like Young’s modulus and temperature in the previous examples, the
disentanglement process aims at separating the effect of each factor - in the
latent representation - in order to structure the latent space in an interpretable
way [Fra+22]. In machine learning, datasets consist of multiple i.i.d. samples,
assumption that allows to assume a factorized parametric probability distribu-
tion pθ (x1, . . . , xN ) =

∏N
i=1 and therefore to maximize the log-likelihood of

the observations (see Section 1.3). The idea of disentanglement is to achieve
a latent representation of the dataset (to “encode” the data), associated to a
parametric probability distribution qϕ (z |x), that extract the common features
of the dataset and represents them into a disentangled way, e.g., by forcing a
factorized probability distribution on z ∼∏N

i=1 qϕ (zi|x). However, this strat-
egy is not sufficient to achieve the disentanglement of the latent representation,
since all zi could vary when changing one single factor of variation in the data
set [Fra+22].

Adopting the reduction of dimensionality, one can intuitively look for subdo-
mains Xn of dimension dS < dX . In this case, the approximation can be
done by subdomains, employing the same 1-hidden-layer MLP with a total
amount of neurons NK ≈ ε

1−dS
k

n (see Equation (15)). The total error would be
estimated as

ε =
∑

n∈I

εn ≈ card(I) ·N
k

1−dS

K NK ≈
(

ε

card(I)

) 1−dS
k

(17)

The most intuitive way of separate the interaction is to decompose the function
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along each component of the data space, i.e.:

∃ {fn}dX

n=1 , fn : R→ R f (x) =
dX∑

n=1
fn (wn · xn) ,∀x ∈ X

With this strategy, dS =rank(wn) = 1.

Promote sparsity

[...] pour ranger les êtres sous des dénominations communes, et
générique, il en falloit connôıtre les proprietés et les différences; il
falloit des observations, et des définitions [...]
J.J. Rousseau, 1772 [Rou72]

Rousseau, in his “Discours sur l’origine et les fondemens de l’inégalité parmi
les hommes”, published in 1772, suggested the need of a dictionary to describe
the reality. The hidden features that describe the function regularity can be
effectively embedded into a dictionary D = {(k, v (x))n}n≤ND

(k is the key and
v the corresponding value), with:

hθ (x) =
∑

n∈I

θn [kn] vn (x) , card (I) ≤ ND (18)

Rousseau intuited that, the size of the dictionary ND decreases with the knowl-
edge of the phenomenon:

[...] plus les connaissances étoient bornées, et plus le Dictionnaire
devint étendu.
J.J. Rousseau, 1772 [Rou72]

As a matter of fact, the dictionary embedding requires the error to decay rapidly
with the cardinality of I ⊆ D, keeping this cardinality small. In other words, we
seek for an error decaying as and ε = card (I)−β . This approach is not related
to the notion of regularity of the function as intedend in the Fourier approach,
i.e., as the largest order of derivation with continuous derivative. Moreover, the
fact that the coefficients θ [kn] depend on the key value kn, the approximation
in Equation (18) is non-linear and adaptive: non-linear since the dictionary
depends on f , adaptive because the choice of I is abitrary [Cam19]. Moreover,
compared to the infinite number of weightswn ∈ ZdX necessary to approximate
f with its Fourier series, with the dictionary embedding approach we hope to
promote parsimony by considering card(I) low. In particular, [Bar93] proposes
to focus on functions with L1 first order derivative (see Theorem 28). Penaliz-
ing the learning algorithm with a ℓ1 norm on the weights θ allows to promote
sparsity and achieve parsimony. In other words, the 1-hidden-layer MLP will
learn how to approximate the labeling function with the least amount of hid-
den features and with an approximation error that is not dependent on the
dimension of the input space (or alternatively, for a fixed accuracy) the design
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of the NN will require an amount of hidden neurons that is independent of
the dimension of the data space.
Among the other advantages of sparsity, it must be mentioned the fact that the
data variation is better disentangled and therefore it helps separate the interac-
tions (as outlined in Section 2.3) and to adopt the strictly necessary number of
keywords for the dictionary in Equation (18). Nevertheless, forcing too much
sparsity may limit the predictive performance of the NN for an equal number
of neurons, because it reduces the effective capacity of the model [GBB11].

2.4 How to improve the MLP accuracy?
Despite the fact that Theorem 24 proves the universal approximation capability
of a 1-hidden-layer MLP , provided that enough neurons are considered, this
result is quite hard to exploit in real applications, since the number of neurons
can easily become too large to handle fro a computational standpoint. The
natural question that arises is: what kind of functions cannot be approximated
with an arbitrary accuracy by a MLP of Nℓ layers? Moreover, how many
neurons should be considered for each layer? What is the effect of having a
number of layers that is higher than the number of neurons per layer? The
answers to these questions were provided by Eldan and Shamir [ES16] showed
that it exists an approximately radial function φ (∥x∥) : RdX → R that can
be approximated by a “small” (bounded number of neurons) 2-hidden-layers
MLP with arbitrary accuracy, but that cannot be approximated by a 1-hidden-
layerMLP below a certain accuracy, unless the number of neurons NK grows
exponentially with dX . In particular, this results is valid for any activation
function g and with no further constraint on the weights and biases adopted
in theMLP (on the contrary, the Universal Approximation Theorem requires
that the high-frequency components ∥wn∥ are smaller than a constant). This
results proves that increasing the depth of theMLP widens the approximation
capability of the MLP and that the depth of the MLP should be privileged
with the respect to its layer dimension (but being careful to avoid vanishing
gradient problems, as discussed in Section 4.2. The approximately radial func-
tion is the inverse Fourier transform of the indicator function on a unit volume
euclidean ball BdX

(w), of radius RdX
such that RdX

· BdX
has unit volume

and it reads:

φ (x) =
(
RdX

∥x∥

) dX
2

J dX
2

(2πRdX
∥x∥) =

∫

w :∥w∥≤Rd

e−2πi⟨x,w⟩dw (19)

with J dX
2

(2πRdX
∥x∥) the Bessel function of first kind of order dX

2 . φ (x) has
a high-frequency symmetry by revolution, as depicted in Figure 12. Since the
function peaks in x = 0, the choice of training samples (xi, φ (xi)) must be
done carefully. In Figure 13, 4000 samples uniformly distributed in [−10, 10]2
were chosen, 70% of which used for training and 30% for testing purposes.
According to [ES16], the number of high-frequency components wn necessary
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Figure 12: Function φ (x) =
(

RdX
∥x∥

) dX
2

J dX
2

(2πRdX ∥x∥), defined in [ES16], with
dX = 2 and Rd = 0.2.

Figure 13: 4000 train and test samples (xi, φ (xi)) to train a MLP that approximates
the function φ (xi) defined in Equation (19). Each instance was uniformly sampled over
[−10, 10]2.

to approximate such a function with a one-hidden-layer MLP (referred as to
h1
θ ) is very large, which prevents the choice of a parsimonious representations

by thresholding the Fourier coefficients such that ∥wn∥ > C. On the contrary,
the revolution symmetry is captured by adding a second hidden layer to the
standard 1-hidden-layer MLP , obtaining a 2-hidden-layers MLP referred as
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to h2
θ . In order to numerically prove this statement, Figure 14 shows the L2

error ∥φ (x)−hθ (x) ∥2 evolution, along training epochs (for first order gradient
descent algorithm with AdamW optimizer, see Section 3.4.5) for both h1

θ (featured
by 10000 neurons in its single hidden layer, with ReLU activation functions)
and h2

θ (featured by 100 neurons for each of the 2-hidden layers, with ReLU

activation functions).

Figure 14: Learning curves for h1
θ (1-hidden-layer MLP ) and h2

θ (2-hidden-layers
MLP ), representing the evolution of ∥φ (x)−hθ (x) ∥2 with training epoch. Blue and red
curves represent the error evolution ∥φ (x)−h1

θ (x) ∥2, for train and test datasets respec-
tively. Light blue and orange thick curves represent the error evolution ∥φ (x)−h2

θ (x) ∥2

instead, for train and test datasets respectively.

Figure 14 shows the net improvement (one two orders of magnitude) obtained
by adding one extra hidden layer to the standard 1-hidden-layer MLP : not
only the error decreases for both train and test dataset, but the number of
neuron required per layer is 100 times lower for h2

θ . Despite the large number
of neurons, the h1

θ MLP cannot efficiently minimize the mean-square error,
proving the theoretical findings by Eldan and Shamir [ES16].

178 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



2.5 From neurons to filters
Given its universal approximation capability (see Theorem 24), the use ofMLP
is rather attractive. However, in order to pursue a general criterion of parsi-
mony, some specific symmetries can be exploited. For instance: classifying the
image should not depend on any affine transformation (i.e., roto-translation).
Exploiting symmetries (or more in general group invariance) is a valid strategy
to face the curse of dimensionality. The statistical model must avoid over-
parametrization (that leads to overfitting) due to non invariant representations
of the dataset with the respect to those symmetries [Cam20].
To better understand this aspect, let us consider a collection of labeled images
DXY = {Xk, yk}N

k=1 of W × H pixels each. Any image Xk of the database is
composed by a set of pixel and each pixel is associated to a color, expressed
by a 3-dimensional vector on the Red Green Blue (RGB) scale. Therefore,
Xk ∈ RW ×H×3. For the sake of simplicity, the image is spanned over a [0, 1]2
domain, by a regular grid of W × H pixels with a 2D index x = x1e1 +
x2e2, (x1, x2) ∈ [0, 1]2 and with the color being represented by X (x1, x2, :) =
ψ (x1, x2) = ψR (x1, x2) e1 + ψG (x1, x2) e2 + ψB (x1, x2) e3 (see the code snip-
pet below and Figure 15).

Example 3. Convert an image to PyTorch tensor
The example that follows parses and converts a digital image X of the ge-
ological cross-cut underneath the Kashiwazaki-Kariwa nuclear power plant
(see [CGL21]).

1 import␣torch
2 import␣torchvision
3 from␣torchvision.transforms␣import␣ToTensor
4 from␣PIL␣import␣Image
5
6 #␣parse␣image
7 with␣Image.open('./geology.tiff')␣as␣image:
8 ␣␣␣␣#␣convert␣image␣to␣RGB
9 ␣␣␣␣image=image.convert("RGB")

10
11 #␣convert␣image␣to␣tensor
12 X␣=␣ToTensor()(image).unsqueeze(0)
13 print(X.size)
14 #␣>>>␣torch.Size([1,␣3,␣188,␣257])

yk belongs to an alphabet A for a classification purpose and it is usually coded
as a one-hot vector, i.e. a binary vector of the size of the alphabet. The frame-
work can be extended to regression problems to (yk ∈ R for instance).
The most-intuitive way of classifying an image is to apply a MLP featured
by a neuron per pixel in the input layer. The number of neurons could easily
become very large: this choice is not parsimonious. Moreover, in real appli-
cations, image features extend over patches that can span several pixels and
those patch-wise features do not depend on their position in the image (transla-
tional invariance). MLP do not help neither separating scales (characteristics
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Figure 15: On the left, the tiff image ψ (x) in RGB scale of geological cross-cut
underneath the Kashiwazaki-Kariwa nuclear power plant (see [CGL21]). On the right the
digitized discrete image with size 1 × 3 × W × H pixels, where the first shape represents
number of images (1), the second one the RGB code (3) and the last two the width and
height of the image respectively.

features extending over patches of different sizes) nor exploiting possible sym-
metries and invariant features [Cam20].
A significant advance in this sense was made in 1998 by Y. LeCun and Bengio,
whose seminal paper [CBB97] paved the way of designing Convolution Neural
Networks CNN , whose widespread usage in real applications kick-started in
2012, due to the work of Krizhevsky et al. [KSH17] that conceived a deep CNN
for the ImageNet LSVRC-2010 classification contest. The latter consisted in
developing a 1000-class classifier (see Section 4.1 for further details) based on a
database of 1.2 million high-resolution images. Their AlexNet achieved top-1
and top-5 error rates of 37.5% and 17.0%, respectively, which at that time was
considerably better than the previous state-of-the-art. AlexNet is featured by
60 million parameters, arranged in five convolutional layers, some of which are
followed by max-pooling layers, and three fully connected layers with a final
1000-way softmax. This inspired the switch of paradigm: the concept of neu-
rons is replaced by the concept of convolutional filters, as sketched in Figure 16,
which capture the a priori knowledge of the problem and that considerably re-
duce the connections of the first layer, thereby facilitating the optimization of
the weights by learning.

As shown in Figure 16, each neuron in the first layer (the green spheres in
Figure 16) is only connected to (or responsible for) a kW × kH patch of the
initial image typically. Each neuron perform a local linear combination of the
pixel values which it is connected to and a non-linear activation is applied. In
CNN , the weights of each neurons are the same, as if the image was chopped
into patches, consecutively fed to the same neuron with kW ×kH ×Nc weights.
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Figure 16: Sketch of convolution layer applied on a the digitized image X of the geological
cross-cut underneath the Kashiwazaki-Kariwa nuclear power plant (see [CGL21]). Four
feature maps are shown.

This architecture represents a significant reduction in complexity. Nc represents
the number of filters outputted by the neuron while the visual patch slides along
the image. The neuron weight and bias are independent on the position of the
patch, providing a translation-equivariant output.
This invariance by translation is obtained by applying a Linear Translation
Invariant (LTI) filter to the image, i.e. a convolution, which CNN are named
from:

z (ψ (x)) =
∫

R2
H (u) .ψ (x − u) du + b = H ⋆ψ (x) + b (20)

with z (X) =
∑Nc

c=1 zc (X) ec being called feature maps and b the filter bias.
Each feature map zc (X) = ⟨H ⋆ψ , ec⟩+ bc corresponds to a LTI filter on the
image, for a total of Nc filters. The LTI filter in Equation (20) is generically
performed over R2 though the image is defined over the compact support [0, 1]2,
discretized on the W ×H finite grid. Feature maps are therefore the result of
a discrete convolution:

z [j, i] =
kW −1∑

u=0

kH −1∑

v=0
H [u, v] .ψ [i− u, j − v]+b, (i, j) ∈ J0,W K×J0, HK (21)

with f [u, v] = f
(

u
W , v

H

)
and z being stored in C order, contiguous along the

rows. In practice, the discrete convolution requires the use of (pW , pH) zero-
padding in order to make the filter slide along the whole image, as shown in
Figure 17.

The filter impulse response H is causal and its discrete counterpart H [u, v]
is defined over the support J0, kW − 1K × J0, kH − 1K, with 0 < kW ≤ W and
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Figure 17: Sketch of the discrete convolution over an image. Reprinted from [DV18] (see
https://github.com/vdumoulin/conv_arithmetic). Zero-padding pW = pH = 1 is
added around the image, in order to make the 3 × 3 kernel slide along the whole image,
defined over the W × H grid.

0 < kH ≤ H (see Equation (203)). If present, the non-linear activation function
acts channel-wise, producing feature maps as z (X) =

∑Nc

c=1 g(zc (X))ec.

The convolution can be strided and/or dilated. In its continuous form, the
strided convolution reads:

z (ψ (x)) =
∫

R2
H (u) .ψ (diag (sW , sH)x − u) du + b (22)

with strides sW ≥ 1 and sH ≥ 1. In its discrete counterpart, each strided
convolutional filter skips sW and sH pixels respectively while sliding along the
two directions and it can be written as:

z [j, i] =
kW −1∑

u=0

kH −1∑

v=0
H [u, v] .ψ [sW · i− u, sH · j − v]+b, (i, j) ∈ J0,W K×J0, HK

(23)
The use of stride allows to reduce the spatial dimension of the feature maps by
a factor 1

sW
and 1

sH
respectively, as shown in Figure 18.

Dilating the convolutional filters corresponds to perform an atrous convolution,
the French “convolution à trous”, and it was implemented in CNN for the
first time in [Che+14; YK15]. In other words, dilated convolutions expands
the receptive field at a fixed kernel size, by skipping dW ≥ 1 and dH ≥ 1
pixels between the kernel elements, corresponding to holes in the kernel (see
Figure 19).

In its continuous form, dilated convolution is defined by the following expres-
sion:

z (ψ (x)) =
∫

R2
H (diag (dW , dH)u) .ψ (x − diag (dW , dH)u) du + b (24)
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Figure 18: Sketch of the strided discrete convolution over an image. Reprinted
from [DV18] (see https://github.com/vdumoulin/conv_arithmetic). Zero-padding
pW = pH = 1 is added around the image, in order to make the 3 × 3 kernel slide along
the whole image, defined over the W ×H grid. The strides sW = sH = 2 reduce the size
of the feature maps by approximately 1

sW
and 1

sH
respectively (depending on the values

of pW and pH).

Figure 19: Sketch of the strided discrete convolution over an image. Reprinted
from [DV18] (see https://github.com/vdumoulin/conv_arithmetic). The dilation
rate dW = dH = 2 fictitiously widen the kernel size, adding holes in the middle and
keeping the same kernel size kW = kH = 3.

In its discrete form, dilated convolutional filter reads instead:

z [j, i] =
kW −1∑

u=0

kH −1∑

v=0
H [dW · u, dH · v] .ψ [i− dW · u, j − dH · v] ,

(i, j) ∈ J0,W K× J0, HK
(25)

Equation (25) shows that the dilated convolutions are nothing more than stan-
dard convolutions with effective kernel sizes k̂W = kW + (kW − 1) · (dW − 1)
and k̂H = kH + (kH − 1) · (dH − 1).

Example 4. Convolutional filters in PyTorch
In PyTorch, a convolutional layer is defined by the class Conv2D as in the
following code snippet. Different kernel, stride, padding and dilation rates are
adopted, to assess their effect on the image in Figure 15. A hyperbolic tangent
activation function is applied to each feature map, in order to compare feature
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maps with different kernels, stride, dilation on the same color scale [−1, 1].
However, in deep CNN architectures (see Section 2.6), convolutional filters
are first followed by a pixel-wise non-linear activation function and then by a
pooling operation.

1 import␣torch
2 #␣assure␣reproductibility
3 torch.manual_seed(0)
4
5 #␣Create␣convolutional␣feature␣maps
6 Nc␣=␣4␣#␣number␣of␣output␣channels
7 pW␣=␣1␣#␣zero-pad␣along␣W
8 pH␣=␣1␣#␣zero-pad␣along␣H
9 kW␣=␣3␣#␣kernel-size␣along␣W

10 kH␣=␣3␣#␣kernel-size␣along␣H
11 sW␣=␣1␣#␣stride␣along␣W
12 sH␣=␣1␣#␣stride␣along␣H
13 dW␣=␣1␣#␣dilation␣along␣W
14 dH␣=␣1␣#␣dilation␣along␣W
15 p␣=␣(pW,␣pH)
16 k␣=␣(kW,␣kH)
17 s␣=␣(sW,␣sH)
18 d␣=␣(dW,␣dH)
19 cnn␣=␣torch.nn.Sequential(
20 ␣␣␣␣␣␣torch.nn.Conv2d(in_channels=3,␣out_channels=Nc,
21 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kernel_size=k,
22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride=s,
23 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣padding=p),
24 ␣␣␣␣␣␣torch.nn.Tanh()
25 ␣␣␣␣␣␣)
26 #␣compute␣feature␣maps
27 z␣=␣cnn(X).detach().cpu().numpy()␣#␣feature␣maps␣in␣numpy␣format

Discrete convolutions are performed on images defined on a grid of W × H
pixels indexed by (i, j). The following algebraic relationship between kernel
size, stride, padding, dilation rates (along each dimension) holds [DV18]:





oi = ⌊ i+ 2pW − kW − (kW − 1) · (dW − 1)
sW

⌋+ 1

oj = ⌊j + 2pH − kW − (kH − 1) · (dH − 1)
sH

⌋+ 1

(26)

(27)

Equation (27) is quite useful to design a convolutional layer: oi (oj respectively)
represents the output index corresponding to the input index i (j respectively).
The following code snippets show how to plot the feature maps:

1 import␣matplotlib
2 import␣matplotlib.pyplot␣as␣plt
3 from␣matplotlib.pyplot␣import␣cm
4 #␣Define␣color␣map
5 rainbow_cmap␣=␣matplotlib.colormaps['viridis'].resampled(1000)
6
7 #␣loop␣over␣the␣output␣channels␣(feature␣maps)
8 for␣c␣in␣range(Nc):
9 ␣␣zc␣=␣z[0,c,:,:]␣#␣c-th␣feature␣map

10
11 ␣␣fig,␣ax␣=␣plt.subplots(nrows=1,␣ncols=1,␣figsize=(9,4))
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12
13 ␣␣#␣plot␣image
14 ␣␣ax.imshow(zc,␣vmin=-1.0,␣vmax=1.0,␣cmap=␣rainbow_cmap)
15
16 ␣␣#␣set␣axes
17 ␣␣ax.set_xticks(range(0,image.size[0]),
18 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣minor=False)
19 ␣␣ax.set_yticks(range(0,image.size[1]),
20 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣minor=False)
21 ␣␣ax.set_xticklabels([r"0"]+
22 ␣␣␣␣␣␣[''␣for␣_␣in␣range(1,image.size[0]-1)]+
23 ␣␣␣␣␣␣[r"W"],␣fontsize=18)
24 ␣␣ax.set_yticklabels([r"0"]+
25 ␣␣␣␣␣␣[''␣for␣_␣in␣range(1,image.size[1]-1)]+
26 ␣␣␣␣␣␣[r"H"],␣fontsize=18)
27 ␣␣ax.set_xlabel(r"$j$",␣fontsize=18)
28 ␣␣ax.set_ylabel(r"$i$",␣fontsize=18)
29 ␣␣ax.set_xlim(0,image.size[0])
30 ␣␣ax.set_ylim(image.size[1],0)
31 ␣␣ax.set_title(r"$z_{{{:>d}}}$".format(c),␣fontsize=18)
32
33 ␣␣#␣save␣figure
34 ␣␣fig.savefig("tsuda_geology_z{}_k{}{}_s{}{}.png".format(c,
35 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kW,
36 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kH,
37 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sW,
38 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sH),
39 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣dpi=300,
40 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣bbox_inches="tight")

In Figure 20, the effect of two different zero-padding is shown: for pW = pW = 0
(Figure 20a-Figure 20d) the finite size kernel cannot slide until the end of
the image, leaving a narrow blank band at the two bottom-right edges of the
images, that consists in an effective downsampling of the image, since the
edges are disregarded [MMD20]. This downsampling vanishes by adopting a
zero-padding of size pW = pH = 2 (Figure 20e-Figure 20h). The effect of
different kernel sizes kW = kH = 3 (Figure 21a-Figure 21d) and kW = kH = 5
(Figure 21e-Figure 21h) is shown in Figure 21. A wider kernel adds extra
parameters to the CNN resulting in a larger receptive field.

Figure 22 shows the effect of changing the stride: sW = sH = 1 preserves
the image size (Figure 22a-Figure 22d), whereas when sW = sH = 2, the
feature maps have half the sizes in both directions (Figure 22e-Figure 22h).
Strided convolution reduce the complexity of the initial data, by subsampling
it. However, strided convolution do not entail translation-covariant feature
maps, with possible loss of the original information contained in the image
(see Remark 30). As strided convolutional filters disregard intermediary pixels,
translated versions will results in more equivalent outputs if neighbouring pixels
are similar to each other across a given patch of the image [MMD20].

Finally, the role of dilation is clear from Figure 23: dilating the convolutional
kernel by a rate d = 5 (Figure 23e-Figure 23h) widens the receptive field at
fixed kernel size, blurring the feature maps by skipping intermediate pixels and
adding the blank border if the padding is not changed accordingly. Moreover,
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a z0 with p = 0 b z1 with p = 0 c z2 with p = 0 d z3 with p = 0

e z0 with p = 2 f z1 with p = 2 g z2 with p = 2 h z3 with p = 2

Figure 20: Effect of the padding for kW = kH = k = 5, sW = sH = s = 1, dW = dH =
d = 1 and pW = pH = p = 0 (a,b,c,d) and pW = pH = p = 2 for (e,f,g,h).

a z0 with k = 3 b z1 with k = 3 c z2 with k = 3 d z3 with k = 3

e z0 with k = 5 f z1 with k = 5 g z2 with k = 5 h z3 with k = 5

Figure 21: Effect of the kernel size for sW = sH = s = 1, dW = dH = d = 1 and
kW = kH = k = 3 (a,b,c,d) and kW = kH = k = 5 for (e,f,g,h). In (a,b,c,d), the
padding pW = pH = p = 2, whereas in (e,f,g,h), pW = pH = p = 1: this difference in
padding does not affect the overall result, except the fact that in both cases the kernel
properly slides along the whole image, without leaving blank borders.
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a z0 with s = 1 b z1 with s = 1 c z2 with s = 1 d z3 with s = 1

e z0 with s = 2 f z1 with s = 2 g z2 with s = 2 h z3 with s = 2

Figure 22: Effect of the stride for kW = kH = k = 3, pW = pH = p = 1, dW = dH =
d = 1 and sW = sH = s = 1 (a,b,c,d) and sW = sH = s = 2 for (e,f,g,h).

the image is “shrunk” by the dilation, with partial information loss (the holes
in the fictitious kernel).

a z0 with d = 1 b z1 with d = 1 c z2 with d = 1 d z3 with d = 1

e z0 with d = 5 f z1 with d = 5 g z2 with d = 5 h z3 with d = 5

Figure 23: Effect of the dilation rate for kW = kH = k = 5, pW = pH = p = 1,
sW = sH = s = 1, dW = dH = d = 1 (a,b,c,d) and dW = dH = d = 5 for (e,f,g,h).
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In addition to discrete convolutions, pooling operations are often adopted on
images. The average- or max-pooling operations also reduce the size of feature
maps by outputting either the average or the maximum value of each patch in
the image (or in the feature map). Pooling operations are similar to standard
convolutional filters, except the fact that the kernel product is replaced by
either the average value of the patch or by its maximum value. In particular:

Average pooling (AvgPooling) reads (see Section 3.2 fur further insights):

z [j, i] = 1
kW · kH

kW −1∑

u=0

kH −1∑

v=0
ψ [sW · i+ dW · u, sH · j + dH · v] ,

(i, j) ∈ J0,W K× J0, HK
(28)

Max-pooling (MaxPooling) reads instead:

z [j, i] =
kW −1∑

u=0

kH −1∑

v=0
max

u∈J0,kW −1K
max

v∈J0,kH −1K
ψ [sW · i+ dW · u, sH · j + dH · v] ,

(i, j) ∈ J0,W K× J0, HK
(29)

Compared to convolution, pooling operations have no weights nor biases. More-
over, they are channel-wise operations: both Equation (28) and Equation (29)
perform average and max operation on each input channel (color of the im-
age or channel of the previous feature map). Therefore, the number of output
feature maps is limited to the number of channels fed to the pooling operation.

Example 5. Comparison between AvgPool2d, MaxPool2d and Conv2d in
PyTorch
In PyTorch, AvgPooling and MaxPooling on images are two layers defined by
the classes AvgPool2d and MaxPool2d. The code snippet below shows how to
set them up, with a hyperbolic tangent activation function.

1 import␣torch
2 #␣assure␣reproductibility
3 torch.manual_seed(0)
4
5 #␣Create␣convolutional␣feature␣maps
6 Nc␣=␣4␣#␣number␣of␣output␣channels
7 pW␣=␣1␣#␣zero-pad␣along␣W
8 pH␣=␣1␣#␣zero-pad␣along␣H
9 kW␣=␣3␣#␣kernel-size␣along␣W

10 kH␣=␣3␣#␣kernel-size␣along␣H
11 sW␣=␣1␣#␣stride␣along␣W
12 sH␣=␣1␣#␣stride␣along␣H
13 dW␣=␣1␣#␣dilation␣along␣W
14 dH␣=␣1␣#␣dilation␣along␣W
15 p␣=␣(pW,␣pH)
16 k␣=␣(kW,␣kH)
17 s␣=␣(sW,␣sH)
18 d␣=␣(dW,␣dH)
19 #␣average␣pooling
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20 avgpool␣=␣torch.nn.Sequential(
21 ␣␣␣␣␣␣torch.nn.AvgPool2d(kernel_size=k,
22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride=s,
23 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣padding=p),
24 ␣␣␣␣␣␣torch.nn.Tanh()
25 ␣␣␣␣␣␣)
26 #␣compute␣average-pooling␣feature␣maps
27 z_ap␣=␣avgpool(X).detach().cpu().numpy()␣#␣feature␣maps␣in␣numpy␣format
28
29 #␣max-pooling
30 avgpool␣=␣torch.nn.Sequential(
31 ␣␣␣␣␣␣torch.nn.MaxPool2d(in_channels=3,
32 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kernel_size=k,
33 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride=s,
34 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣padding=p),
35 ␣␣␣␣␣␣torch.nn.Tanh()
36 ␣␣␣␣␣␣)
37 #␣compute␣average-pooling␣feature␣maps
38 z_mp␣=␣avgpool(X).detach().cpu().numpy()␣#␣feature␣maps␣in␣numpy␣format

The visual effect of of AvgPooling and MaxPooling compared to the standard
convolution is depicted in Figure 24. The use of hyperbolic tangent as non-
linear activation function allows to compare the output of each layer on the
same color scale [−1, 1]

2.6 Deep convolutional architectures
Convolutional layers described in Section 2.5 are generally stacked upon each
other, in order to construct deep CNN such as the one depicted in Figure 25.

Deeper layers act on previous feature maps and the spatial localization in the
original image is progressively lost. At the end of a stack of convolution/pooling
layers, deep CNN are featured by someMLP as output layers, to estimate y.
[HS15] estimated that the complexity of a CNN with Nℓ convolutional layer,
each one with kernel k(ℓ)

W = k
(ℓ)
H = k(ℓ) and with no MLP at the end, is of the

order of:

O
(

Nℓ∑

ℓ

N (ℓ−1)
c ·N (ℓ)

c · k(ℓ)2 ·m(ℓ)2

)
(30)

with N
(ℓ)
c being the output channels of each convolutional layer and m(ℓ)2

the size of the output feature maps at each layer ℓ. The complexity is there-
fore dominated by m(ℓ)2, which justify the interest in subsampling, via strided
convolution or strided pooling. Subsampling operations drastically reduce the
amount of neurons in the last output MLP , leading to even less cumbersome
training process. Subsampling has a major downturn though. As a matter of
fact, convolutional filters with unitary stride (no subsampling) are translation
covariant (see definition in Equation (199)), i.e., the feature maps of a translate
images are the translation of the original feature maps. If the original image is
subsampled by adopting strided convolution, the similarity between an image
and its translated version is lost, because some pixels are skipped as observed in

Gatti 189

ALERT Doctoral School 2023



a z0 no pool b z1 no pool c z2 no pool

d z0 with AvgP ooling e z1 with AvgP ooling f z2 with AvgP ooling

g z0 with MaxP ooling h z1 with MaxP ooling i z2 with MaxP ooling

Figure 24: Comparison between convolution with kW = kH = k = 3, pW = pH = p = 2,
sW = sH = s = 1, dW = dH = d = 1 (a,b,c), average pooling (d,e,f) and max-pooling
(g,h,i).

Figure 25: Example of deep CN N (source: https://github.com/gwding/draw_
convnet).
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Remark 31 [MMD20]. The remedy consists into use non-srtided convolutions,
followed by strided average or max pooling operations, that preserve the local
homogeneity of the image, drastically decreasing the size of the output feature
and therefore the complexity of the CNN training scheme. Alternatively, the
number of feature maps (channels) is generally increased accordingly (stride of
2, double the channels), when strided convolutions are adopted. On the con-
trary, Average and max pooling grant translation invariance (see Section 3) but
they preserve the amount of input channels. The image and successive feature
maps can be also shrunk by adopting dilated convolution, or even downsampled
by avoiding zero-padding (see Figure 20.
Example 6 shows a simple example of CNN adopted to classify CIFAR10
database4, containing 60000 32×32 color images in 10 different classes.

Example 6. Example of deep convolutional classifier with PyTorch
The following code snippet5 shows how to easily construct a deep CNN for
CIFAR10 classification.

1 #␣Source:␣https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
2 import␣torch.nn␣as␣nn
3 import␣torch.nn.functional␣as␣F
4 import␣torch.optim␣as␣optim
5 #␣assure␣reproductibility
6 torch.manual_seed(0)
7 #␣define␣CNN␣class␣as␣subclass␣of␣the␣master␣nn.Module
8 #␣Once␣initialized,␣the␣forward␣function␣must␣be␣customized
9 class␣CNN(nn.Module):

10 ␣␣␣␣def␣__init__(self):
11 ␣␣␣␣␣␣␣␣super().__init__()
12 ␣␣␣␣␣␣␣␣self.conv1␣=␣nn.Conv2d(in_channels␣=␣3,
13 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣out_channels␣=␣6,
14 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kernel_size␣=␣(5,5),
15 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride␣=␣(1,1)
16 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣)
17
18 ␣␣␣␣␣␣␣␣self.pool␣=␣nn.MaxPool2d(kernel_size␣=␣2,
19 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride␣=␣2)
20
21 ␣␣␣␣␣␣␣␣self.conv2␣=␣nn.Conv2d(in_channels␣=␣6,
22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣out_channels␣=␣16,
23 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kernel_size␣=␣(5,5),
24 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣stride␣=␣(1,1)
25 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣)
26 ␣␣␣␣␣␣␣␣self.a1␣=␣nn.Linear(in_features␣=␣16␣*␣5␣*␣5,
27 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣out_features␣=␣120)
28 ␣␣␣␣␣␣␣␣self.a2␣=␣nn.Linear(in_features␣=␣120,
29 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣out_features␣=␣84)
30 ␣␣␣␣␣␣␣␣self.a3␣=␣nn.Linear(in_features␣=␣84,
31 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣out_features␣=␣10)
32
33 ␣␣␣␣def␣forward(self,␣x):
34 ␣␣␣␣␣␣␣␣x␣=␣self.pool(F.relu(self.conv1(x)))␣␣#␣conv+relu+pool␣(1)
35 ␣␣␣␣␣␣␣␣x␣=␣self.pool(F.relu(self.conv2(x)))␣␣#␣conv+relu+pool␣(2)
36 ␣␣␣␣␣␣␣␣x␣=␣torch.flatten(x,␣1)␣#␣flatten␣all␣dimensions␣except␣batch
37 ␣␣␣␣␣␣␣␣x␣=␣F.relu(self.a1(x))␣#␣linear+relu␣(1)

4https://en.wikipedia.org/wiki/CIFAR-10#cite_note-1
5from PyTorch tutorial, see https://pytorch.org/tutorials/beginner/blitz/cifar10_

tutorial.html
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38 ␣␣␣␣␣␣␣␣x␣=␣F.relu(self.a2(x))␣#␣linear+relu␣(2)
39 ␣␣␣␣␣␣␣␣x␣=␣self.a3(x)␣#␣final␣output␣layer
40 ␣␣␣␣␣␣␣␣return␣x
41
42
43 h_theta␣=␣CNN()
44
45 #␣Define␣loss␣function
46 l␣=␣nn.CrossEntropyLoss()
47
48 #␣Define␣SGD␣optimizer
49 optimizer␣=␣optim.SGD(h_theta.parameters(),␣lr=0.001,␣momentum=0.9)

The CIFAR10 dataset can be easily accessed via PyTorch with the following
few lines of code:

1 #␣Source:␣https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
2 import␣torch
3 import␣torchvision
4 import␣torchvision.transforms␣as␣transforms
5 import␣matplotlib.pyplot␣as␣plt
6 import␣numpy␣as␣np
7 #␣assure␣reproductibility
8 torch.manual_seed(0)
9 #␣Define␣pre-processing␣operations

10 transform␣=␣transforms.Compose(
11 ␣␣␣␣[transforms.ToTensor(),
12 ␣␣␣␣␣transforms.Normalize((0.5,␣0.5,␣0.5),
13 ␣␣␣␣␣␣(0.5,␣0.5,␣0.5))])
14
15 batch_size␣=␣4
16
17 #␣Define␣train␣dataset␣(pre-processing)
18 Dxy_train␣=␣torchvision.datasets.CIFAR10(root='./data',
19 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣train=True,
20 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣download=True,
21 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣transform=transform)
22 #␣Define␣train␣data␣loader
23 Dxy_train␣=␣torch.utils.data.DataLoader(Dxy_train,
24 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣batch_size=batch_size,
25 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣shuffle=True,
26 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣num_workers=2)
27
28 #␣Define␣test␣dataset␣(pre-processing)
29 Dxy_test␣=␣torchvision.datasets.CIFAR10(root='./data',
30 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣train=False,
31 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣download=True,
32 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣transform=transform)
33 #␣Define␣test␣data␣loader
34 Dxy_test␣=␣torch.utils.data.DataLoader(Dxy_test,
35 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣batch_size=batch_size,
36 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣shuffle=False,
37 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣num_workers=2)
38
39 classes␣=␣('plane',␣'car',␣'bird',␣'cat',
40 ␣␣␣␣␣␣␣␣␣␣␣'deer',␣'dog',␣'frog',␣'horse',
41 ␣␣␣␣␣␣␣␣␣␣␣'ship',␣'truck')
42
43 #␣functions␣to␣plot␣an␣image␣sample
44 def␣imshow(img):
45 ␣␣␣␣img␣=␣img␣/␣2␣+␣0.5␣#␣unnormalize
46 ␣␣␣␣npimg␣=␣img.numpy()␣#␣transform␣to␣numpy␣format
47 ␣␣␣␣plt.imshow(np.transpose(npimg,␣(1,␣2,␣0)))
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48 ␣␣␣␣plt.savefig("CIFAR10_sample.png",␣dpi=300,␣bbox_inches="tight")
49
50
51 #␣get␣some␣random␣training␣images
52 dataiter␣=␣iter(Dxy_train)
53 Xi,␣yi␣=␣next(dataiter)
54
55 #␣show␣images
56 imshow(torchvision.utils.make_grid(Xi))
57 #␣print␣labels
58 print('␣'.join(f'{classes[yi[j]]:5s}'␣for␣j␣in␣range(batch_size)))

1 #␣Source:␣https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
2 n_e␣=␣100
3 for␣epoch␣in␣range(n_e):␣␣#␣loop␣over␣the␣dataset␣multiple␣times
4
5 ␣␣␣␣running_loss␣=␣0.0
6 ␣␣␣␣for␣i,␣batch␣in␣enumerate(Dxy_train,␣0):
7 ␣␣␣␣␣␣␣␣#␣get␣the␣inputs;␣data␣is␣a␣list␣of␣[inputs,␣labels]
8 ␣␣␣␣␣␣␣␣Xi,␣yi␣=␣batch
9

10 ␣␣␣␣␣␣␣␣#␣zero␣the␣parameter␣gradients
11 ␣␣␣␣␣␣␣␣optimizer.zero_grad()
12
13 ␣␣␣␣␣␣␣␣#␣forward␣+␣backward␣+␣optimize
14 ␣␣␣␣␣␣␣␣h_theta_Xi␣=␣h_theta(Xi)
15 ␣␣␣␣␣␣␣␣loss␣=␣l(h_theta_Xi,␣yi)
16 ␣␣␣␣␣␣␣␣loss.backward()
17 ␣␣␣␣␣␣␣␣optimizer.step()
18
19 ␣␣␣␣␣␣␣␣#␣print␣statistics
20 ␣␣␣␣␣␣␣␣running_loss␣+=␣loss.item()
21 ␣␣␣␣␣␣␣␣if␣i␣%␣2000␣==␣1999:␣␣␣␣#␣print␣every␣2000␣mini-batches
22 ␣␣␣␣␣␣␣␣␣␣␣␣print(f'[{epoch␣+␣1},␣{i␣+␣1:5d}]␣loss:␣{running_loss␣/␣2000:.3f}')
23 ␣␣␣␣␣␣␣␣␣␣␣␣running_loss␣=␣0.0
24 #␣save␣NN␣for␣future␣use␣(inference,␣fine␣tuning,␣...)
25 PATH␣=␣'./cifar_net.pth'
26 torch.save(net.state_dict(),␣PATH)
27
28 #␣Test␣on␣test␣data
29
30 dataiter␣=␣iter(Dxy_test)
31 Xi,␣yi␣=␣next(dataiter)
32
33 #␣print␣images
34 imshow(torchvision.utils.make_grid(Xi))
35 print('GroundTruth:␣',␣'␣'.join(f'{classes[yi[j]]:5s}'␣for␣j␣in␣range(4)))

Compared to deep MLP , deep CNN such as that in Example 6 considerably
reduced the initial complexity of the problem because neurons in the convolu-
tional filter maps are specialized and translation covariant and pooling grants
the invariance by translation (same class despite its spatial position), overall
minimizing the number of weights in each layer [Cam19]. However, deep CNN
can easily reach several hundreds of millions of parameters. The number of
parameters is much larger (in general) than the dimensionality of the original
data. However, even if the network is trained with thousands or even millions
of samples (CIFAR10 is featured by 60000 images), CNN considerably reduce
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the dimension of the problem, ranging around 106. Typically, the CNN out-
put layer has ≈ 102 output weights. The complex intermediate representations
z (X) generated by convolutional filters are progressively more and more in-
sensitive to small roto-translations or other symmetries of the image and they
linearize the decision boundaries between class (in classification problems).

2.6.1 Transposed convolutions

Transposed convolutions (or “fractionally strided” convolutions) [Zei+10] are
the adjoint (transposed) version of the classical convolution defined in Equa-
tion (20): in other words, deconvolution. The sketch of the transposed convo-
lution is depicted in Figure 26 In particular, while convolutions are used to en-

Figure 26: Sketch of the discrete transposed convolution over an image. Reprinted
from [DV18] (see https://github.com/vdumoulin/conv_arithmetic). Zero-padding
pW = pH = 1 is added around the image, in order to make the 3 × 3 kernel slide along
the whole image, defined over the W × H grid.

code the data, by projecting it onto a reduced-order latent manifold, transposed
convolutions are adopted to decode the latent variables into the data space (see
Chapter 3 - Unsupervised Learning: Basic Concepts and Application to Parti-
cle Dynamics and Chapter 6 - Non-Euclidean machine learning for geomechan-
ics). The transposed convolution operation can be thought of as the gradient
of some convolution with respect to its input (see Section 5.1), which is usually
how transposed convolutions are implemented in practice [DV18]. In PyTorch,
transposed convolution are designed with the class ConvTranspose2d6.

2.7 Time-forward prediction
NN have been successfully adopted to ordered flow of information, such as
handwriting recognition, speech recognition and in more general to reproduce
time-varying physical phenomena. In this sense, the dataset is composed by
time series (of signals, of images, of words etc.). In their standard form, feed-
forward NN are fed with fixed-length input data x ∈ RdX and each instance

6https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
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xi is considered i.i.d. However, the quantities of interest of physical phenomena
displaying dynamic behaviour are naturally correlated in time. This aspect can
hardly be captured by feed-forwards MLP due to their internal structure. In
order to feed a time series to a MLP , for regression purposes for instance,
the input data stream must be chopped into i.i.d. windows of dX samples
each. However, this represents a quite strong assumption, since long range
time correlations could be overlooked. Moreover, trying to feed theMLP with
the whole time-series would entail a major drawback: the number of hidden
neurons required to achieve a satisfactory error grows exponentially with the
size of the input dimension, as stated in Equation (97):

NK ≈ ε
1−dX

k (31)

Finally, the last but not the least reason why theMLP is not fit for time-series
problems is that the time-series itself represent rather irregular functions, i.e.,
their highest order of (weak) differentiability k is quite low, which implies an
even larger number of hidden neurons.

When dealing with discrete time-histories, the data DXY = {(Xi, yi)}N
i=1 is

composed of i.i.d. samples of discrete input signals X = {x [t]}Nt

t=1 and discrete
output signals y = {y [t]}Nt

t=1, with x [t] ∈ RdX and y [t] ∈ RdY , both of length
Nt.

2.8 Recurrent Neural Networks RNN
Recurrent Neural Networks (RNN ) [Wer90] are inspired by the MLP but
they are conceived for time-series, since their underlying graph of operation is
reflexive. In other words, RNN is a NN with one or more feedback loops over
time steps [Hay98]. RNN have infinite impulse response, compared to CNN
that have a finite one.

At any time step t, the RNN produces an output y [t], based on the input
time step x [t]. The standard RNN hθ (x [t]) is defined as follows [GBC16;
Sal+18]: 




at (h,x) = W (h)ht−1 +W (x)x [t] + b(h)

ht (a) = g(h) (at)

a
(o)
t = W (o)ht + b(o)

zt

(
a(o)

)
= g(o)

(
a

(o)
t

)

hθ (x [t]) = zt ◦ ht ◦ at

(
·,ht−1

)
◦ x [t]

(32)
(33)

(34)

(35)

(36)

with h [t] ∈ Rdh representing the hidden state states, a sort of “memory”
variable that keeps track of past states of the network over many time steps,
similarly to what it is usually done in standard auto-regressive models such as
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ARMA, ARIMA, NARMAX among others[Whi51; Xue+10]. W (h) and b(h)

represent the transition weights and biases, associated to the computation of
the hidden state. The value of ht−1 in the pre-activation at time t at (h,x) =
W (h)ht−1 +W (x)x [t] + b(h) act as feed-back term. W (o) and b(o) represents
weights and biases of the output layer. The biases can be seen as learnable
exogenous variables conditioning the time forecast. g(h) and g(o) are the non-
linear activation function for hidden layer and output layer. W (h), W (x) are
dense weight matrices for hidden and input layers and b(h), b(o) the bias vectors
for hidden and output layers respectively. A scheme of the RNN function is
depicted in Figure 27.

h0 h1 h2 ht=h

y0

x 0

y1

x 1

y2

x 2

y t

x t

y t

x t . . .

Figure 27: Sketch of RN N scheme according to Equation (36)

In order to trainRNN , the empirical loss is computed as a sum of the empirical
losses computed at each time step:

LDXY
(θ) = 1

N

Nt∑

t=1

N∑

i=1
l
(
yi [t] ,hθ (xi [t])

)
(37)

It is well known that RNN are difficult to train [Sal+18] because of their
inherent functioning: the long time-span of the dynamics of the hidden state
variables, which is certainly necessary to forecast future time steps without the
inconvenient of finite impulse response functions (such as in CNN ), represents
a major cause of training instability. The main reason is the fact the forward
computational graph is assembled on previous time-steps. For instance, the
derivative of l

(
yi [t] ,hθ (xi [t])

)
with the respect to W (x)

ij reads:

∂l
∂W

(x)
ij

(
yi [t] ,hθ (xi [t])

)
=

∑

k,l,m,n

∂l
∂zt,k

∂g(o)

∂ht,l

∂g(h)

∂at,m

(
∂at,m

∂ht−1,n

∂ht−1,n

∂W
(x)
ij

+ ∂at,m

∂W
(x)
ij

)

(38)
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with the following terms that explicitly read:




∂g(o)

∂ht,l
=
∑

p

∂g(o)

∂a
(o)
t,p

W
(o)
lp

∂at,m

∂ht−1,n
= W (h)

mn

∂at,m

∂W
(x)
ij

= δmixj [t− 1]

∂ht−1,n

∂W
(x)
ij

=
∑

q,r

∂g(h)

∂at,q
W (h)

q,r

∂ht−2,r

∂W
(x)
ij

+ ∂g(h)

∂at,i
xj [t− 1]

(39)

(40)

(41)

(42)

System 42 proves the fact that the backward propagation unfolds the RNN in
time, i.e., the term xj [t−1] appears and a recursion on the hidden state variables
ht. The gradient of the loss function is the result of chain rule operations that
goes back to h0 and it is therefore called Back-Propagation Through Time
(BPTT) [Sal+18] that can be generally rewritten, in a more compact way, as
follows:





∇W (x) l
(
yi [t] ,hθ (xi [t])

)
=∇ht

ℓ.

(
t∑

τ=1
∇hτ

ht ⊗∇W (x)hτ

)

∇hτ
ht =

∏

s=τ+1

∂hs

∂hs−1

∂hs

∂hs−1
= W (h)T

(∑

k

∂g(o)

∂hs−1,k
ek ⊗ ek

)

(43)

(44)

(45)

Equation (45) outlines three orders of time dependencies: an “immediate” con-
tribution (i.e., ∇W (x)hτ ), a “short-term” one and “long-term” one, the latter
referring to τ ≪ t [PMB13]. Long-term memory is the main cause of highly
instable training processes, since the gradient tends to vanish if the activation
functions squash the input (such as σ, tanh, etc), as extensively explained in
Section 4.2, and the loss at time t+ 1 to increase [Sal+18]. The sufficient con-
dition is that the largest singular value of the recurrent weight matrix W (h)

σ1 must satisfy the condition σ1 < 1
δ . In particular, if the diagonal matrix

∂g(o)

∂hs−1,k
ek ⊗ ek is bounded by above by a term γ ∈ R+ such as:

∥∥∥
∑

k

∂g(o)

∂hs−1,k
ek ⊗ ek

∥∥∥ ≤ γ (46)

then the Jacobian ∂hs

∂h
s−1

is bounded as follows:

∥∥∥ ∂hs

∂hs−1

∥∥∥ ≤
∥∥∥W (h)

∥∥∥ ·
∥∥∥
∑

k

∂g(o)

∂hs−1,k
ek ⊗ ek

∥∥∥ ≤ 1 (47)
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and ∃δ ∈ R+ such that
∥∥∥ ∂hs

∂h
s−1

∥∥∥ ≤
∥∥∥ ≤ δ < 1. In this case, the gradient in

Equation (45) is bounded as follows:

∥∥∥∇W (x) l
(
yi [t] ,hθ (xi [t])

)∥∥∥ =
∥∥∥∇ht

ℓ.

(
t∑

τ=1
∇hτ

ht ⊗∇W (x)hτ

)∥∥∥ ≤ δt−τ
∥∥∥∇ht

ℓ
∥∥∥

(48)
The upper bound in Equation (48) shows that BPTT for long time histories
tend to make the gradient with the respect to τ ≪ t to vanish whenever σ1 <

1
δ ,

in 5-10 gradient descent epochs (see Section 3 for a detailed description of back-
propagation) [PMB13]. Because of its proneness to vanishing gradient, RNN
have major difficulties in capturing dependencies as the duration of dependen-
cies increases [BSF94]. The BPTT can even explode along some direction, if
σ1 >

1
δ . Vanishing gradient can be counteracted by employing ReLU , ELU ,

SELU and other activation function with non-zero derivative with the respect
to their argument, as described and proved in Section 4.2. Exploding gradi-
ents are instead counteracted, large batches are considered when using Adam
or SGD optimizers, as described in Section 3 and in the example Example 16
that compares different gradient descent algorithms. Alternatively, according
to several authors [Wil92; Pér+03; Hay04], RNN training can highly benefit
from Kalman filter application (extended versions), especially for poor datasets,
although this strategy is particularly cumbersome. Second order optimization
schemes, as described in Section 4.2, such as Newton’s methods, are definitely
more robust, but still cumbersome, due to the need of computing the Hessian
matrix, which in case of a RNN is prohibitive, due to the time-recursive na-
ture of its formulation. Hessian-free methods, applied to large mini-batches,
are rather appealing alternatives to train RNN , especially for non-convex loss
function, avoiding the computation of prohibitive Hessian matrices encompass-
ing several time steps, but approximating them to leverage local quadratic
approximation in high dimensionality. Another widely used approach to train
RNN is the family of Genetic Algorithms. For deeper insights, a very com-
plete summary of RNN training techniques can be found in [Sal+18].

Surprisingly, intertwining MLP and RNN in deep architectures make the
time-forward NN prediction way more efficient and it reduces the complex-
ity of the training scheme. The cumbersome internal computation that en-
compasses long-term dependencies can effectively be replaced by shallow feed-
forward computations that increase the abstraction level of the input x [t] time
history, with intermediate latent representations ϕ (x), as outlined in Equa-
tion (12). In this way, temporal long- and short-time dependencies are better
disentangled and the manifolds near which the data concentrate flattened ac-
cordingly. RNN can be combined with RNN andMLP according to several
combinations, briefly stated in the following paragraphs [Sal+18]:

1. Deep input-to-hidden
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This configuration corresponds to the RNN standard formulation in
Equation (36), that is de facto the combination of two MLP s h(h)

F F and
h

(o)
F F respectively are fed to the hidden and output states. x [t] is fed to

the hidden MLP that performs the well known following operation:

h
(h)
F F

(
x [t] ,ht−1

)
=

= g(h) (at) = g(h)
(
W (h)ht−1 +W (x)x [t] + b(h)

)

Then, the RNN output is obtained by feeding the output of a second
MLP

h
(o)
F F (ht) = g(o)

(
a

(o)
t

(
h

(h)
F F (x [t])

))
=

= g(o)
(
W (o)h

(h)
F F

(
x [t] ,ht−1

)
+ b(o)

)

To better capture long-term dependencies, the input can be fed to the
latter operation too as follows:

h
(o)
F F (ht,x [t]) = g(o)

(
W (o)h

(h)
F F

(
x [t] ,ht−1

)
+ b(o) +W (ox)x [t] +W (oh)ht−1

)

(49)
and as shown schematically in Figure 28.
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Figure 28: Sketch of the RN N version with input-to-hidden connection. h(1)
t and h(2)

t

represent the two stacked hidden state variables evolving in time and connected to each
other. xt indicates the input time-series, ht the hidden state and yt the predicted out
time-series.

2. Deep hidden-to-hidden hidden-to-output
MLP can enhance the level of abstraction of the data time-history x [t].
leveraging its regularity, with RNN quickly adjusting to short-time fast
changes (for non-stationary signals especially) keeping a good memory
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of past events. Further MLP can be added between hidden and hid-
den variables, as well as between hidden and output. In the latter case,
the MLP raise the abstraction of the hidden state ht, facilitating the
linearization of the decision boundary in its abstract representation and
predicting the target in a more robust way. Figure 29 show an example
of this architecture.
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Figure 29: Sketch of the RN N version with hidden-to-hidden connection. xt indicates
the input time-series, ht the hidden state and yt the predicted out time-series.

As byproduct, the hidden state are better summarizing the contribution
of the previous inputs [Sal+18].

3. Stack of hidden states
Deep RNN are easily constructed by stacking recurrent layers, with
the effect that each layer is steered to act on different time scales, since
each layer receives as input an abstract representation of the original
time-history x [t]. However, in practice, the transitions between con-
secutive hidden states is generally limited to a few layers, because deep
RNN tend to be even more prone to vanishing and/or exploding gra-
dient occurrence (as described above), failing into capturing long-term
time dependency. Moreover, the overall computational burden can easily
become prohibitive because the gradient descent must unravel intricate
time-dependency across several layers, with major difficulty in splitting
the computation over a parallel architecture (in model parallel mode).
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2.8.1 Bidirectional RNN
In some context, future time-steps x [t+ τ ] need to be accounted for, in a
acausal framework. Standard RNN formulated in Equation (36) could lever-
age future time-steps by delaying the output of a few steps, but this strategy
revealed itself poorly effective. Therefore, bidirectional RNN (or BRNN )
were introduced by [SP97], that processes the whole time history back and
forth in order to predict the final output. In doing so, two standard RNN
are adopted: one that process x [t] (forward) and the other that processes
x [Nt − t] (backward), without reciprocal input/output connection, and hid-
den states that read [Sal+18]:





−→
h t = g(h)

(−→
W (h)−→h t−1 +−→W (x)x [t] +−→b

(h)
)

−→
h t = g(h)

(←−
W (h)←−h t +←−W (x)x [Nt − t] +←−b

(h)
)

(50)

(51)

(52)

The final output is defined as a linear combination of the two:

hθ (x [t]) = g(o)
(−→
W

(o)−→
h t +←−W

(o)←−
h t + b(o)

)
(53)

BRNN (whose architecture is sketched in Figure 30) is slightly more com-
plicated because the update of state and output neurons can no longer be
conducted one at a time [SP97]. Another shortcoming is the fact that the
time-history must be known from start to end.

Example 7. Design a RNN with PyTorch
PyTorch has a proper class definition for standard RNN , offering the possibil-
ity of adding bi-directionality and stacked layers, as the following code snippet
shows.

1 import␣torch
2 #␣assure␣reproductibility
3 torch.manual_seed(0)
4 #␣design␣a␣2␣layer␣RNN␣with␣50␣hidden␣states␣(the␣size␣of␣h_t)
5 d_X␣=␣1␣#␣dimension␣of␣the␣input␣time␣history␣x[t]␣(in␣Rˆ1)
6 N_l␣=␣2␣#␣number␣of␣hidden␣layers
7 d_h␣=␣50␣#␣dimension␣of␣h_t␣(in␣Rˆ50)
8 gactivation␣=␣'tanh'␣#␣activation␣function
9 bidirectional␣=False␣#␣switch␣to␣'True'␣for␣designing␣a␣BRNN

10 bias␣=␣True␣#␣switch␣to␣False␣if␣no␣bias␣is␣foreseen
11 h_theta␣=␣torch.nn.RNN(input_size␣=␣d_X,
12 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣hidden_size␣=␣d_h,
13 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣num_layers␣=␣N_l,
14 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣nonlinearity=gactivation,
15 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣bias=bias,
16 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣bidirectional=bidirectional)
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Figure 30: Sketch of the BRN N version with hidden-to-hidden connections. The left-
to-right arrow indicates the weights, biases and operations of the forward RN N , whereas
the right-to-left arrow indicates the operations and weights for the backward RN N . xt

indicates the input time-series, ht (forward and backward respectively) the hidden state
and yt the predicted out time-series.

2.8.2 Combining RNN and CNN

Recurrent Convolutional Neural Network RCNN [LH15] leverage the RNN
infinite impulse response, capable of leveraging short- and long-time range
memory in the data, with the translational covariance (and equivariance to
roto-translation/distortion) of CNN layers described in Section 2.5 and Sec-
tion 2.6, capable of tracking time-propagating phenomena regardless their time
occurrence. RNN infinite kernel allows to account for non-local context in
the signal, facilitating the classification or regression task to connected CNN ,
whose aim is to identify the labeling function regardless the time-translation
(or spatial translation in an image). RNN recurrent connections can be inter-
twined to each convolutional layer in a deep CNN , to enable it with a memory
of past information. In this sense, RNN help stabilizing the classification per-
formance of a deep CNN . Alternatively, a RNN layer can be stacked at the
top of a CNN , whose role is to extract common low-level features from the
spatio-temporal phenomenon. The RNN is fed with the CNN feature maps,
whose high level regularity of abstract representation simplify the RNN pre-
diction, in a deep input-to-hidden configuration (but replacing theMLP with
a deep CNN ).
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2.9 Long-Short Term Memory
Hidden variables are cross and delight of standard RNN , since they are irre-
mediably necessary in order to capture long range time dependencies and multi-
scale phenomena. However, the long-range dynamics of those hidden features
make RNN very hard to train, since the gradient of the loss function flows
backward to the initial time step. Surprisingly, those hidden variables trigger
vanishing and exploding gradient events, which make but from a computational
point of view, the required memory becomes easily too large to handle. More-
over, despite the possibility of intertwining MLP and CNN with recurrent
connections in order to simplify the prediction phase thanks to intermediate
abstract representation of the input sequence x [t], these hybrid NN are still
hard to define and to tune in order to process short and long-term memory
features separately. RNN do not include any explicit notion of time win-
dow, which would be somehow useful for time series prediction/classification.
The most popular alternative to RNN are Long Short-Term Memory recur-
rent neural network, generically known under the acronym LSTM [HS97].
The objective of their invention was to introduce a scheme that could improve
learning long-range dependencies, by learning to forget [GSC00]. As a matter
of fact, the main LSTM difference is the fact that the LSTM output is stored
in extra “memory cell”, with input and output connections controlled by gates
g that steer the flow of information from previous time steps (and the gradient
back-propagation), as sketched in Figure 31. In particular, the forget gate g(f)

t

learns weights that control the rate at which the value stored in the memory
cell decays [GSC00].

A standard LSTM is made of 3 gates: input g(i)
t , forget g(f)

t , output g(o)
t and

a memory cell ct. Gates control the update of the memory cell, preventing its
modification for multiple time-steps. This allows LSTM to train for longer
iterations than standard RNN as well as to capture complex time-scale inter-
dependencies. The equations that rule the standard LSTM components can
be summarized in the following system:





z
(i)
t = g

(i)
(
W

(ii)
x [t] +W (ih)

ht−1 +W (ic)
g

(c)
t + b(i)

)

z
(f)
t = g

(f)
(
W

(fi)
x [t] +W (fh)

ht−1 +W (fc)
g

(c)
t + b(f)

)

ct =
∑

j

zt,j(i) · tanh
(〈
w

(ci)
j

,x [t]
〉

+
〈
w

(ch)
j

,ht−1

〉
+ b

(c)
j

)
ej+

+
∑

j

z
(f)
t,j

· zt−1,j(c)ej

z
(o)
t = g

(o)
t

(
W

(oi)
x [t] +W (oh)

ht−1 +W (oc)
g

(c)
t + b(o)

)

ht =
∑

j

z
(o)
t,j

· tanh
(

z
(c)
t,j

)
ej

(54)

(55)

(56)

(57)

(58)

(59)

with:

• W (ii), W (ih), W (ic) and b(i) being the weight matrices and the bias
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Figure 31: Sketch if the standard LST M architecture.

vectors respectively for the input gate, that is represented by a sig-
moid activation function applied to each component of the pre-activation,
g

(i)
t (a) =

∑
j σ(aj)ej ;

• W (fi), W (fh), W (fc) and b(f) being the weight matrices and the bias
vectors respectively for the forget gate, that is represented by a sig-
moid activation function applied to each component of the pre-activation,
g

(f)
t (a) =

∑
j σ(aj)ej as per the input gate;

• w
(ci)
j , w(ch)

j , and b
(f)
j being the weight matrix jth row and bias vector

component respectively for the update of the memory cell ct, that is
based on the values of the previously computed input and forget gated
activations z(i)

t and z(f)
t respectively;

• W (oi), W (oh), W (oc) and b(o) being the weight matrices and the bias
vectors respectively for the output gate, that is represented by a sig-
moid activation function applied to each component of the pre-activation,
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g
(o)
t (a) =

∑
j σ(aj)ej as per the input and forget gate;

According to [LJH15], Equation (59) explains how the memory cell works. For
time-steps t for which input and output gates are deactivated by the sigmoid
(negative argument) and for which the forget gate does not apply a higher
decay (large positive values of each z

(f)
t,j , that make the sigmoid saturate to

1) the memory cell ct holds its value z(c)
t−1, providing a non-vanishing gradient

term, which remains constant over those periods. This architecture allows the
network to potentially remember information for longer periods, depending on
how the forget gates activates. The latter being close to 0 (negative argument
of the forget sigmoid), makes the term

∑
j z

(f)
t,j · zt−1,j(c)ej ≈ 0, which means

that the network “forgets” the previously store memory cell value. The sat-
uration of the sigmoid activations at input, forget and output gates limit the
unbounded growth of the internal variables but this aspect can lead to infor-
mation loss because there is no active selection of which long-term dependency
is relevant or not. Moreover, LSTM has generally four times the number of
parameters of a standard RNN [Sal+18].

Deep NN can be constructed by stacking LSTM hidden layers upon each
other, each layer activation defined as:





h
(ℓ)
t = g(ℓ)

(
W (ih)h

(ℓ−1)
t +W (hh)h

(ℓ)
t−1 + b(ℓ)

h

)
, ∀1 ≤ ℓ ≤ Nℓ

hθ = g(o)
(
W (o)h

(Nℓ)
t + b(o)

)
(60)

(61)

Analogously to bidirection RNN , bidirectional LSTM have been conceived
too for language understanding [GMH13; WJ16]. For a complete summary of
all possible LSTM variants developed in the literature, refer to [Sal+18].

Example 8. Design a LSTM with PyTorch
PyTorch has a proper class definition for standard LSTM, offering the pos-
sibility of adding bi-directionality and stacked layers, as the following code
snippet shows.

1 import␣torch
2 #␣assure␣reproductibility
3 torch.manual_seed(0)
4 #␣design␣a␣2␣layer␣LSTM␣with␣50␣hidden␣states␣(the␣size␣of␣h_t)
5 d_X␣=␣1␣#␣dimension␣of␣the␣input␣time␣history␣x[t]␣(in␣Rˆ1)
6 N_l␣=␣2␣#␣number␣of␣hidden␣layers
7 d_h␣=␣50␣#␣dimension␣of␣h_t␣(in␣Rˆ50)
8 gactivation␣=␣'tanh'␣#␣activation␣function
9 bidirectional␣=False␣#␣switch␣to␣'True'␣for␣designing␣a␣BRNN

10 bias␣=␣True␣#␣switch␣to␣False␣if␣no␣bias␣is␣foreseen
11 h_theta␣=␣torch.nn.LSTM(input_size␣=␣d_X,
12 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣hidden_size␣=␣d_h,
13 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣num_layers␣=␣N_l,
14 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣nonlinearity=gactivation,
15 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣bias=bias,
16 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣bidirectional=bidirectional)
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Further examples on the use of RNN and LSTM will be provided in the
dedicated hands-on tutorials.

3 Optimizing a Neural Network
As stated in Section 2, Neural Networks NN are a special type of statistical
models Hθ, made of complex functions hθ defined as composition of non linear
ridge activations applied to affine transformations. The composition pattern
follows intricate graphs. The search of the “best” set of weights θ ∈ Θ is
performed by attempting at minimizing the empirical loss function LDXY

(hθ),
defined over a set of i.i.d. samples DXY = {(xi,yi)}N

i=1, with xi ∈ X ⊂ RdX

and yi ∈ Y ⊂ RdY (see problem (P)). The quest for the best predictor is a
matter of optimization over open sets Θ ⊂ RdΘ , where dm is the amount of
parameters (weights and biases) the NN is featured of.

Definition 1. Gradient Descent for Empirical Loss Minimization (G)
Given an open subset Θ ⊂ Rdm , Proposition 76 is a sufficient and necessary
conditions for θ̂ to be a minimizer of the Empirical Loss function LDXY

(unless
LDXY

is convex, which is not always the case) and it reads:

θ̂ = arg min
θ∈Θ

LDXY
(hθ) (62)

The quest for θ̂ is iteratively conducted, following the direction of −∇θLDXY
,

according to the following update rule from iteration i to iteration +i+ 1 (the
so called delta rule:

θ(i+1) = θ(i) − η(i)∇θLDXY

(
θ(i)
)
, η(i) ∈ R+ (63)

with η(i) ∈ R+ being the learning rate, and

LDXY

(
θ(i)
)
≥ LDXY

(
θ̂
)

Remark 2. The solution of problem (P) is obtained by computing the gradient
of the empirical loss function (see Equation (1)), which reads:

∇θLDXY
(θ) = 1

N

∑

(x
i
,y

i
)∈DXY

∇θℓ (hθ (xi) ,yi) (64)

Some further theoretical details are provided in Appendix B. Moreover, Sec-
tion 4.1 outlines the theoreteical background that justify the strategies to min-
imize LDXY

presented in the following.

Remark 3. The cost of computing the exact gradient in Equation (64), by av-
eraging across the whole dataset instances and then update the weights (the so
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called Batch Gradient Descent) is O(N ·dm). This computational cost is reason-
ably affordable for rather small dataset and shallow NN , being tailored only
for convex and rather smooth loss functions. However, for very large dataset,
the floating-point error induced by computing a sum over a large number of ad-
dends introduces spurious errors that can make the gradient descent algorithm
to fail.

Remark 4. The standard gradient descent practice employs single-precision
floating-point format (i.e., numbers are encoded in a 32-bit-long (4 bytes) bi-
nary code) and even half-precision floating-point format (i.e., numbers are en-
coded in a 16-bit-long (2 bytes) binary code). The choice of employing simple-
or even half-precision floating-point format is justified by the fact that gradi-
ent descent algorithms are run on Graphic Processing Units (GPU), primarily
designed for interactive rendering, not computation. Compared to Central Pro-
cessing Units (CPUs) GPUs have limited cache memory (where to store data to
be repeatedly accessed) but higher sequential memory (where to store data that
are naturally structured in a contiguous way, such as in an array). Therefore, a
GPU is extremely fast and efficient in computing linear algebra operations on
contiguously stored data, that the CPU is in charge of feeding it continuously.
However, to reach peak performances, those linear algebra operations (such
as the gradient descent one) are performed on single- or even half-precision
floating-point format, so to be executed faster. Double-precision floating-point
format can hinder the GPU performances, due to its limited memory capacity,
which is why it is rarely used. However, as observed in Remark 3, this choice
implies possible divergence of the Batch Gradient Descent algorithm on large
datasets.

3.1 Stochastic Gradient Descent (SGD)

Inspired by the Fisher’s approach for maximizing the log-likelihood function7

with unbiased estimator, a suitable minimization strategy would be to pursue
the minimum via the delta rule in Equation (63) via successive random gradient
updates (see ) computed from uniformly sampled database DXY according to
the following algorithm, called Stochastic Gradient Descent (SGD):

In other words, the SGD approximates the gradient in Equation (64) by ran-
domly sampling the all the i.i.d. samples over different epochs (ne is the epoch’s
number). θ(i+1) are random vectors that converge towards θ̂ at a certain speed.
SGD effectively reduces the computational burden mentiond in Remark 3, since
its complexity is estimated to O(dm), which makes it an appealing alternative
to the classical GD alternative. The choice of the learning rate scheduling is

7or minimizing the negative log-likelihood which belongs to the family of empirical loss
functions
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Algorithm 1 Stochastic Gradient Descent and Batch Gradient Descent
1: i = 0
2: Initialize θ(0)

3: η(0)

4: while i < ne do
5: for t ∼ U

(
{i}N

i=1

)
do

6: θ(i+1) = θ(i) − η(i)∇θℓ
(
hθ (xi) ,y(t);θ(i)

)
, η(i) ∈ R+

7: end for
8: end while

usually made in the following way [Pey20]:

η(i) = η(0)

1 + i
i0

, i0 > 0 (65)

or, more generally:

η(i) = η(0)

1 + iηd
(66)

The learning rate update scheme in Equation (65) ensures that η(i) ≤ η(0) and,
after a “warm up” phase, it decreases as the epochs go by. The value of ηd rep-
resents the so called learning rate decay. However, other scheduling strategies
are available, such as Cyclic Learning Rate Scheduler [Smi17]. The latter sug-
gests to first calibrate the lower and upper bounds ηmin and ηmax respectively
(if not known before hand, such as shown in Section 4.3), and then reiterates
several loops such as shown in Section 3.1. [Smi17] seemingly suggests that 1
cycle could be enough.

Within the framework of the SGD algorithm, the delta rule in Equation (63) is
usually applied by averaging the randomly sampled gradients on “mini-batches”
of Nb instances each, i.e., adopting the following algorithm: Averaging on mini-
batches is certainly cost-effective compared to standard SGD, that corresponds
to N mini-batches of Nb = 1 instance each. SGD on mini-batches can be seen
as a vectorized version of the SGD.

Example 9. Stochastic Gradient Descent for linear regression

1 import␣torch
2 import␣torch.nn␣as␣nn
3 import␣torch.optim␣as␣optim
4 import␣numpy␣as␣np
5 from␣matplotlib␣import␣pyplot␣as␣plt
6 #␣assure␣reproductibility
7 torch.manual_seed(0)
8 #␣Data␣for␣regression␣problem
9 A␣=␣10.1542550
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Figure 32: Example of Cyclic Learning Rate Scheduler [Smi17].

10 b␣=␣14.7351129
11 c␣=␣2.34
12 epsilon␣=␣10.154988
13 N␣=␣200␣#␣number␣i.i.d.␣samples
14 Nb␣=␣10␣#␣number␣of␣samples␣in␣the␣mini-batch
15 #␣Data␣Generation
16 np.random.seed(42)
17 x␣=␣np.random.rand(N,␣1)
18 y␣=␣b␣+␣A␣*␣np.exp(c*x)␣+␣epsilon␣*␣np.random.randn(N,␣1)
19
20 #␣Shuffled␣indices
21 idx␣=␣np.arange(N)
22 np.random.shuffle(idx)
23
24 Ntrain␣=␣int(N*0.8)
25 #␣Uses␣first␣80%␣of␣the␣dataset␣for␣training
26 train_idx␣=␣idx[:Ntrain]
27 #␣Uses␣the␣last␣20%␣for␣validation
28 val_idx␣=␣idx[Ntrain:]
29
30 #␣Generates␣train␣and␣validation␣sets
31 x_train,␣y_train␣=␣x[train_idx],␣y[train_idx]
32 x_val,␣y_val␣=␣x[val_idx],␣y[val_idx]
33
34 #␣Convert␣Numpy␣arrays␣into␣PyTorch␣Tensors
35 x_train_tensor␣=␣torch.from_numpy(x_train).float()
36 y_train_tensor␣=␣torch.from_numpy(y_train).float()
37
38 #␣Plot␣the␣dataset
39 #␣plt.scatter(x,y,color='black',label=r"$D_{XZ}$")
40 #␣plt.scatter(x[train_idx],
41 #␣␣␣␣␣␣␣␣␣␣␣␣␣y[train_idx],
42 #␣␣␣␣␣␣␣␣␣␣␣␣␣color='red',
43 #␣␣␣␣␣␣␣␣␣␣␣␣␣marker="+",
44 #␣␣␣␣␣␣␣␣␣␣␣␣␣label="train␣dataset")
45 #␣plt.scatter(x[val_idx],
46 #␣␣␣␣␣␣␣␣␣␣␣␣␣y[val_idx],
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Algorithm 2 Stochastic Gradient Descent on mini-batches
1: i = 0
2: Initialize θ(0)

3: η(0) = η0
4: while i < ne do
5: for j ∼ U

(
{i}

N
Nb
i=1

)
do

6: gθ = 0
7: for t ∼ U

(
{ji}Nb

i=1

)
do

8: gθ+ =∇θℓ
(
hθ (xi) ,y(t);θ(i)

)

9: end for
10: θ(i+1) = θ(i) − η(i)

Nb
gθ, η(i) ∈ R+

11: end for
12: end while

47 #␣␣␣␣␣␣␣␣␣␣␣␣␣color='blue',
48 #␣␣␣␣␣␣␣␣␣␣␣␣␣marker="x",
49 #␣␣␣␣␣␣␣␣␣␣␣␣␣label="validation␣dataset")
50 #␣plt.xlabel(r"$x$")
51 #␣plt.ylabel(r"$y$")
52 #␣plt.legend(frameon=False)
53
54 eta␣=␣1e-1␣#␣constant␣learning␣rate
55 #␣for␣warmup:␣https://github.com/Tony-Y/pytorch_warmup
56 n_e␣=␣1000␣#␣number␣of␣epochs
57
58 #␣Creating␣a␣MLP␣model␣with␣1␣layer␣and␣1␣neuron
59 h_theta␣=␣nn.Sequential(nn.Linear(1,␣1),␣nn.SiLU())
60
61 #␣Define␣the␣SGD␣optimizer
62 optimizer␣=␣optim.SGD(h_theta.parameters(),␣lr=eta)
63 L_Dxy␣=␣nn.MSELoss()
64
65 #␣Loop␣over␣the␣training␣epochs␣on␣training␣dataset
66 i=0
67 while␣i␣<␣n_e:␣#␣loop␣over␣epochs
68 ␣␣for␣j␣in␣range(0,int(Ntrain/Nb)):␣#␣loop␣over␣mini-batches
69 ␣␣␣␣t_idx␣=␣np.arange(j*Nb,(j+1)*Nb,1)␣#␣mini-batch␣linear␣indexing
70 ␣␣␣␣np.random.shuffle(t_idx)␣#␣shuffle␣mini-batch
71 ␣␣␣␣x_b␣=␣x_train_tensor[t_idx]
72 ␣␣␣␣y_b␣=␣y_train_tensor[t_idx]
73 ␣␣␣␣optimizer.zero_grad()␣#␣initialize␣the␣optimizer
74 ␣␣␣␣loss␣=␣0.0␣#␣initialize␣the␣loss
75 ␣␣␣␣for␣t␣in␣range(Nb):␣#␣loop␣over␣the␣samples␣in␣the␣batch
76 ␣␣␣␣␣␣xt␣=␣x_b[t]
77 ␣␣␣␣␣␣yt␣=␣y_b[t]
78 ␣␣␣␣␣␣yhat␣=␣h_theta(xt)␣#␣predict␣the␣output
79 ␣␣␣␣␣␣loss␣+=␣L_Dxy(yhat,␣yt)␣#␣Compute␣Empirical␣Loss
80 ␣␣␣␣loss.backward()␣#␣Compute␣derivatives␣with␣AutoGrad
81 ␣␣␣␣optimizer.step()␣#␣weight␣update!
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3.2 Beyond SGD: the role of “momentum”
The SGD in Algorithm 1 and its mini-batch version in Algorithm 2 are first-
order Hessian-free methods that converges slowly and it is sensitive to noise [Sut+13;
Pey20]. Moreover, according to Remark 34, the convergence can be hindered
when the Hessian is ill-conditioned. A possible improvement is represented by
the so called “momentum”, using previous gradient memory. The Classical Mo-
mentum technique [Pol64] accelerates the gradient descent, with a momentum
coefficient γ ∈ [0, 1)] that cumulates a velocity vector v (or gradient memory)
in directions of persistent reduction in LDXY

across iterations [Sut+13]. Algo-
rithms 3 and 4 outline the SGD algorithm with Classical Momentum, without
and with mini-batch average.

Algorithm 3 Stochastic Gradient Descent with Classical Momentum
1: i = 0
2: Initialize θ(0)

3: η(0) = η0
4: v(0) = 0
5: while i < ne do
6: for t ∼ U

(
{i}N

i=1

)
do

7: v(i+1) = η(i) (1− ⟨τ (i) − 1⟩
)∇θℓ

(
hθ (xi) ,y(t);θ(i)

)
+

γ(i)v(i), η(i) ∈ R+, γ(i) ∈ [0, 1)
8: θ(i+1) = θ(i) − v(i+1)

9: end for
10: end while

The factor −⟨τ (i) − 1⟩ dampens the gradient only if τ (i) > 18. When no
dampening is considered (i.e. τ (i) ≤ 1), the Classical Momentum accelerates
by a (usually) constant factor γ (often chosen equal to 0.85 or 0.95) the gradient
descent in the directions eξ is small but persistent. For instance, in the mini-
batch version in Algorithm 4, if

〈
gθ, eξ

〉
> 0

〈
eξ,v

(i)
〉

= η(i) 〈eξ, gθ

〉
+ γ(i)

〈
eξ,v

(i−1)
〉
≥ γ(i)

〈
eξ,v

(i−1)
〉

(67)

The inertia allows to overcome local minima and saddle points but, on the
contrary, its effect vanishes along the directions of small or oscillating reduc-
tion in the objective loss across iterations are amplified by Algorithm 3. For
convex functions, momentum-based methods are known to outperform SGD in
the early or transient stages [Sut+13]. [Pol64] proved that the Classical Mo-
mentum algorithm accelerates convergence to local minima by reducing by a

factor
√
κ
(

HLDXY

)
the number of iterations required by greedy algorithms

8⟨·⟩ represent the Macaulay brackets.
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Algorithm 4 Stochastic Gradient Descent on mini-batches with Classical Mo-
mentum

1: i = 0
2: Initialize θ(0)

3: η(0) = η0
4: v(0) = 0
5: while i < ne do
6: for j ∼ U

(
{i}

N
Nb
i=1

)
do

7: gθ = 0
8: for t ∼ U

(
{ji}Nb

i=1

)
do

9: gθ+ =∇θℓ
(
hθ (xi) ,y(t);θ(i)

)

10: end for
11: v(i+1) = η(i) (1− ⟨τ (i) − 1⟩

)
gθ + γ(i)v(i), η(i) ∈ R+, γ(i) ∈ [0, 1)

12: θ(i+1) = θ(i) − η(i)

Nb
v(i+1), η(i) ∈ R+

13: end for
14: end while

such as the one in Equation (152). In this case, γ must be chosen equal to√
κ
(

HLDXY

)
−1

√
κ
(

HLDXY

)
+1

, similar to the expression in Equation (172). Second-order

methods, as seen in Section 4.2, amplify those steps in low-curvature directions
, but instead of accumulating changes they reweight the update along each
eigen-direction of the curvature matrix by the inverse of the associated curva-
ture [Sut+13]. On the contrary, Classical Momentum algorithms can miss the
minimizer, due to the consistent inertia of the gradient descent.
In PyTorch, the Classical Momentum is an option of the standard SGD opti-
mizer.

Example 10. Stochastic Gradient Descent for linear regression with
Classical Momentum
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣SGD␣optimizer
3 gamma␣=␣0.5/eta␣#␣Classical␣Momentum␣algorithm
4 #␣PyTorch␣adopts␣a␣Classical␣Momentum␣coefficient␣eta*mu
5 #␣which␣corresponds␣to␣gamma␣in␣the␣above␣mentioned␣formulas
6 tau␣=␣0.0␣#␣Dampening␣coefficient
7 optimizer␣=␣optim.SGD(h_theta.parameters(),␣lr=eta,
8 momentum=gamma,␣dampening=tau)
9 ...
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3.3 Beyond Classical Momentum SGD: the Nesterov al-
gorithm

A better convergence rate than the Classical Momentum algorithm is provided
by the Nesterov algorithm, especially for general smooth (non-strongly) convex
functions and a deterministic gradient descent [Sut+13]. The difference with
the Classical Momentum method resides in the fact that the gradient of the loss
function is computed at the position updated with v(i). The Nesterov Acceler-
ated Gradient algorithm reads: Usually, γ(i)=0.9. In PyTorch, the Nesterov

Algorithm 5 Nesterov Accelerated Gradient Descent
1: i = 0
2: Initialize θ(0)

3: η(0) = η0
4: v(0) = 0
5: while i < ne do
6: for t ∼ U

(
{i}N

i=1

)
do

7: v(i+1) = η(i) (1− ⟨τ (i) − 1⟩
)∇θℓ

(
hθ (xi) ,y(t);θ(i) − γ(i)vi

)
+

γ(i)v(i), η(i) ∈ R+, γ(i) ∈ [0, 1)
8: θ(i+1) = θ(i+1) − v(i)

9: end for
10: end while

Algorithm 6 Nesterov Accelerated Gradient Descent on mini-batches
1: i = 0
2: Initialize θ(0)

3: η(0) = η0
4: v(0) = 0
5: while i < ne do
6: for j ∼ U

(
{i}

N
Nb
i=1

)
do

7: gθ = 0
8: for t ∼ U

(
{ji}Nb

i=1

)
do

9: gθ+ =∇θℓ
(
hθ (xi) ,y(t);θi − γ(i)v(i))

10: end for
11: v(i+1) = η(i) (1− ⟨τ (i) − 1⟩

)
gθ + γ(i)v(i), η(i) ∈ R+, γ(i) ∈ [0, 1)

12: θ(i+1) = θ(i) − η(i)

Nb
gθ, η(i) ∈ R+

13: end for
14: end while

Accelerated Gradient algorithm is an option of the standard SGD optimizer.
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Example 11. Nesterov Accelerated Gradient Descent for linear regres-
sion
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣SGD␣optimizer
3 gamma␣=␣0.9␣#␣Nesterov␣momentum␣coefficient
4 tau␣=␣0.0␣#␣Dampening␣coefficient
5 optimizer␣=␣optim.SGD(h_theta.parameters(),␣lr=eta,
6 nesterov=True,␣momentum=gamma)
7 ...

3.4 Optimizing with adaptive learning rates
Several strategies have been developed to improve the convergence rate of first-
order Hessian-free gradient descent algorithms. Those algorithms are based on
adaptive schemes of the learning rate. In the following, the most popular ones
are presented. For the sake of simplicity, we consider a deterministic Gradient
Descent algorithm

3.4.1 Adaptive Gradient: AdaGrad

[DHS11] proposed an adaptive update rule called AdaGrad. The latter is based
on the definition of G(i), defined as:

G(i) =
i−1∑

k=0
∇θLDXY

(
θ(k)

)
⊗∇θLDXY

(
θ(k)

)
(68)

The AdaGrad update rule reads:

θ(i+1) = θ(i) − η
(

diagG(i) + ϵI
)− 1

2
.∇θLDXY

(
θ(i)
)

(69)

with usual values of η=10-2 and a numeric tolerance ϵ=10-8. The diagonal
matrix diag(G) represents the cumulated square derivatives along θj , G(i)

j =
∑i−1

k=0

(
∂LDXY

∂θj

(
θ(k)

))2
from epoch 0 to epoch i. Moreover,

√
Tr
(
G(i)

)
repre-

sents the ℓ2 norm of ∂LDXY

∂θj
, but with each gradient component associated

to one iteration. For i ≫, G
(i)
j

i−1 is an unbiased estimator of the variance

E

[(
∂LDXY

∂θj
(θi)

)2
]

and it is monotonically increasing. AdaGrad requires to

save and update diagG(i) at each iteration. The effective learning rate of each
gradient component is expressed as η′

j = η

G
(i)
j

+ϵ
. η

′
j can become very small,

due to the monotonic increase of G(i)
j , until the update stops. This aggressive
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learning rate decay represents one major shortcoming of the AdaGrad. In order
to mitigate such effect, AdaGrad update can be combined with the adaptive
learning rate decay in Equation (66).

Example 12. AdaGrad for linear regression
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣AdaGrad␣optimizer
3 etad␣=␣0.0␣#␣learning␣rate␣decay
4 epsilon␣=␣1e-8␣#␣tolerance
5 G0␣=␣0.0
6 optimizer␣=␣optim.Adagrad(h_theta.parameters(),␣lr=eta,
7 lr_decay=etad,␣eps=epsilon,␣initial_accumulator_value=G0)
8 ...

3.4.2 Root Mean Square Propagation: RMSprop

Another optimization strategy, capable of mitigating the disadvantage of ag-
gressive learning rate decay, proper to AdaGrad, was proposed by [TH12] and
called RMSprop. The idea is to compute an average value of G(i), based on a
shorter memory window, i.e.:

diagG̃(i) = αr diagG(i−1) + (1− αr)
(

diagG(i) − diagG(i−1)
)

(70)

The update rule is the same as Equation (69), but with diagG̃(i) to replace
diagG(i) and usually the smoothing constant αr=0.9. The main difference is
represented by the fact that diagG̃(i) is not monotonically increasing, therefore
the learning rate decay is slower.

Example 13. RMSprop for linear regression
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣RMSprop␣optimizer
3 alphar␣=␣0.9␣#␣smoothing␣constant␣(called␣alpha␣in␣PyTorch)
4 epsilon␣=␣1e-8␣#␣tolerance
5 G0␣=␣0.0
6 optimizer␣=␣optim.RMSprop(h_theta.parameters(),␣lr=eta,
7 alpha=alphar,␣eps=epsilon)
8 ...

3.4.3 RMSprop with momentum: ADADELTA

The RMSprop with momentum (see Section 3.2) is called ADADELTA [Zei12].
In particular, after having computed G̃(i) defined in Equation (70), ADADELTA
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computes the vector U (i+1) with momentum, i.e., as follows:

U (i+1) = αuU
(i) + (1− αu)u(i) (71)

with u(i) that slightly modifies the gradient with a term approximating the
inverse Hessian matrix (diagonal), but based on previous gradient update, ac-
cording to the expression:

u(i+1) = diag
1
2

(
U(i) + ϵI

)
diag− 1

2

(
G̃(i) + ϵI

)
.∇θLDXY

(
θ(i)
)

(72)

where U(i) =
(
U (i) ⊗U (i)

) 1
2 . All the vectors u(i+1) has the same dimensions

of θ. The term diag
1
2
(
U(i) + ϵI

)
represents the inverse Hessian approximation

(see Equation (155)), with the contribution of the RMSprop update, whereas
the term diag− 1

2
(
G̃(i) + ϵI

)
the contribution of the RMSprop gradient. Fi-

nally, θ(i+1) = θ(i) − u(i). The advantage of the ADADELTA is that it is
parameter-free, since no learning rate stricto sensu is required. This prevents
the possibility of a learning rate scheduler. Another ADADELTA’s shortcom-
ing is represented by the biased momentum estimate in Equation (71) and
Equation (72), strictly depending on the weights’ initialization.

Example 14. Adadelta for linear regression
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣ADADELTA␣optimizer
3 alphau␣=␣0.9␣#␣smoothing␣constant␣(called␣rho␣in␣PyTorch)
4 epsilon␣=␣1e-8␣#␣tolerance
5 optimizer␣=␣optim.Adadelta(h_theta.parameters(),␣lr=eta,
6 rho=alphau,␣eps=epsilon)
7 ...

3.4.4 Adaptive Moment Estimation: Adam

The Adaptive Moment Estimation, Adam, invented by [KB15], is a rather fa-
mous optimizer in deep learning. Adam retrieves the idea of momentum, by
estimating the first (mean) and second order (variance) moments. Adam en-
dorse the idea of momentum by keeping a moving average of previous gradients
(first moment) which will be more or less important depending on the value
of a coefficient β1. Adam is quite similar to ADADELTA (see Section 3.4.3),
but it adds another value (second moment) which will be the sliding average
of the previous squared gradients whose square root corresponds to the slid-
ing uncentered variance of the previous gradients. Adam adopts the following
steps:
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• It estimates the diagonal of Hessian as done in ADADELTA by the term
diag

1
2
(
U(i) + ϵI

)
diag− 1

2
(
G̃(i) + ϵI

)
but with local accumulation:

diagV(i) = β2V(i−1) + (1− β2) diagG(i) (73)

• It estimates the first-order gradient moment, similarly to u(i+1) in Equa-
tion (71):

m(i) = β1m
(i−1) + (1− β1)∇θLDXY

(
θ(i)
)

(74)

• It normalizes both diagV(i) and m(i) to avoid to produce biased estima-
tors:

m̂(i) = m(i)

1− β1
, V̂(i) = V(i)

1− β2
(75)

This additional operation reduces the biases of the first iterations where
the moving averages are made on a small number of values.

• It updates the weights as:

θ(i+1) = θ(i) − η · diag− 1
2

(
V̂(i) + ϵI

)
m̂(i) (76)

Adam has several advantages: the per-dimension update inherited from ADADELTA,
which is very important to promote and to tackle sparsity. As RMSprop and
ADADELTA, it adopts the use of second order momentum on the denomina-
tor. This aspect is tightly linked to the information of the statistical model
represented by NN parametrized by its weights and biases θ. As a matter
of fact, the Cramér-Rao bound (CRB) presented in Equation (31) provides an
insightful view since it states that the Fisher information IF (θ) is larger the
the inverse variance of the the weights (represented by diag− 1

2 V̂(i)). In other
words, the optimizer tries to increase the overall informative power of the NN ,
to make it more flexible to complex regression or classification tasks. Moreover,
Adam has the advantage of integrating momentum, but also another parameter
that will prevent the momentum from taking too much importance in updating
the weights. These two tools will allow it is up to Adam to dampen the effects
of oscillation in the gradient descent.

Example 15. Adam for linear regression
This example is equivalent to Example 9, with the exception of the definition
of the optimizer.

1 ...
2 #␣Define␣the␣SGD␣optimizer
3 beta1␣=␣0.9␣#␣Adam␣coefficients
4 beta2␣=␣0.999␣#␣Adam␣coefficients
5 epsilon␣=␣1e-8␣#␣tolerance
6 optimizer␣=␣optim.Adam(h_theta.parameters(),␣lr=eta,
7 betas=(beta1,␣beta2),␣eps=epsilon)
8 ...
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3.4.5 Weight decay

The weight decay allows to keep ∥θ∥ small. Heuristically, this is a preferable
condition to achieve convergence in the optimization process. Compared to
explicitly penalize the L2 norm in the loss function, by adding something of
the sort Ω (θ) = ∥θ∥2, the weight decays makes the weights tend to zero quite
faster. The weight decay consists in simply adding an extra term λω(i) either
to the gradient ∇θLDXY

(
θ(i)
)

, either directly to the weight update. In this
latter case, the weight decay is decoupled from first and second order moments.
For instance, with the Adam optimizer, the decoupled weight decay reads:

θ(i+1) = θ(i) − η · diag− 1
2

(
V̂(i) + ϵI

)
m̂(i) + λω(i+1) (77)

The PyTorch optimizer class implements a weight decay option. This ex-
tra parameter can directly added to the SGD optimizer input list, since the
SGD does not estimate neither the first nor the second gradient moments.
On the contrary, RMSprop, Adagrad, AdaDelta, Adam do. However, adding
the weight decay parameter to those standard optimizer classes, couples the
weight decay with the estimation of the first and second moments, which is
not the most effective way to perform weight decay, since it can add spurious
biases. Instead, in order to apply a decoupled weight decay as in Equation (77),
one should use the SGDW or AdamW optimizers9.

Example 16. Compare optimizers in PyTorch
In the following example [Via22], the SGD optimizer, with and without (Nes-
terov) momentum is compared to Adam, Adadelta, RMSProp and AdamW, in the
framework of an optimization problem with θ ∈ R2 and with the following loss
function:

L (θ1, θ2) = 8 · sin
(

1.5 · θ1
10 − 3

)
· sin

(
1.5 · θ1

10 − 3
)

+

+ 8 · cos
(
θ2
10 − 2

)
· cos

(
θ2
10 − 2

)
+

0.3 ·
((

θ1
5 − 12

)
·
(
θ1
5 − 12

)
+
(
θ2
10 − 8

)
·
(
θ2
10 − 8

))
+ 10

(78)

L (θ) is depicted in Figure 33.

The comparison is performed according to following criteria:

1. Parameter initialization (θ(0)
1 , θ

(0)
2 ) (see Section 4.2.1 for further insights).

2. Use of the (Nesterov) momentum and dampening (for SGD) and RMSprop.

3. Weight decay for Adam and AdamW.
9https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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a b

Figure 33: L (θ) : R2 → R defined in Equation (78). (a) L (θ) in 3 dimensions. (b)
2-dimensional contour plot.

All tested optimizers share the same (constant) learning rate η=20 and 10000
epochs.
First and foremost, the effect of two different initializations θ(0−1)=(135,135)
and θ(0−2)=(45,35) is tested. The choice of θ(0−1) implies that the optimizer
algorithm starts from a point closer to the minimum θ̂ than θ(0−2) (see Fig-
ure 33). Figure 34 shows the SGD’s high sensitivity to the initialization: the
algorithm diverges from θ̂ (within the 10000 epochs) when starting from θ(0−2)

(see Figure 34b), which is closer to the minimum itself. This is mostly due to
the fact that the function is not convex close to the minimum θ̂.

Adadelta (with αu ∈ [0, 1], called rho in PyTorch) fails for both initialization
choices, as depicted in Figure 35. This is due to its high dependency on the
weight initialization with biased momentum estimate.

Adam (with standard choice of β1 = 0.9 and β2 = 0.999) is definitely more robust
than SGD and more effective than Adadelta, as shown in Figure 36, although
the trend is opposite: Adam converges to θ̂ for θ(0−2) (as shown in Figure 36b)
and it gets somehow closer to it than SGD, for θ(0−1), as depicted in Example 16,
compared to Figure 34a. Compared to standard SGD, Adam leverages the first
and second order momenta and adapts their contribution to avoid divergence
of the gradient descent algorithm. As a matter of fact, SGD needs (first order)
momentum too, in order to converge to the minium in a reasonable amount
of epochs (10000), as depicted in Figure 34a. This is evident if one compares
the latter to the trajectory that SGD with zero momentum follows, depicted in
Figure 37a (with τ=0.5 in order to avoid divergence). The lack of momentum
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a b

Figure 34: SGD minimization trajectory for θ(0−1) (a) and θ(0−2) (b). SGD is featured by
momentum γ=0.7 and dampening τ=0.6. The yellow dot represents the starting point
θ(0), whereas the blue dot represents the sought minimum.

a b

Figure 35: Adadelta minimization trajectory for θ(0−1) (a) and θ(0−2) (b). Adadelta is
featured by αu=0.9, but similar results are obtained regardless its value αu ∈ [0, 1]. The
yellow dot represents the starting point θ(0), whereas the blue dot represents the sought
minimum.

leaves the SGD algorithm iterating around local minima. However, a too high
momentum γ can lead the SGD algorithm to miss θ̂ because of its inertia, as
shown in Figure 37b for γ=0.9. For practical purposes, this aspect represents
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a b

Figure 36: Adam minimization trajectory for θ(0−1) (a) and θ(0−2) (b). The yellow dot
represents the starting point θ(0), whereas the blue dot represents the sought minimum.

the major disadvantage of using SGD, compared to Adam adaptivity and faster
convergence rate.

a b

Figure 37: SGD minimization trajectory for γ=0 and τ=0.5 (a) and for γ=0.9 and τ=0.5.
The yellow dot represents the starting point θ(0−1), whereas the blue dot represents the
sought minimum.

Nesterov momentum enhance the momentum effect (no damping is allowed in
this algorithm), possibly leading SGD to reach the minimum θ̂ faster (in less
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epochs). However, as shown in Figure 38 for different initializations θ(0−1)

(in Figure 38a) and θ(0−2) (in Figure 38b), Nesterov-SGD algorithm tends to
range around the minimum θ̂, but missing it because of the inertia effect (each
final step represents a too large increment, that iteratively misses the mini-
mum). In this case, a proper schedule of the learning rate must be adopted.
RMSprop is also conceived to counteract aggressive weight updates, based on

a b

Figure 38: SGD minimization trajectory for θ(0−1) (a) and θ(0−2) (b). SGD is featured by
Nesterov momentum γ=0.3 and no dampening. The yellow dot represents the starting
point θ(0), whereas the blue dot represents the sought minimum.

the estimated variance of the gradients computed in past iterations. Despite
being more stable and effective that SGD with (Nesterov) momentum, for both
weight initializations, in this example RMSprop achieve a “stable” gradient de-
scent trajectory only when the momentum γ is compensated by the coefficient
αr and both are equal to 0.5 (see Figure 39b). However, [Mni+16] showed
that RMSprop is quite useful for very non-stationary problems, as confirmed by
[ACB17], provided that no momentum is added (γ=0), αr=0.9 and the learning
rate is very small. Reducing the learning rate to 12, the minimum is reached
with a clear improvement in the stability of the gradient descent trajectories, for
both initializations, as shown in Figure 40. However, the instability close to the
minimum θ̂ still persists. From those examples, it looks that calibrating SGD,
Adadelta, RMSprop in order to find a reasonable trade-off between convergence
rate and stability is hard: either a small learning rate is assumed, with zero
momentum and a very large number of epochs demanded to reach the mini-
mum, either the dampened momentum is leverage, with high risk of divergence.
Standard Adam, on the contrary, seems definitely more robust and flexible to
complex optimization tasks. As far as weight decay is concerned, Adam (no
weight decay) and AdamW (with weight decay) are compared in Figure 41. The
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a b

Figure 39: RMSprop minimization trajectory for γ=0.1 and αr=0.9 (a) and for γ=αr=0.5
(b). The yellow dot represents the starting point θ(0−1), whereas the blue dot represents
the sought minimum.

a b

Figure 40: RMSprop minimization trajectory for for θ(0−1) (a) and θ(0−2) (b). RMSprop
is featured by γ=0.0 and αr=0.9 for both cases. The yellow dot represents the starting
point θ(0), whereas the blue dot represents the sought minimum.

use of AdamW does not provide an improvement, compared to standard Adam,
despite the extremely low weight decay penalty equal to 0.00001. Adam still
represent, for this example, the most robust and efficient optimizer, provided
that no tuning is necessary, compared to other optimization techniques.
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a

b

Figure 41: Minimization trajectories for Adam (a) and AdamW (with weight decay penalty
of 0.00001) (b). The yellow dot represents the starting point θ(0−2), whereas the blue
dot represents the sought minimum.

For further insight, see Chapter 2 - Introduction to regression methods.

4 Automatic Differentiation
As stated in Section 2, Neural Networks NN are a special type of statistical
models Hθ, made of complex functions hθ defined as composition of non linear
ridge activations applied to affine transformations. The problem they aim at
solving is stated in problem (P). The search of the “best” set of weights
θ ∈ Θ ⊂ Rdm is performed by attempting at minimizing the empirical loss
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function LDXY
(hθ), defined over a set of i.i.d. samples DXY = {(xi,yi)}N

i=1,
with xi ∈ X ⊂ RdX and yi ∈ Y ⊂ RdY . The quest for the best predictor is
a matter of optimization (see Section 3, and the solution (G) of problem (P)).
Essentially, weights and biases of each neuronal affine transformation are the
weights θ we are looking for. The composition pattern of such weights and
biases, within a NN , follows intricate graphs. Therefore, weights and biases
are progressively updated via the backward propagation algorithm, based on
the derivative chain rule.

4.1 Updating weights with the chain rule
If one adopt the standard Stochastic Gradient Descent framework, with mini-
baches (see Algorithm 2), the backward propagation algorithm consists in com-
puting the derivative of ∂LDXY

∂θi
and the iterative update each weight θi accord-

ing to the following scheme:

θ(i+1) =θ(i) − η

Nb

j
Nb
N∑

k=(j−1) Nb
N

∇θl (hθ (xk) ,yk)

−η · λ ·
j

Nb
N∑

k=(j−1) Nb
N

∇θΩ(w), η ∈ R+

(79)

with l (h (x) ,y) : Y × Y → R+ being a measure of the distance between real
label and prediction, such that l (y ,y) = 0. Ω(w) represents a penalty on the
norm of the weights, with a penalty coefficient λ. The reasons behind weight
penalty are outlined in Section 2.1. η is the learning rate. The back-propagation
is usually performed on mini-batches of Nb instances. Equation (79) represents
the so called batch gradient descent. The partial derivatives ∂LDXY

∂θi
are com-

puted according to the classical chain rule, that reads:

∇θLDXY
= 1
N

N∑

k=1
∇θ l (hθ (xk) ,yk) + λ ·∇θΩ (θ)

with ∇θ l (hθ (x)) =∇θhθ (x)T
.∇hθ

l (hθ)

(80)

The Jacobian J(k)
h = ∇θh

(k)
θ (x) of the output units at kth layer, with the

respect to the weights and biases θ(k) (of size u(k+1), number of output units).
reads:

J(k)
h =

[
∂h

(k)
θ

∂θ
(k)
1

∂h
(k)
θ

∂θ
(k)
2

. . .
∂h

(k)
θ

∂θ
(k)
u(k+1)

]
(81)

The ∇hθ
l (hθ) represents the gradient of the loss function with the respect to

the activation of the output units. Therefore, the chain rule with the respect
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to θ(k) can be explicitly stated as follows:

∇θ l (hθ (x)) =




∂l
∂θ

(k)
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∂θ
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2
. . .
∂l

∂θ
(k)
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=
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. . .
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·
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∂l
∂h

(k)
2
. . .
∂l

∂h
(k)
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(82)

The chain “rules” the automatic differentiation In order to better un-
derstand the back propagation and automatic differentiation, the following
paragraph outlines all the necessary operations to compute the back-propagation
for a classification problem with Ny classes, a dataset DXY = {(xi, yi)}N

i=1 with
yi ∈ {1, ..., Ny} (see Chapter 4 - Classification Techniques in Machine Learn-
ing). The NN classifier is represented by the following MLP hθ, defined
as:

hθ (x) = σy




Ny∑

c=1
h(Nℓ)

c (x) ec


 (83)

where the output activation function g(o) is equal to the softmaxy function,
that reads:

h(o) = g(o)(a(o)) = σy

(
a(o)

)
= softmaxy

(
a(o)

)
= ea(o)

y (x)

Ny∑
c=1

ea
(o)
c (x)

(84)

In particular, the pre-activation function of the output layer reads as Ny entries
that read:

a(o)
c (x) = h(Nℓ)

c = g(Nℓ)
c

(
a(Nℓ)

c (x)
)
, 1 ≤ c ≤ Ny (85)

Finally, the classifier is trained to minimize the Negative Log-Likelihood loss
that reads:

l (hθ (x) , y) = −
Ny∑

c=1
ln
(
σc

(
a(o) (x)

))
χ(y=c) (86)

The following steps outline the different steps of the back-propagation, applying
the chain rule to Equation (86) 10.

10The complete tutorial can be found at https://www.youtube.com/watch?v=p5tL2JqCRDo&
list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH&index=12 (Hugo Larochelle video-lecture series
“Neural networks”).
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1. Derivative at output activation:

∂l (hθ (x) , y)
∂σc

= − χ(y=c)

σc

(
a(o) (x)

) (87)

2. Gradient @ output activation (see softmaxy definition in Equation (91))

∇σl (hθ (x) , y) =
Ny∑

c=1

∂l (hθ (x) , y)
∂σc

ec =

= −
Ny∑

c=1

χ(y=c)

σc

(
a(o) (x)

)ec = − ey

σy

(
a(o) (x)

)
(88)

3. Derivative at activation (output layer Nℓ, see Equation (85))

∂l (hθ (x) , y)
∂h

(Nℓ)
c

=
Ny∑

c′ =1

∂l (hθ (x) , y)
∂σc′

.
∂σc′

∂h
(Nℓ)
c

∣∣∣
a(o)(x)

(89)

with:

∂σc′

∂h
(Nℓ)
c

∣∣∣
a(o)(x)

= ∂σc′

∂a
(o)
c

= σc′

(
a(o) (x)

)
·
(
χ(c′ =c) − σc

(
a(o) (x)

))
(90)

4. Gradient at activation (output layer Nℓ, see Equation (85))
Considering that the softmax output activation function can be rewritten,
with the use of the indicator function χy=c, as:

h(o)
(
a(o)

)
= σy

(
a(o)

)
=

Ny∑

c=1
σc

(
a(o)

)
χy=c =

〈
Ny∑

c=1
χc=yec,σ

(
a(o)

)〉

(91)

∇h(Nℓ) l (hθ (x) , y) =
Ny∑

c=1

∂l (hθ (x) , y)
∂h

(Nℓ)
c

ec =

=
Ny∑

c=1

Ny∑

c′ =1

∂l (hθ (x) , y)
∂σc′

.
∂σc′

∂h
(Nℓ)
c

∣∣∣
a(o)(x)

=

= −
Ny∑

c=1

(
χ(y=c) − σc

)
ec = −

(
ey − σ

(
a(o)

)
(x)
)

(92)
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5. Derivative at pre-activation (output layer Nℓ)

∂l (hθ (x) , y)
∂a

(Nℓ)
c

=
Ny∑

c′ =1

∂l (hθ (x) , y)
∂h

(Nℓ)
c′

.
∂h

(Nℓ)
c′

∂a
(Nℓ)
c

(93)

with:
∂h

(Nℓ)
c′ (x)
∂a

(Nℓ)
c

=
∂g

(Nℓ)
c′

∂a
(Nℓ)
c

(
a

(Nℓ)
c′ (x)

)
χ(c′ =c) (94)

and

∂l (hθ (x) , y)
∂ac

= −
Ny∑

c′ =1

(
χ(y=c′ ) − σc′

) ∂gc′

∂a
(Nℓ)
c

(
a

(Nℓ)
c′ (x)

)
χ(c′ =c) =

= −
(
χ(y=c) − σc

) ∂g(Nℓ)
c

∂a
(Nℓ)
c

(
a(Nℓ)

c (x)
)

(95)

6. Gradient at pre-activation (provided that g(Nℓ)
c = g ∀c)

∇a(Nℓ) l (hθ (x) , y) =
Ny∑

c=1

∂l (hθ (x) , y)
∂a

(Nℓ)
c

ec =

=∇hl (hθ (x) , y)⊙∇ag =

= −
(
ey − σ

(
a(o) (x)

))
⊙∇ag

(96)

7. Derivative at weight (output layer Nℓ)
Considering that

a(Nℓ)
c =

Ny∑

c′ =1

W
(Nℓ)
cc′ h

(Nℓ−1)
c′ + b(Nℓ)

c (97)

∂l (hθ (x) , y)
∂W

(Nℓ)
cc′

=
Ny∑

n=1

∂l (hθ (x) , y)
∂a

(Nℓ)
n

∂a
(Nℓ)
n

∂W
(Nℓ)
cc′

=

= ∂l (hθ (x) , y)
∂a

(Nℓ)
c

h
(Nℓ−1)
c′

(98)

8. Derivative at bias (output layer Nℓ)

∂l (hθ (x) , y)
∂b

(Nℓ)
c

=
Ny∑

n=1

∂l (hθ (x) , y)
∂a

(Nℓ)
n

∂a
(Nℓ)
n

∂b
(Nℓ)
c

= ∂l (hθ (x) , y)
∂a

(Nℓ)
c

· 1 (99)
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9. Gradient at weight W (Nℓ)
cc′ (output layer Nℓ)

Considering Equation (97) once again:

∇W (Nℓ) l (hθ (x) , y) =∇al (hθ (x) , y)⊗ h(Nℓ−1) (100)

10. Gradient at bias (output layer Nℓ)

∇b(Nℓ) l (hθ (x) , y) =∇al (hθ (x) , y) (101)

11. Derivative at activation (hidden layer Nℓ−1)
Considering Equation (97) once again:

∂l (hθ (x) , y)
∂h

(Nℓ−1)
c

=
Ny∑

n=1

∂l (hθ (x) , y)
∂a

(Nℓ)
n

∂a
(Nℓ)
n

∂h
(Nℓ−1)
c

=
Ny∑

n=1

∂l (hθ (x) , y)
∂a

(Nℓ)
n

W (Nℓ)
nc

(102)

12. Gradient at activation (hidden layer Nℓ−1)

∇h(Nℓ−1) l (hθ (x) , y) = W (Nℓ)T .∇al (hθ (x) , y) (103)

13. Reiterate points 5 to 13 for ℓ = 1 . . . Nℓ−1, considering that, for all layers
1 ≤ k ≤ Nℓ the following expression holds:

h(k)
c = g(k)




u(k)∑

c′ =1

W
(k)
cc′ h

(k−1) + b(k)


 (104)

with u(k) being the number of hidden neurons (or units) in layer k

In PyTorch, the automatic differentiation is performed by the autograd library.
autograd organizes the different operations in a directed acyclic graph (DAG,
see Figure 42). Moreover, it keeps track of each variable (a tensor) along with
the executed operations on it (including the gradient of such operations with
the respect to the input, stored in the object attribute grad and the object
function grad fn) and their resulting new tensors. Input tensors are the leaves
of the DAG, while the output tensors are the roots of the DAG. Once the loss
is computed in the forward function (a basic method of the class nn.Module,
that assembles the computational graph), the back-propagation is performed
by calling the method loss.backward(), that is automatically performed by
exploiting the computational graph assembled in the forward pass. This is
possible because PyTorch performs the chain rule operations on the DAG from
every operation that involves a gradient-computing tensor or its dependencies,
as shown in Figure 43. In order to explicitly update the tensors, one needs to
use the context torch.no grad(). The next example clarifies this point.
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Figure 42: The PyTorchViz package allows to visualize the computational graph asso-
ciated to a PyTorch tensor, by adopting the make dot function.

Figure 43: Automatic Differentiation scheme for a function f(x) = g(a(x)), with a =
w · x + b and g a ridge function. Reprinted and modified from [Fey18]

Example 17. Automatic Differentiation with PyTorch

1 import␣numpy␣as␣np
2 import␣torch
3 #␣assure␣reproductibility
4 torch.manual_seed(0)
5 #␣Data␣for␣regression␣problem
6 A␣=␣10.1542550
7 b␣=␣14.7351129
8 epsilon␣=␣0.1
9 N␣=␣200␣#␣number␣i.i.d.␣samples

10
11 #␣Data␣Generation
12 np.random.seed(42)
13 x␣=␣np.random.rand(N,␣1)
14 y␣=␣b␣+␣A␣*␣np.exp(x)␣+␣epsilon␣*␣np.random.randn(N,␣1)
15
16 #␣Shuffles␣the␣indices
17 idx␣=␣np.arange(N)
18 np.random.shuffle(idx)
19
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20 #␣Uses␣first␣80␣random␣indices␣for␣train
21 train_idx␣=␣idx[:int(N*0.8)]
22 #␣Uses␣the␣remaining␣indices␣for␣validation
23 val_idx␣=␣idx[int(N*0.8):]
24
25 #␣Generates␣train␣and␣validation␣sets
26 x_train,␣y_train␣=␣x[train_idx],␣y[train_idx]
27 x_val,␣y_val␣=␣x[val_idx],␣y[val_idx]
28
29 #␣Convert␣Numpy␣arrays␣into␣PyTorch␣Tensors
30 x_train_tensor␣=␣torch.from_numpy(x_train).float()
31 y_train_tensor␣=␣torch.from_numpy(y_train).float()
32
33 alpha␣=␣1e-1␣#␣learning␣rate
34 n_epochs␣=␣1000␣#␣number␣of␣epochs
35
36 #␣initialize␣weights␣and␣bias
37 w␣=␣torch.randn(1,␣requires_grad=True,␣dtype=torch.float,␣device=device)
38 b␣=␣torch.randn(1,␣requires_grad=True,␣dtype=torch.float,␣device=device)
39
40 for␣epoch␣in␣range(n_epochs):
41 ␣␣␣␣yhat␣=␣b␣+␣w␣*␣x_train_tensor
42 ␣␣␣␣error␣=␣y_train_tensor␣-␣yhat
43 ␣␣␣␣loss␣=␣(error␣**␣2).mean()
44
45 ␣␣␣␣#␣Perform␣autodiff!
46 ␣␣␣␣loss.backward()
47
48 ␣␣␣␣print(w.grad)
49 ␣␣␣␣print(b.grad)
50
51 ␣␣␣␣#␣We␣need␣to␣use␣NO_GRAD␣to␣manually␣update␣the␣gradients
52 ␣␣␣␣with␣torch.no_grad():
53 ␣␣␣␣␣␣␣␣w␣-=␣alpha␣*␣w.grad
54 ␣␣␣␣␣␣␣␣b␣-=␣alpha␣*␣b.grad
55
56 ␣␣␣␣#␣Drop␣the␣old␣gradients
57 ␣␣␣␣w.grad.zero_()
58 ␣␣␣␣b.grad.zero_()
59
60 print(A,␣b)

In practice, the tensor update is performed automatically too, by using the
PyTorch optimizer library, presented in Section 3.

Example 18. Back-propagation through a multi-class classifier with
PyTorch AutoGrad library
In this example, a NN classifier is trained over a dummy dataset (iris
dataset), with Ny =3 and with two hidden layers of 4 and 8 neurons respec-
tively. The PyTorchViz package, one again, allows to visualize the computa-
tional graph associated to a PyTorch tensor, by adopting the make dot function.
In PyTorch, compared to Equation (86), the softmaxy vector of probabilities
in combination with the Negative Log-Likelihood loss for multi-class classifica-
tion, can be replaced by creating a model with linear output activation function
g(o)(a(o)

c ) = a
(o)
c and using the CrossEntropyLoss class to compute the Neg-

ative Log-Likelihood from the so-called logits a
(o)
c , i.e., the score obtained
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by the classifier hθ for each class. The cross entropy H (p∥pθ), between two
probability distributions: p

(
y1, y2, . . . yNy

)
(the “real” probability distribution

of the classes) and the model probability pθ (y|x):

H (p∥pθ) = −
Ny∑

c=1
p(yi = 1, yj ̸=i = 0) · ln pθ (yi|x) (105)

which corresponds to Equation (86).

1 #␣Source:
2 #␣https://machinelearningmastery.com/building-a-multiclass-classification-model-in-pytorch/
3 import␣matplotlib.pyplot␣as␣plt
4 import␣numpy␣as␣np
5 import␣pandas␣as␣pd
6 import␣torch
7 import␣torch.nn␣as␣nn
8 import␣torch.optim␣as␣optim
9 import␣tqdm

10 from␣sklearn.model_selection␣import␣train_test_split
11 from␣sklearn.preprocessing␣import␣OneHotEncoder
12 import␣copy
13 #␣uncomment␣the␣next␣line␣to␣install␣torchviz␣if␣necessary
14 #␣!␣pip␣install␣torchviz
15 from␣torchviz␣import␣make_dot
16
17 #␣To␣assure␣reproductibility,␣fix␣the␣random␣seed
18 torch.manual_seed(0)␣#␣to␣assure␣reproductibility
19 np.random.seed(0)␣#␣to␣assure␣reproductibility
20
21 #␣Download␣and␣parse␣the␣IRIS␣dataset␣(from␣the␣UCI␣Machine␣Learning␣repository)
22 #␣This␣dataset␣was␣conceived␣by␣Sir␣Ronald␣Fisher␣and␣it␣is␣among␣the␣best-known
23 #␣dataset␣for␣pattern␣recognition
24 data_url=␣"https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
25 data␣=␣pd.read_csv(data_url,␣header=None)
26 X␣=␣data.iloc[:,␣0:4]
27 y␣=␣data.iloc[:,␣4:]
28
29 #␣The␣IRIS␣dataset␣is␣composed␣of␣the␣three␣class␣labels:
30 #␣1.␣Iris-setosa
31 #␣2.␣Iris-versicolor
32 #␣3.␣Iris-virginica
33 #␣apply␣one-hot␣encoding
34 ohe␣=␣OneHotEncoder(handle_unknown='ignore',␣sparse_output=False).fit(y)
35 y␣=␣ohe.transform(y)
36
37 #␣convert␣pandas␣DataFrame␣(X)␣and␣numpy␣array␣(y)␣into␣PyTorch␣tensors
38 X␣=␣torch.tensor(X.values,␣dtype=torch.float32)
39 y␣=␣torch.tensor(y,␣dtype=torch.float32)
40
41 #␣split␣into␣train␣and␣test␣sets
42 X_train,␣X_test,␣y_train,␣y_test␣=␣train_test_split(X,␣y,␣train_size=0.7,␣shuffle=True)
43
44 #␣define␣the␣MLP␣sequentially␣with␣torch.nn
45 h_theta␣=␣nn.Sequential()
46 #␣first␣hidden␣layer␣pre-activation␣aˆ(1)
47 h_theta.add_module('a1',␣nn.Linear(4,␣8))
48 #␣first␣hidden␣layer␣activation␣function␣gˆ(1)
49 h_theta.add_module('g1',␣nn.ReLU())
50 #␣second␣hidden␣layer␣pre-activation␣aˆ2
51 h_theta.add_module('a2',␣nn.Linear(8,␣3))
52
53 #␣define␣the␣loss␣function
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54 loss_fn␣=␣nn.CrossEntropyLoss()␣#␣loss␣function
55 optimizer␣=␣optim.Adam(h_theta.parameters(),␣lr=0.001)␣#␣optimizer
56
57 #␣prepare␣model␣and␣training␣parameters
58 n_epochs␣=␣10␣#␣number␣of␣training␣epochs
59 batch_size␣=␣5␣#␣size␣of␣the␣mini␣batch
60 batches_per_epoch␣=␣len(X_train)␣//␣batch_size
61
62 best_acc␣=␣-␣np.inf␣␣␣#␣init␣to␣negative␣infinity
63 best_weights␣=␣None
64 #␣track␣loss␣history
65 train_loss_hist␣=␣[]
66 train_acc_hist␣=␣[]
67 test_loss_hist␣=␣[]
68 test_acc_hist␣=␣[]
69
70 #␣training␣loop␣over␣the␣epochs
71 for␣epoch␣in␣range(n_epochs):
72 ␣␣␣␣epoch_loss␣=␣[]
73 ␣␣␣␣epoch_acc␣=␣[]
74 ␣␣␣␣#␣set␣model␣in␣training␣mode
75 ␣␣␣␣h_theta.train()
76 ␣␣␣␣with␣tqdm.trange(batches_per_epoch,␣unit="batch",␣mininterval=0)␣as␣bar:
77 ␣␣␣␣␣␣␣␣bar.set_description(f"Epoch␣{epoch}")
78 ␣␣␣␣␣␣␣␣for␣i␣in␣bar:
79 ␣␣␣␣␣␣␣␣␣␣␣␣#␣take␣a␣batch
80 ␣␣␣␣␣␣␣␣␣␣␣␣start␣=␣i␣*␣batch_size
81 ␣␣␣␣␣␣␣␣␣␣␣␣X_batch␣=␣X_train[start:start+batch_size]
82 ␣␣␣␣␣␣␣␣␣␣␣␣y_batch␣=␣y_train[start:start+batch_size]
83 ␣␣␣␣␣␣␣␣␣␣␣␣#␣infer␣(forward)
84 ␣␣␣␣␣␣␣␣␣␣␣␣y_pred␣=␣h_theta(X_batch)
85 ␣␣␣␣␣␣␣␣␣␣␣␣#␣compute␣the␣loss
86 ␣␣␣␣␣␣␣␣␣␣␣␣loss␣=␣loss_fn(y_pred,␣y_batch)
87 ␣␣␣␣␣␣␣␣␣␣␣␣#␣reset␣previously␣saved␣gradients␣and␣empty␣the␣optimizer␣memory
88 ␣␣␣␣␣␣␣␣␣␣␣␣optimizer.zero_grad()
89 ␣␣␣␣␣␣␣␣␣␣␣␣#␣run␣backward␣propagation
90 ␣␣␣␣␣␣␣␣␣␣␣␣loss.backward()
91 ␣␣␣␣␣␣␣␣␣␣␣␣#␣update␣weights
92 ␣␣␣␣␣␣␣␣␣␣␣␣optimizer.step()
93 ␣␣␣␣␣␣␣␣␣␣␣␣#␣compute␣and␣store␣metrics
94 ␣␣␣␣␣␣␣␣␣␣␣␣acc␣=␣(torch.argmax(y_pred,␣1)␣==␣torch.argmax(y_batch,␣1)).float().mean()
95 ␣␣␣␣␣␣␣␣␣␣␣␣epoch_loss.append(float(loss))
96 ␣␣␣␣␣␣␣␣␣␣␣␣epoch_acc.append(float(acc))
97 ␣␣␣␣␣␣␣␣␣␣␣␣bar.set_postfix(
98 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣loss=float(loss),
99 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣acc=float(acc)

100 ␣␣␣␣␣␣␣␣␣␣␣␣)
101 ␣␣␣␣#␣set␣model␣in␣evaluation␣mode␣to␣infer␣the␣class␣in␣the␣test␣set
102 ␣␣␣␣#␣without␣storing␣gradients␣for␣brackprop
103 ␣␣␣␣h_theta.eval()
104 ␣␣␣␣#␣infer␣the␣class␣over␣the␣test␣set
105 ␣␣␣␣y_pred␣=␣h_theta(X_test)
106 ␣␣␣␣ce␣=␣loss_fn(y_pred,␣y_test)
107
108
109 ␣␣␣␣acc␣=␣(torch.argmax(y_pred,␣1)␣==␣torch.argmax(y_test,␣1)).float().mean()
110 ␣␣␣␣ce␣=␣float(ce)
111 ␣␣␣␣acc␣=␣float(acc)
112 ␣␣␣␣train_loss_hist.append(np.mean(epoch_loss))
113 ␣␣␣␣train_acc_hist.append(np.mean(epoch_acc))
114 ␣␣␣␣test_loss_hist.append(ce)
115 ␣␣␣␣test_acc_hist.append(acc)
116 ␣␣␣␣if␣acc␣>␣best_acc:
117 ␣␣␣␣␣␣␣␣best_acc␣=␣acc
118 ␣␣␣␣␣␣␣␣best_weights␣=␣copy.deepcopy(h_theta.state_dict())
119 ␣␣␣␣print(f"Epoch␣{epoch}␣validation:␣Cross-entropy={ce:.2f},␣Accuracy={acc*100:.1f}%")
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120
121 #␣plot␣computational␣graph␣with␣torchviz
122 h_theta.eval()
123 y_pred␣=␣h_theta(X_test)
124 ce␣=␣loss_fn(y_pred,␣y_test)
125 make_dot(y_pred,␣params=dict(h_theta.named_parameters()),
126 ␣show_attrs=True,␣show_saved=True).render("classifier_graph",␣format="png")
127 make_dot(ce,␣params=dict(h_theta.named_parameters()),
128 ␣show_attrs=True,␣show_saved=True).render("loss_graph",␣format="png")
129
130
131
132 #␣Restore␣best␣model
133 h_theta.load_state_dict(best_weights)
134
135 #␣Plot␣the␣loss␣and␣accuracy␣for␣train␣and␣test␣sets
136 plt.plot(train_loss_hist,␣label="train")
137 plt.plot(test_loss_hist,␣label="test")
138 plt.xlabel("epochs")
139 plt.ylabel("cross␣entropy")
140 plt.legend()
141 plt.show()
142
143 plt.plot(train_acc_hist,␣label="train")
144 plt.plot(test_acc_hist,␣label="test")
145 plt.xlabel("epochs")
146 plt.ylabel("accuracy")
147 plt.legend()
148 plt.show()

4.2 Countermeasures to vanishing gradients
Automatic Differentiation is based on the classical chain rule outlined in Equa-
tion (80). During backpropagation, gradients that “flow” into a neuron are
proportional to the activation of the input neurons they are connected with.
When the activation values are small, gradients vanish and the neurons do not
learn anything. If one considers a feed-forward Multi-Layer Perceptron on the
dataset DXY = {(xi, yi)}N

i=1, with xi ∈ RdX , y ∈ R, made of Nℓ hidden layers
reads:

hθ (x) =g(o) ◦ a(o) ◦ g(Nℓ) ◦ a(Nℓ) ◦ . . . ◦ g(ℓ) ◦ a(ℓ) ◦ . . . g(1) ◦ a(1) (x)
a(ℓ) (u) =w(ℓ) · u+ b(ℓ), 1 < ℓ ≤ Nℓ

h(ℓ) (u) =g(ℓ)
(
a(ℓ) (u)

)
, 1 ≤ ℓ ≤ Nℓ, h(o) (u) = g(o)(u)

a(1) (x) =
〈
w(1),x

〉
+ b(1),

(106)

If one computes the derivative of the loss function LDXY
is based on the chain

rule. For instance, in order to update w(1)
c the following derivative must be

computed:

∂LDXY

∂w
(1)
c

= ∂g(o)

∂a(o) ·
∂a(o)

∂h(Nℓ)




Nℓ−1∏

ℓ=1
Nℓ>1

∂g(Nℓ+1−ℓ)

∂a(Nℓ+1−ℓ) ·
∂a(Nℓ+1−ℓ)

∂h(Nℓ−ℓ)



∂g(1)

∂a(1)
∂a(1)

∂w
(1)
c

(107)
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with the following update rule:

w(1)(i+1)
c = w(1)(i)

c − η ∂LDXY

∂w
(1)
c

(108)

A vanishing gradient make the iterative back-propagation scheme to fail, since
the weights tends to remain constant due to the fact that ∂LDXY

∂w
(1)
c

≈ 0. The
choice of the activation functions g plays a major role in making the gradient
vanish. In particular, the activation functions g with limited output range, i.e.,
whose derivative ∂g

∂a has a compact support (the so called region of significance),
can yield derivatives close to 0 for certain values of the pre-activation a (see
Figure 44).

Figure 44: Examples of activations functions g(a) and their derivative with the respect
to the pre-activation function a.

The gradient ∇w(1)LDXY
tends to vanish when the derivative

∂g(Nℓ+1−ℓ)

∂a(Nℓ+1−ℓ) ≈ 0 (109)

Gatti 235

ALERT Doctoral School 2023



This effect is even emphasized for deeper networks, because the product
Nℓ−1∏

ℓ=1

∂g(Nℓ+1−ℓ)

∂a(Nℓ+1−ℓ) ·
∂a(Nℓ+1−ℓ)

∂h(Nℓ−ℓ) ≈ 0 (110)

even faster if the same activation function g is chosen for all layers.
The most commonly adopted activation function has been g = ReLU so
far [GBB11]. As a matter of fact, deep NN featured by ReLU with hard
zero threshold, in combination with ℓ1-norms on the weights (to bound the
positive activation values a > 0), promote sparsity and ease the gradient back-
propagation on active units [GBB11]. After being initialized with uniform
sampling, almost half of the hidden neurons output value is zero, with this
fraction increasing whenever the ℓ1 regularization is adopted. In this sense,
active neurons alleviates the vanishing gradient since ∂g

∂a |a>0 = 1. The MLP
becomes a piece-wise linear function, with neurons that are either deactivated
a < 0 or operating in linear regime a > 0. The basis of those sparse piece-wise
linear ridge functions helps representing the labelling of regression function
f : x 7→ y over a basis of ridge functions (see Section 2.1 for further details
about the Universal Approximation Theorem).

Example 19. Vanishing gradient effect for deep MLP classifiers
In this example, a 10-layer deep MLP , is conceived for the multi-class classi-
fication problem outlined in Section 4.1, with Ny=3 classes and with fanin =
fanout =5 for all hidden layers (see Example 18 for further details). The depth
of the MLP designed in the present PyTorch example makes it prone to van-
ishing gradients, at the deepest layers especially. In particular, the example
compares the evolution of the mean (over the database samples) gradient norm
with the training epochs, for two different activation functions, namely tanh
and ReLU . The results are depicted in Figure 45. From Figure 45, it is clear
that :

• When the activation function saturates and the MLP has too many
layers, the gradient of the loss function with the respect to the weights
and biases of the initial layers vanishes, preventing the loss to converge
to 0 (see Figure 45a and Figure 45c).

• Replacing the activation function by a non-saturating one, such as g(ℓ) =
ReLU , prevents the gradient to vanish at all layers which in turns make
the loss function converge to 0.

The PyTorch code is reported below.

1 #␣Source:
2 #␣https://machinelearningmastery.com/building-a-multiclass-classification-model-in-pytorch/
3 #␣https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
4 import␣matplotlib.pyplot␣as␣plt
5 import␣numpy␣as␣np
6 import␣pandas␣as␣pd
7 import␣torch
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a b

c d

Figure 45: Loss function evolution with epoch of training (a-b) and mean gradient norm
of each layer of the MLP (c-d). (a) and (c) refer to the case with the activation function
g(ℓ) = tanh, whereas (b) and (d) refer to the case with activation function g(ℓ) = ReLU .
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8 import␣torch.nn␣as␣nn
9 import␣torch.optim␣as␣optim

10 import␣tqdm
11 from␣sklearn.model_selection␣import␣train_test_split
12 from␣sklearn.preprocessing␣import␣OneHotEncoder
13 import␣copy
14 #␣install␣torchviz␣(optional)
15 #␣!␣pip␣install␣torchviz
16 #␣from␣torchviz␣import␣make_dot
17
18 #␣To␣assure␣reproductibility,␣fix␣the␣random␣seed
19 torch.manual_seed(0)␣#␣to␣assure␣reproductibility
20 np.random.seed(0)␣#␣to␣assure␣reproductibility
21
22 #␣Download␣and␣parse␣the␣IRIS␣dataset␣(from␣the␣UCI␣Machine␣Learning␣repository)
23 #␣This␣dataset␣was␣conceived␣by␣Sir␣Ronald␣Fisher␣and␣it␣is␣among␣the␣best-known
24 #␣dataset␣for␣pattern␣recognition
25 data_url=␣"https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
26 data␣=␣pd.read_csv(data_url,␣header=None)
27 X␣=␣data.iloc[:,␣0:4]
28 y␣=␣data.iloc[:,␣4:]
29
30 #␣The␣IRIS␣dataset␣is␣composed␣of␣the␣three␣class␣labels:
31 #␣1.␣Iris-setosa
32 #␣2.␣Iris-versicolor
33 #␣3.␣Iris-virginica
34 #␣apply␣one-hot␣encoding
35 ohe␣=␣OneHotEncoder(handle_unknown='ignore',␣sparse_output=False).fit(y)
36 y␣=␣ohe.transform(y)
37
38 #␣convert␣pandas␣DataFrame␣(X)␣and␣numpy␣array␣(y)␣into␣PyTorch␣tensors
39 X␣=␣torch.tensor(X.values,␣dtype=torch.float32)
40 y␣=␣torch.tensor(y,␣dtype=torch.float32)
41 d_X␣=␣X.shape[1]
42 Ny␣=␣y.shape[-1]
43 #␣split␣into␣train␣and␣test␣sets
44 X_train,␣X_test,␣y_train,␣y_test␣=␣train_test_split(X,␣y,␣train_size=0.7,␣shuffle=True)
45
46 #␣Function␣to␣track␣grad␣norm
47 def␣track_grad_norm(model,␣norm_type='fro'):
48 ␣␣#␣Collect␣parameters␣(weights␣and␣biases␣from␣all␣layers)
49 ␣␣parameters␣=␣[p␣for␣p␣in␣model.parameters()
50 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣if␣p.grad␣is␣not␣None␣and␣p.requires_grad]
51 ␣␣#␣Defin␣the␣total␣norm␣and␣initialize␣to␣0
52 ␣␣total_norm␣=␣{k:␣0.0␣for␣k,_␣in␣model.named_parameters()}
53 ␣␣if␣len(parameters)␣>␣0:
54 ␣␣␣␣␣␣#␣get␣weight␣device␣(initial␣weight)
55 ␣␣␣␣␣␣device␣=␣parameters[0].grad.device
56 ␣␣␣␣␣␣#␣Assign␣values␣of␣the␣grad␣to␣each␣layer␣(in␣the␣dictionary)
57 ␣␣␣␣␣␣for␣n,p␣in␣model.named_parameters():
58 ␣␣␣␣␣␣␣␣total_norm[n]=torch.norm(p.grad.detach(),␣norm_type).to(device).item()
59 ␣␣return␣total_norm
60
61 loss_fn␣=␣nn.CrossEntropyLoss()␣#␣loss␣function
62
63 #␣Design␣the␣MLP
64 h_theta␣=␣nn.Sequential()
65 nl␣=␣10␣#␣number␣of␣hidden␣layers
66 fan_in␣=␣5␣#␣number␣of␣hidden␣units␣per␣neuron
67 #␣Define␣the␣dictionary␣of␣different␣activation␣functions
68 activations={'tanh':␣nn.Tanh(),␣'ReLU':␣nn.ReLU(),␣'Sigmoid':␣nn.Sigmoid()␣}
69
70 #␣chosen␣activation␣function
71 act␣=␣'tanh'␣#␣switch␣to␣ReLU␣or␣Sigmoid
72 activation␣=␣activations[act]
73 #␣Initialize␣latex␣dictionary␣for␣plotting
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74 latex_dict={}
75 #␣Iterate␣over␣layer␣number
76 for␣l␣in␣range(nl):
77 ␣␣if␣l==0:
78 ␣␣␣␣h_theta.add_module('a{:>d}'.format(l),␣nn.Linear(d_X,␣fan_in))
79 ␣␣else:
80 ␣␣␣␣h_theta.add_module('a{:>d}'.format(l),␣nn.Linear(fan_in,␣fan_in))
81
82 ␣␣h_theta.add_module('g{:>d}'.format(l),␣activation)
83 ␣␣#␣Update␣the␣latex␣dictionary␣for␣plotting
84 ␣␣latex_dict["a{:>d}.weight".format(l)]=r"$\nabla_{{␣\mathbf{{W}}␣}}␣aˆ{{({:>d})}}$".format(l)
85 ␣␣latex_dict["a{:>d}.bias".format(l)]=r"$\frac{{\partial␣aˆ{{({:>d})}}}}{{\partial␣b}}$".format(l)
86 #␣define␣output␣layer
87 h_theta.add_module('aout',␣nn.Linear(fan_in,␣Ny))
88 #␣Update␣the␣latex␣dictionary␣for␣plotting
89 latex_dict['aout.weight'.format(l)]=r"$\nabla_{{␣\mathbf{{W}}␣}}␣aˆ{{(o)}}$"
90 latex_dict['aout.bias'.format(l)]=r"$\frac{{\partial␣aˆ{{(o)}}}}{{\partial␣b}}$"
91
92 #␣Initialize␣weights
93 #␣h_theta.apply(kaiming_normal_init)
94 init_weight=False
95
96 optimizer␣=␣optim.Adam(h_theta.parameters(),␣lr=0.001)␣#␣optimizer
97
98
99 #␣prepare␣model␣and␣training␣parameters

100 n_epochs␣=␣300␣#␣number␣of␣training␣epochs
101 batch_size␣=␣5␣#␣size␣of␣the␣mini␣batch
102 batches_per_epoch␣=␣len(X_train)␣//␣batch_size
103
104 best_acc␣=␣-␣np.inf␣␣␣#␣init␣to␣negative␣infinity
105 best_weights␣=␣None
106 #␣track␣loss␣history
107 train_loss_hist␣=␣[]
108 train_acc_hist␣=␣[]
109 test_loss_hist␣=␣[]
110 test_acc_hist␣=␣[]
111 norm_grad={n:[]␣for␣n,_␣in␣h_theta.named_parameters()}
112
113
114 #␣#␣Initialize␣weights
115 #␣h_theta.apply(xavier_normal_init)
116 #␣training␣loop␣over␣the␣epochs
117 for␣epoch␣in␣range(n_epochs):
118 ␣␣␣␣epoch_loss␣=␣[]
119 ␣␣␣␣epoch_acc␣=␣[]
120 ␣␣␣␣epoch_norm_grad␣=␣{n:[]␣for␣n,_␣in␣h_theta.named_parameters()}
121 ␣␣␣␣#␣set␣model␣in␣training␣mode
122 ␣␣␣␣h_theta.train()
123
124 ␣␣␣␣with␣tqdm.trange(batches_per_epoch,␣unit="batch",␣mininterval=0)␣as␣bar:
125 ␣␣␣␣␣␣␣␣bar.set_description(f"Epoch␣{epoch}")
126 ␣␣␣␣␣␣␣␣for␣i␣in␣bar:
127 ␣␣␣␣␣␣␣␣␣␣␣␣#␣take␣a␣batch
128 ␣␣␣␣␣␣␣␣␣␣␣␣start␣=␣i␣*␣batch_size
129 ␣␣␣␣␣␣␣␣␣␣␣␣X_batch␣=␣X_train[start:start+batch_size]
130 ␣␣␣␣␣␣␣␣␣␣␣␣y_batch␣=␣y_train[start:start+batch_size]
131 ␣␣␣␣␣␣␣␣␣␣␣␣#␣infer␣(forward)
132 ␣␣␣␣␣␣␣␣␣␣␣␣y_pred␣=␣h_theta(X_batch)
133 ␣␣␣␣␣␣␣␣␣␣␣␣#␣compute␣the␣loss
134 ␣␣␣␣␣␣␣␣␣␣␣␣loss␣=␣loss_fn(y_pred,␣y_batch)
135 ␣␣␣␣␣␣␣␣␣␣␣␣#␣reset␣previously␣saved␣gradients␣and␣empty␣the␣optimizer␣memory
136 ␣␣␣␣␣␣␣␣␣␣␣␣optimizer.zero_grad()
137 ␣␣␣␣␣␣␣␣␣␣␣␣#␣run␣backward␣propagation
138 ␣␣␣␣␣␣␣␣␣␣␣␣loss.backward()
139 ␣␣␣␣␣␣␣␣␣␣␣␣#␣update␣weights

Gatti 239

ALERT Doctoral School 2023



140 ␣␣␣␣␣␣␣␣␣␣␣␣optimizer.step()
141 ␣␣␣␣␣␣␣␣␣␣␣␣#␣compute␣and␣store␣metrics
142 ␣␣␣␣␣␣␣␣␣␣␣␣acc␣=␣(torch.argmax(y_pred,␣1)␣==␣torch.argmax(y_batch,␣1)).float().mean()
143 ␣␣␣␣␣␣␣␣␣␣␣␣epoch_loss.append(float(loss))
144 ␣␣␣␣␣␣␣␣␣␣␣␣epoch_acc.append(float(acc))
145 ␣␣␣␣␣␣␣␣␣␣␣␣bar.set_postfix(
146 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣loss=float(loss),
147 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣acc=float(acc)
148 ␣␣␣␣␣␣␣␣␣␣␣␣)
149 ␣␣␣␣␣␣␣␣␣␣␣␣#␣Update␣the␣norm␣of␣the␣grad␣per␣sample
150 ␣␣␣␣␣␣␣␣␣␣␣␣update_grad_norm_batch␣=␣track_grad_norm(h_theta)
151 ␣␣␣␣␣␣␣␣␣␣␣␣for␣p,ng␣in␣update_grad_norm_batch.items():
152 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣epoch_norm_grad[p].append(ng)
153 ␣␣␣␣#␣Compute␣the␣mean␣norm␣of␣the␣grad
154 ␣␣␣␣for␣p,ng␣in␣epoch_norm_grad.items():
155 ␣␣␣␣␣␣norm_grad[p].append(np.mean(ng))
156 ␣␣␣␣#␣set␣model␣in␣evaluation␣mode␣to␣infer␣the␣class␣in␣the␣test␣set
157 ␣␣␣␣#␣without␣storing␣gradients␣for␣brackprop
158 ␣␣␣␣h_theta.eval()
159 ␣␣␣␣#␣infer␣the␣class␣over␣the␣test␣set
160 ␣␣␣␣y_pred␣=␣h_theta(X_test)
161 ␣␣␣␣ce␣=␣loss_fn(y_pred,␣y_test)
162
163 ␣␣␣␣acc␣=␣(torch.argmax(y_pred,␣1)␣==␣torch.argmax(y_test,␣1)).float().mean()
164 ␣␣␣␣ce␣=␣float(ce)
165 ␣␣␣␣acc␣=␣float(acc)
166 ␣␣␣␣train_loss_hist.append(np.mean(epoch_loss))
167 ␣␣␣␣train_acc_hist.append(np.mean(epoch_acc))
168 ␣␣␣␣test_loss_hist.append(ce)
169 ␣␣␣␣test_acc_hist.append(acc)
170 ␣␣␣␣#␣norm_grad.append(np.mean(epoch_norm_grad))
171 ␣␣␣␣#␣if␣acc␣>␣best_acc:
172 ␣␣␣␣#␣␣␣␣␣best_acc␣=␣acc
173 ␣␣␣␣#␣␣␣␣␣best_weights␣=␣copy.deepcopy(h_theta.state_dict())
174 ␣␣␣␣print(f"Epoch␣{epoch}␣validation:␣Cross-entropy={ce:.2f},␣Accuracy={acc*100:.1f}%")
175
176 #␣Plot␣the␣loss␣for␣train␣and␣test␣sets
177 fig,␣ax␣=␣plt.subplots(figsize=(5,5))
178 ax.plot(train_loss_hist,␣label="train",color='steelblue',linewidth=3)
179 ax.plot(test_loss_hist,␣label="test",color='lightskyblue',linewidth=3,linestyle='--')
180 ax.set_xlabel(r"epochs")
181 ax.set_ylabel(r"$\mathit{L}_{\mathcal{D}_{XY}}$")
182 ax.set_xlim(0,300)
183 ax.set_ylim(0.0,1.2)
184 ax.legend()
185
186 if␣init_weight:
187 ␣␣fig.savefig("loss_classifier_init_{:>d}_{:>d}_{:>s}.png".format(nl,␣fan_in,␣act),
188 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣dpi=300,␣bbox_inches="tight")
189 else:
190 ␣␣fig.savefig("loss_classifier_{:>d}_{:>d}_{:>s}.png".format(nl,␣fan_in,␣act),
191 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣dpi=300,␣bbox_inches="tight")
192
193 #␣Plot␣the␣mean␣gradient␣norm
194 colors␣=␣[plt.cm.jet(c)␣for␣c␣in␣␣np.linspace(0,1,len(list(norm_grad.keys())))␣␣]
195
196 fig,␣ax␣=␣plt.subplots(figsize=(5,5))
197 for␣i,␣(n,␣ng)␣in␣enumerate(norm_grad.items()):
198 ␣␣ax.semilogy(ng,␣label=latex_dict[n],color=colors[i],linewidth=3)
199 #␣ax.plot(test_loss_hist,␣label="test")
200 ax.set_xlabel("epochs")
201 ax.set_ylabel(r"$\Vert␣\nabla_\theta␣\mathit{L}_{\mathcal{D}_{XY}}\Vert$")
202 ax.set_xlim(0,300)
203 ax.set_ylim(1e-5,1e2)
204 ax.legend(loc='upper␣center',␣bbox_to_anchor=(0.5,␣1.4),ncol=4,)
205 if␣init_weight:
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206 ␣␣fig.savefig("norm_grad_classifier_init_{:>d}_{:>d}_{:>s}.png".format(nl,␣fan_in,␣act),
207 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣dpi=300,␣bbox_inches="tight")
208 else:
209 ␣␣fig.savefig("norm_grad_classifier_{:>d}_{:>d}_{:>s}.png".format(nl,␣fan_in,␣act),
210 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣dpi=300,␣bbox_inches="tight")

4.2.1 Weight initialization

The weight initialization can play a major role case of vanishing gradient, since,
depending on the activation function at stake, for deeper neural networks, it
can occur that ∇w(1)LDXY

≈ 0 in Equation (107), whenever the following
condition occurs:

∂a(Nℓ−ℓ)

∂h(Nℓ−ℓ−1) = w(Nℓ−ℓ) ≈ 0 (111)

Weight initialization was firstly introduced in the seminal work of Bengio et
al. [Ben+06]. The authors proposed to optimize the weights of a NN by
greedy unsupervised steps, i.e., by training one layer at time and freezing all
the previous ones. This approach, by late 2000s, was the leading strategy to
avoid trivial initializations, such as zero or constant initialization. The latter
does not necessarily imply that the gradient vanishes, provided that the network
is shallow though, as for instance in case of a MLP Nℓ = 1. For the latter,
Equation (107) simplifies in the following expression:

∂LDXY

∂w
(1)
c

= ∂g(o)

∂a(o) ·
∂a(o)

∂h(1)
∂g(1)

∂a(1)
∂a(1)

∂w
(1)
c

= ∂g(o)

∂a(o) ·
∂a(o)

∂h(1)
∂h(1)

∂a(1) · xc (112)

If two neurons are added to the MLP with one hidden layer, Equation (112)
becomes: 




∂LDXY

∂w
(1)
1c

= ∂g(o)

∂a(o) ·
∂a(o)

∂h
(1)
1

∂h
(1)
1

∂a
(1)
1
· xc

∂LDXY

∂w
(1)
2c

= ∂g(o)

∂a(o) ·
∂a(o)

∂h
(1)
2

∂h
(1)
2

∂a
(1)
2
· xc

(113)

(114)

with a(1) = W (1)x + b(1), and h
(1)
i = g(a(1)

i ) (see Figure 1). In this case,
the trivial initialization W = cst. and b(1) = cst. does not make the gradient
vanish (if and only if Nℓ = 1) but since a(1)

1 = a
(1)
2 = 0, then h

(1)
1 = g(a(1)

1 ) =
h

(1)
1 = g(a(1)

1 ), so that w(1)(i)
1c = w

(1)(i)
2c until convergence. This symmetric evo-

lution of the weights is rather restrictive though, since it cannot be prevented
after the first gradient descent iteration.
A smarter weight initialization strategy is to sample them from the standard
normal or uniform distribution. However, this strategy can incur into either
vanishing gradients, because the activation function can saturate for large ran-
dom samples (see Equation (109)) or because the weight value is too small (see
Equation (111)). When randomly sampled, the weight value is dominated by
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the choice of their variance. In other words, the optimum sampling solution
would be an unbiased random sampling with the “optimum” variance that avoid
vanishing gradients. The zero-mean avoids introducing spurious bias shifts (see
Section 5.2 and [CUH16]) and asymmetric weight configurations. The “opti-
mum” variance should be chosen in order to decorrelate weights, biases and
input in the pre-activation output a(k)

i at each layer k (see Equation (97)), so
that its variance reads:

V(a(k)
i ) = V




u(k)∑

j=1
W

(k)
ij h

(k−1)
j


+ V

(
b

(k)
i

)
(115)

with

V




u(k)∑

j=1
W

(k)
ij h

(k−1)
j


 =

u(k)∑

j=1
V
(
W

(k)
ij

)
·
(

E
[
h

(k−1)
j

])2
+

+
u(k)∑

j=1

(
E
[
W

(k)
ij

])2
· V
(
h

(k−1)
j

)
+

+
u(k)∑

j=1
V
(
W

(k)
ij

)
· V
(
h

(k−1)
j

)

(116)

If one assumes that unbiased weights, biases and inputs, with constant variances
V(W (k)), V(b(k)) and V(h(k−1)) respectively, Equation (116) can be rewritten
as:

V
(
a

(k)
i

)
=
(
u(k) · V(W (k))

)i

· V(h(k−1)) + V
(
b

(k)
i

)
(117)

In order to assure that weights, biases and inputs are decorrelated, Equa-
tion (117) must hold, by avoiding the quantity

(
u(k) · V(W (k))

)i to vanish or
explode. In order to do so, the most effective strategy consists into initializing
the biases to 0 and the weight variance as follows:

V(W (k)) = 1
u(k) ⇒ V

(
a

(k)
i

)
= V(h(k−1)) + V

(
b

(k)
i

)
(118)

or, in order to account for both forward and backward propagation, the Xavier
(or Glorot) initialization proposed by [GB10] is preferred:

V(W (k)) = 2
u(k) + u(k+1) (119)

Xavier (or Glorot) initialization in Equation (119) avoids the pre-activation
variance to explode or to vanish both in forward and in backward propagation,
with opposite flow of information. This initialization grants a good stability of
the training scheme. If the weights are sampled with standard normal distribu-
tion, Equation (119) provides the standard deviation. If a uniform distribution
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U (−c, c) is chosen, its variance being c2

3 , then the end points can be selected
as ±

√
6

u(k)+u(k+1) .
However, [Kum17] proved that Xavier (or Glorot) initialization seems to highly
impact the backward propagation of NN featured by ReLU activation func-
tions, due to the asymmetric nature of this activation function that is identi-
cally zero for negative argument. Therefore, [He+15] proposed to initialize the
weight variance as follows:

V(W (k)) = 2
u(k) (120)

with end point for uniform distribution ±
√

6
u(k) . This strategy goes under the

name of He (or Kaiming) initialization. For both Xavier (or Glorot) and He (or
Kaiming) initialization, a gain can be multiplied to the variance initialization.

Example 20. Different weight initialization techniques for a multi-class classifier
with PyTorch.
In the literature, the number of input units u(k) and the number of output
units u(k+1) are referred as to fanin and fanout respectively. PyTorch class
torch.nn.init11, adopted to perform weight initialization, follows the same
notation. The following example shows the weight distribution for different
initializations, for a 1-layer MLP with fanin =100 and fanout=100.

1 import␣matplotlib.pyplot␣as␣plt
2 import␣seaborn␣as␣sns
3 import␣numpy␣as␣np
4 #␣import␣pandas␣as␣pd
5 import␣torch
6 import␣torch.nn␣as␣nn
7
8 #␣To␣assure␣reproductibility,␣fix␣the␣random␣seed
9 torch.manual_seed(0)␣#␣to␣assure␣reproductibility

10
11 #␣define␣the␣1-layer␣MLP
12 h_theta␣=␣nn.Sequential()
13 h_theta.add_module('a1',␣nn.Linear(100,␣100))
14 h_theta.add_module('g1',␣nn.ReLU())
15
16 #␣define␣initialization␣functions
17 def␣constant_init(m):
18 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
19 ␣␣␣␣␣␣␣␣torch.nn.init.constant_(m.weight,␣2)
20
21 def␣uniform_init(m):
22 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
23 ␣␣␣␣␣␣␣␣torch.nn.init.uniform_(m.weight,a=-0.5,␣b=0.5)
24
25 def␣normal_init(m):
26 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
27 ␣␣␣␣␣␣␣␣torch.nn.init.normal_(m.weight)
28
29 def␣xavier_uniform_init(m):
30 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
31 ␣␣␣␣␣␣␣␣torch.nn.init.xavier_uniform_(m.weight)
32

11https://pytorch.org/docs/stable/nn.init.html
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33 def␣xavier_normal_init(m):
34 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
35 ␣␣␣␣␣␣␣␣torch.nn.init.xavier_normal_(m.weight)
36
37 def␣kaiming_uniform_init(m):
38 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
39 ␣␣␣␣␣␣␣␣torch.nn.init.kaiming_uniform_(m.weight)
40
41 def␣kaiming_normal_init(m):
42 ␣␣␣␣if␣type(m)␣==␣nn.Linear:
43 ␣␣␣␣␣␣␣␣torch.nn.init.kaiming_normal_(m.weight)
44
45
46 #␣Applying␣different␣initializations␣to␣model
47
48 #␣constant
49 h_theta.apply(constant_init)
50 constant_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
51 constant_weights␣=␣torch.concatenate(constant_weights).detach().cpu().numpy()
52
53 #␣uniform
54 h_theta.apply(uniform_init)
55 uniform_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
56 uniform_weights␣=␣torch.concatenate(uniform_weights).detach().cpu().numpy()
57
58 #␣normal
59 h_theta.apply(normal_init)
60 normal_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
61 normal_weights␣=␣torch.concatenate(normal_weights).detach().cpu().numpy()
62
63 #␣xavier␣uniform
64 h_theta.apply(xavier_uniform_init)
65 xavier_uniform_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
66 xavier_uniform_weights␣=␣torch.concatenate(xavier_uniform_weights).detach().cpu().numpy()
67
68 #␣xavier␣normal
69 h_theta.apply(xavier_normal_init)
70 xavier_normal_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
71 xavier_normal_weights␣=␣torch.concatenate(xavier_normal_weights).detach().cpu().numpy()
72
73 #␣kaiming␣uniform
74 h_theta.apply(kaiming_uniform_init)
75 kaiming_uniform_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
76 kaiming_uniform_weights␣=␣torch.concatenate(kaiming_uniform_weights).detach().cpu().numpy()
77
78 #␣kaiming␣normal
79 h_theta.apply(kaiming_normal_init)
80 kaiming_normal_weights␣=␣[m.weight.flatten()␣for␣m␣in␣h_theta.modules()␣if␣type(m)==nn.Linear]
81 kaiming_normal_weights␣=␣torch.concatenate(kaiming_normal_weights).detach().cpu().numpy()
82
83 weights␣=␣{"uniform":␣uniform_weights,
84 ␣␣␣␣␣␣␣␣␣␣␣"normal":␣normal_weights,
85 ␣␣␣␣␣␣␣␣␣␣␣"Xavier␣uniform":␣xavier_uniform_weights,
86 ␣␣␣␣␣␣␣␣␣␣␣"Xavier␣normal":␣xavier_normal_weights,
87 ␣␣␣␣␣␣␣␣␣␣␣"Kaiming␣uniform":␣kaiming_uniform_weights,
88 ␣␣␣␣␣␣␣␣␣␣␣"Kaiming␣normal":␣kaiming_normal_weights}
89
90 #␣plot␣histograms
91 fig,␣ax␣=␣plt.subplots(nrows=2,␣ncols=3,␣sharex=True,␣sharey=True)
92
93 ax=ax.flatten()
94
95 for␣a,␣(k,v)␣in␣enumerate(weights.items()):
96 ␣␣#␣compute␣histogram
97 ␣␣counts,␣bins␣=␣np.histogram(v,␣bins=v.size//10)
98 ␣␣ax[a].hist(bins[:-1],␣bins,␣weights=counts,
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99 ␣␣␣␣align='left',␣color='k',␣density=True,
100 ␣␣␣␣log=True)
101 ␣␣ax[a].set_title(k)
102 ␣␣if␣a>2:
103 ␣␣␣␣ax[a].set_xlabel(r"$W_{ij}$")
104 ␣␣if␣a==0␣or␣a==3:
105 ␣␣␣␣ax[a].set_ylabel("#")
106 ␣␣ax[a].set_xlim(-3.0,3.0)
107 ␣␣ax[a].set_ylim(0,5.0)
108 fig.savefig("weight_initialization.png",dpi=300,bbox_inches='tight')

Figure 46

As shown in Figure 46, the weight distribution for Kaiming is highly affected
by the value of fanin, whereas the other distributions remain stable, since they
either do depend on both fanin
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du Collè ge de France (2019). 2019. doi: https://doi.org/10.
4000/annuaire- cdf.16767. url: https://www.di.ens.fr/
˜mallat/College/Cours- 2019- Mallat- Jean- Eric- Campage.
pdf.
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Filippo Gatti

Université Paris-Saclay
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LMPS Laboratoire de Mécanique Paris Saclay UMR 9026

This chapter is a follow-up of the basic introduction provided in the chapter
Artificial Neural Networks: layer architectures, optimizers and automatic dif-
ferentiation, which prepares the readership to the following theoretical insights.
In particular, the chapter rephrases the machine learning problem according
to an information theory paradigm, that highlights the deep entanglement be-
tween the data science perspectives: the probabilistic and the deterministic one.
Moreover, the chapter describes the fundamental theoretical result that paved
the way to modern machine learning: the universal approximation theorem for
a 1-hidden-layer perceptron. This section is followed by a continuum mechan-
ics interpretation of convolutional neural networks, proving why convolutional
layers are fundamental in image classification. Finally, further insights on the
optimization of a neural network are provided, focusing on the convergence of
first-order gradient descent methods. Finally, the automatic differentiation is
explained in analogy with tensor algebra, along with some advanced strategies
to avoid vanishing gradients in back-propagation algorithms. Some subsections
are tagged as [RECAP], since they are meant to refresh the readership’s ba-
sics on optimization and signal processing fundamentals. The chapter is largely
inspired, among others, by Stéphane Mallat’s Data Science lecture notes at
Collège de France, as well as by different lecture notes of CentraleSupélec’s
engineering curriculum.

1 Information theory
The theory of information represents a fundamental chapter of the long way
to modern machine learning. The inception of such a theory is due to Ronald
Fisher and to Claude Shannon, who laid the theoretical framework in their
famous works On the mathematical foundations of theoretical statistics [Fis22]
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and A Mathematical Theory of Communication [Sha48]. In the following, the
two perspectives will be briefly introduced.

1.1 Basics of Measure Theory [RECAP]
This section is a summary of the Statistics and Learning class of Centrale-
Supélec [Cou20].
In the following, consider a multi-variate random variable defined over the prob-
ability space X : (Ω, E ,P) → (X ,Ξ), with a σ-algebra E ∈ B (R) on Ω (B (R)
are the Borel’s sets) and an unknown probability law P such that ∀A ∈ EX ,
PX(A) = P(X−1(A)) = P(X ∈ A). If the random variable is continuous,
X ⊂ RdX and Ξ = B(X ); if instead X is of finite cardinality or countable,
Ξ = P(X ), the power set of X .
Moreover, we assume that PX is σ-finite measure dominated by a σ-finite mea-
sure µ, i.e. if ∀ε > 0,∃δ(ε) such that PX(A) < ε,∀A ∈ Ξ such that µ(A) < δ(ε).
In other words, the negligible sets for µ are negligible for PX too. In this
framework, PX is absolutely continuous with the respect to µ and famous the
Radon-Nikodym theorem holds (see also [Bil95; Cou20]):

Theorem 1. Radon-Nikodym theorem
For two σ-finite measures on a sigma algebra Ξ, namely µ and PX such that
PX is absolutely continuous with the respect to µ, ∃pX ∈ L1(µ) such that

PX(A) =
∫

A

pX (x) · µ(dx), ∀A ∈ Ξ

px is called probability density of PX and it corresponds to the Radon-Nikodym
derivative pX = dPX

dµ .

In the following, we will consider only Lebesgue reference measures µ for con-
tinuous random variables, i.e.:

PX(A) =
∫

A

pX(x) · µ(dx), ∀A ∈ Ξ = B(RdX ) (1)

and countable reference measures for discrete random variables. In this latter
case, the probability distribution is discrete and it corresponds to the point
mass function corresponding to a counting measure on a subset the power set
Ξ = P(X ), such that:

PX(A) =
∫

A

pX(x) · µ(dx) =
∫

A

p(x) ·
∑

x
i
∈A

δx
i
(dx) =

=
∑

x
i
∈A

PX(X = xi),∀A ∈ Ξ = P(X )
(2)

with
∑
x

i
∈X PX(X = xi) = 1.
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1.2 Reminders of basic statistics [RECAP]
Theorem 2. Strong law of large numbers (Kolmogorov)
Given a set of random variables X = (Xi)N

i=1 independent identically dis-
tributed (i.i.d.) and Lebesgue integrable, with expected value µX < +∞, and a
sample average X̄N = 1

N

∑N
i=1 Xi, then :

P

[
lim

N→+∞
X̄n − µX

]
= 1

which means that the sample average X̄N converges almost surely to the expected
value µ.

Theorem 3. Weak law of large numbers (Khintchine)
Given a set of random variables X = (Xi)N

i=1 independent identically dis-
tributed (i.i.d.) and Lebesgue integrable, with expected value µX < +∞, and a
sample average X̄N = 1

N

∑N
i=1 Xi, then :

∀ε > 0, lim
N→+∞

P
[
|X̄n − µX | ≤ ε

]
= 1

which means that the sample average X̄N converges in probability to µ

Proof. The theorem proof is based on the Chebyshev’s inequality, that states
that for a wide class of probability distributions, only a certain fraction of
values at a certain distance from the expected value a probability to occur
larger than the distance itself:

P [|X − µ| ≥ ε] ≤ σ2
X

ε2 (3)

Applying Equation (3) to the estimator X̄N (which is a linear combination of
random variables and has a variance σ2

X̄N
= σ2

X

N ), one obtains:

∀ε > 0 1 ≥ lim
N→+∞

P
[
|X̄n − µX | ≤ ε

]
=

= 1 − lim
N→+∞

P
[
|X̄n − µX | > ε

]
≥ 1 − lim

N→+∞
σ2

X

Nε2

which proves the convergence in probability. The estimator X̄N of µX is con-
sistent.

Definition 4. Consistent estimator
An estimator θN = θ (X1, . . . , XN ) is said to be consistent if it converges in
probability to its limit θ.
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Theorem 5. Given a series of random variables (Xi)N
i=1 that converges in

probability to X, then any continuous function f : X → R converges in proba-
bility too.

Proof. The continuity of f is expressed by the following expression:

∀ε > 0,∃δ(ε) > 0| |f(XN ) − f(X)| ≤ ε, ∀XN ∈ [X − δ;X + δ]

Since XN converges to X in probability, the following inequality holds:

1 ≥ P [|f(XN ) − f(X)| ≤ ε] ≥ P [|XN ) −X| ≤ δ]

Taking the limit N → +∞ of the last inequality:

1 ≥ lim
N→+∞

P [|f(XN ) − f(X)| ≤ ε] ≥ 1

which proves the statement.

Remark 6. Since X̄N (defined in Theorem 3) is a consistent estimator of µX ,
then thanks to Theorem 5, X̄2

N converges in probability to µX and the estimator
ȲN = 1

N

∑N
i=1 X

2
i converges in probability to E

[
X2

i

]
. Therefore, the variance

estimator of each Xi s
2
N that reads:

s2
N = 1

N

N∑

i=1

(
Xi − X̄N

)2 (4)

converges in probability to the variance of Xi:

lim
N→+∞

P
(
|s2

N − σ2
Xi

| ≤ ε
)

=

= lim
N→+∞

P

[
| 1
N

N∑

i=1

(
X2

i + X̄2
N − 2XiX̄N

)
− σ2

Xi
| ≤ ε

]
=

= lim
N→+∞

P
[
|ȲN −X2

N − σ2
Xi

| ≤ ε
]

=

= lim
N→+∞

P
[
|ȲN −X2

N − E
[
X2

i

]
+ µX | ≤ ε

]
= 1

(5)

Definition 7. Convergence in distribution
A series of random variables (Xi)N

i=1 sampled from a probability distribution
pN

(
(Xi)N

i=1

)
converges to the probability distribution p(X) for N → +∞ if

∀a|PX(A = {X ≤ a}) is continuous and lim
N→+∞

PN (A = {X ≤ a}) = PX (a)

with PN (A = {X ≤ a}) =
∫

A
pN (x)µ(dx)
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Theorem 8. Central limit theorem
Given a set of i.i.d. random variables DX = {Xi}N

i=1 with expected value EXi
=

µ and variance V [Xi] = σ2 < +∞ and a random variable X̄N = 1
N

∑N
i=1 Xi,

the random variable
ZN =

√
N
X̄N − µ

σ

has zero expected value, unit variance and its probability distribution p(ZN )
converges in distribution to a standard normal distribution N (0, 1)

Proof. From Theorem 3, the weak law of large numbers grants that X̄N con-
verges in probability to µ and its variance V

[
X̄N

]
= σ2

N . The characteristic
function of the function Yj = Xj−µ

σ has a Taylor expansion around its zero
expected value that reads:

φYj (t) = E
[
eitYj

]
= 1 − t2

2 + o(t2)

Therefore, the characteristic function of ZN reads:

φZN
(t) = E

[
eitZN

]
=

N∏

j=1
E

[
e

it
Yj√

N

]
=
(
φY1

(
t√
N

))N

=
(

1 − t2

2N + o

(
t2

N

))N

For N → +∞ the following results holds:

lim
N→+∞

φZN
(t) = lim

N→+∞

(
1 − t2

2N + o( t
2

N
)
)N

=

= e− t2
2 = Eξ∼N (0,1)

[
eitξ
]

= φξ(t), t ∈ R

In other words, the characteristic function of ZN converges to the one of a
random variable with standard normal probability distribution. Thanks to
Lévy theorem, the probability distribution p (ZN ) converges in distribution to
N (0, 1).

1.3 The Fisher’s approach
Fisher [Fis22] firstly stated the concept of information for the inference problem
stated in the following. Provided a family of parametric probability law, called
statistical model Hθ :=

{
Pθ ,θ ∈ Θ

}
, if P ∈ Hθ , there exist θ∗ such that

Pθ∗ = P . θ∗ is unique if and only if Hθ is identifiable, i.e., if the map θ 7→ Pθ
is injective. In this sense, the value of θ is an index to identify any probability
distribution in Hθ . Fisher proposed to discover P by finding the corresponding
value of the parameter set θ̂ that make Pθ̂ the closest possible to P = Pθ∗ .
Fisher proposed to infer the “best” estimator θ̂ from N realizations of observed
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variable at stake X , collected in the data set DX = {xi ∈ X }N
i=1. Therefore,

the θ̂ depends on DX . In the remainder of the chapter, X is assumed to be
isomorphic to RdX , Θ a Borel set of Rp and for the sake of simplicity we assume
Hθ as dominated by a Lebesgue or discrete σ-finite measure µ and represented
by the probability density functions pθ . What is the best estimator θ̂(DX)
from which one can infer p(EX )? In other words, what is the most parsimonious
choice of θ in order to span the whole EX ? What is the information about EX
contained in DX and how we can extract it?

First, some regularity conditions for the statistical model Hθ must be de-
fined [Bil95; Cou20]:

C1 Θ is an open set and pθ (x) > 0 ⇐⇒ pθ′ > 0, ∀x ∈ X and ∀(θ,θ
′
) ∈ Θ2.

This implies that all pθ ∈ Hθ have the same support denoted □.

C2 ∀θ ∈ Θ, pθ can be differentiated under the integral1:

∇θ

∫

□
pθ · µ(dx) =

∫

□
∇θpθ · µ(dx) (7)

Moreover, according to Fisher, the estimator θ̂ must be [Billingsley˙1995Campagne˙2022;
Fis22]:

• unbiased (see Equation (30))

• consistent (i.e. it must converge in probability to θ∗, the parameter
corresponding to the data probability distribution P )

• provided that DX is exhaustive, i.e., sufficient to characterize the real yet
unknown probability distribution P = Pθ∗

For Fisher, the way to find a consistent estimator θ̂ (DX) is to maximize the
likelihood pθ (DX) = L (θ; DX), in order to infer any sample from the “true”
probability distribution x ∼ pθ∗ , from the chosen probability family Hθ :

θ̂(DX) = arg max
θ∈Θ

pθ (x|x ∈ DX) (8)

When DX represents a dataset of independent identically distributed (i.i.d.)
variables, the likelihood can be factorized as

pθ (DX) =
N∏

i=1
pθ (xi) (9)

1According to [Bil95], C2 holds if the gradient is locally dominated by an integrable
function g, i.e., it exist a neighborhood □ of θ and g such that

∫
□ g(x)µ(dx) < +∞ such that

almost everywhere on a neighborhood V of x:
∣∣∣

∂pθ

∂θk

∣∣∣ ≤ g (6)
.
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Equation (8) is justified by the following theorem [Cam22]:

Theorem 9. Given a set of i.i.d. random variables DX = {xi ∈ X }N
i=1, then:

∀θ ̸= θ∗,∀ε > 0 lim
N→+∞

P
[
pθ (DX) − pθ∗ (DX) < ε

]
= 1

Proof. In order to prove the convergence in probability of the event pθ∗ > pθ ,
one can prove the rephrase the convergence in probability as:

∀θ ̸= θ∗,∀ε > 0 lim
N→+∞

P

[
1
N

ln
(
pθ (DX)
pθ∗ (DX)

)
< ε

]
= 1 (10)

Provided that DX = {xi ∈ X }N
i=1 is a set of i.i.d. variables, the likelihood is

defined by Equation (9). It holds that:

1
N

ln
(
pθ (DX)
pθ∗ (DX)

)
= 1
N

N∑

i=1
ln
(
pθ (xi)
pθ∗ (xi)

)
(11)

According to the weak law of large numbers in Theorem 3 (because the fac-

tors ln
(

pθ (xi)
pθ∗(xi)

)
are independent identically distributed, the empirical av-

erage 1
N

∑N
i=1 ln

(
pθ (xi)

pθ∗(xi)

)
is a consistent estimator of the expected value

Ex∼pθ∗

[
ln
(

pθ (X )
pθ∗ (X )

)]
, i.e. (see Theorem 5):

∀ε > 0 lim
N→+∞

P

[∣∣∣ 1
N

N∑

i=1
ln
(
pθ (xi)
pθ∗ (xi)

)
− Ex∼pθ∗

[
ln
(
pθ (X )
pθ∗ (X )

)] ∣∣∣ < ε

]
= 1

(12)
The Jensen inequality states that [Cam22]:

Ex∼pθ∗

[
ln
(
pθ (X )
pθ∗ (X )

)]
< 0 (13)

since ln function is a concave function and therefore2:

Ex∼pθ∗

[
ln
(
pθ (X )
pθ∗ (X )

)]
≤ ln

(
Ex∼pθ∗

[
pθ (X )
pθ∗ (X )

])
= 0

Provided the consistency of the estimator, expressed in Equation (12), the
latter converges in probability to a negative “true” expected value, as proved

2If the random variable is discrete, according to Proposition 59, the linear combination of
concave (convex) functions with positive coefficients (the point-mass probability distribution
evaluate at each value) is concave. In the continuous case, the same argument holds, because∫

ln p(x) · p(x) is a linear combination with positive coefficients p(x).
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by the Jensen inequality in Equation (13). The objective of the theorem to
prove the convergence in probability expressed in Equation (10) is granted by

choosing ε =
|Ex∼pθ∗

[
ln
(

pθ (X )
pθ∗ (X )

)]
|

2 and substituting it into Equation (12), in
order to prove that

lim
N→+∞

P



∣∣∣ 1
N

N∑

i=1
ln
(
pθ (xi)
pθ∗ (xi)

)
− Ex∼pθ∗

[
ln
(
pθ (X )
pθ∗ (X )

)] ∣∣∣ <
|Ex∼pθ∗

[
ln
(

pθ (X )
pθ∗ (X )

)]
|

2


 = 1

and therefore that:

∀θ ̸= θ∗,∀ε > 0 lim
N→+∞

P

[
1
N

ln
(
pθ (DX)
pθ∗ (DX)

)
< ε

]
= 1

which proves the statement.

Theorem 9 proves that the “true” probability distribution of the data, corre-
sponding to θ∗ (if pθ∗ ∈ Hθ ), corresponds to the maximum on Hθ . However,
the assumption pθ∗ ∈ Hθ is not always satisfied: the “true” probability dis-
tribution that generated the dataset DX is not known beforehand, which is
why Fisher proposed to approximate the it by maximizing the likelihood over
a chosen parameter space Θ, that generates Hθ , leading to the “best” param-
eter estimator θ̂. The “best” parameter θ̂ does not necessarily exist, nor it is
unique. For the sake of simplicity, Equation (8) is replaced by the following
Maximum Log-Likelihood Estimation:

θ̂ = arg max
θ∈Θ

ln L(θ;X ) = arg max
θ∈Θ

ln pθ (X ) (14)

Since DX represents a limited dataset of independent identically distributed
(i.i.d.) realizations, the maximization problem in Equation (14) is approxi-
mated by finding the estimator of θ̂, noted as θ̂(DX):

θ̂(DX) = arg max
θ∈Θ

L(θ; DX) = arg max
θ∈Θ

N∑

i=1
ln pθ (xi) (15)

θ̂ is a deterministic yet unknown parameter depending on the choice of DX .
The value of θ̂ relies on the optimization problem in Equation (14), with a
finite dataset DX at stake.
Substituting the likelihood with the log-likelihood is possible because of the
following theorem:

Theorem 10. Maximum Likelihood of g(θ). [Bil95; Cou20]
Given a set of i.i.d. observations DX = {xi ∈ X }N

i=1 and θ the of parameters
that maximizes the likelihood L (θ; DX). Then g

(
θ̂
)

is the maximum likelihood
estimator of g(θ).
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Proof. The proof resides on the definition of the following Legendre transform,
widely used in the thermodynamic theory of thermoelasticity:

L∗ (η ; DX) = sup
θ :g(θ)=η

L
(
g−1 (η) ; DX

)
(16)

If g : Θ 7→ g (Θ) is a bijection, Equation (16) reduces to

L∗ (η ; DX) =
N∏

i=1
p(xi|g−1 (η)) = L

(
g−1 (η) ; DX

)

since θ = g−1 (η) is unique. Therefore

sup
η

L (η ; DX) = sup
θ

L (θ; DX)

However, if g is not bijective, ∃θ1 ̸= θ2 such that η = g (θ1) = g (θ2) so that
L∗ (η ; DX) =

∏N
i=1 p(xi|g−1 (η)) is not uniquely defined. In this general case,

the Legendre transform in Equation (16) must be adopted.

Remark 11. Theorem 10 and Theorem 9 imply that, if the “true” probability
distribution θ∗ that generates the dataset DX belongs to the open set Θ, i.e., if
pθ∗ ∈ Hθ , enlarging progressively the size of the realization setN , θ̂ (DX) = θ̂N

represents a unique sequence converging towards θ∗. As a matter of fact, due
to Theorem 9, ∀θ ∈ Oε(θ∗), with Oε(θ∗) being an open neighborhood of θ∗,
the probability associated to the set of observations SN defined as:

SN :=
{
x| ln pθ∗ (x) > sup

θ∈∂Oε(θ∗)
ln pθ (x)

}

converges to 1:
∀ε > 0 lim

N→+∞
P [|P (SN ) − 1| < ε] = 1

which means that all the samples, when the data set of realization is sufficiently
large, most probably belong to SN , with the maximum log-likelihood over the
closure Ōε (θ∗) corresponding to a point θ∗ ∈ Int (Θ). Because of the regularity
condition C2 on pθ , the latter is continuous and differentiable over Oε(θ∗).
Thanks to Rolle’s theorem, ∃θN ∈ Ōε(θ∗) such that ∇θ ln pθ (θN ;x) = 0.
This implies that SN ⊂ S̃N , defined as:

S̃N :=
{
x|∃θN ∈ Ōε(θ∗) such that ∇θ ln pθ (θN ;x) = 0

}

since a priori ln pθ∗ (x) > ln pθ
N

(x) is not granted. Therefore, P (SN ) ≤
P
(
S̃N

)
≤ 1. Due to the convergence in probability of P (SN ) to 1, then P

(
S̃N

)

converges in probability to 1, which means that for ∀ε > 0, ∃ an open neighbor-
hood Oε (θ∗) to which θN most probably belongs, converging most probably
towards θ∗, by definition.
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Remark 12. The converging sequence θN in Remark 11 maximizes the log-
likelihood in the sense that

∇θ ln pθ (θN ; DX) = 0

This expression has multiple solutions θN but thanks to what exposed in the
Remark 11 proves that θN converges in probability towards θ∗ and it this sense
one should interpret the quest for the MLE.

The following theorem proves that the sequence θN converges to θ∗ in standard
normal probability distribution (see Theorem 17). Before proving this aspect,
other regularity conditions of the statistical models must be introduced.
If the regularity condition C1 holds and L(θ;X ) (and L(θ; DX)) is differen-
tiable almost everywhere in □, one can define the score as:

s (θ;X ) = ∇θ ln pθ (θ;X ) (17)

and its estimator over a limited dataset s (θ; DX). If conditions C1 and C2
hold, from Equation (14) one can prove that the score is a centered random
vector in θ∗:

Ex∼pθ∗ ∇θ ln pθ (θ∗;X ) = Ex∼pθ
∇θs(θ∗;X ) = 0 (18)

For a finite set of i.i.d. samples DX
3, Equation (18) is straightforward:

Ex∼pθ∗ ∇θ ln pθ (θ∗; DX) = ∇θEx∼pθ∗ ln
(
pθ∗(θ∗; DX)

)
=

=
N∑

i=1

pθ∗(xi)
pθ∗(xi)

∇θpθ∗ (xi) = 1
N

∇θ

N∑

i=1
pθ∗(xi) = 0

(19)

The score in θ̂ is nihil s
(
θ̂; DX

)
= 0 by Remarks 11 and 12.

Example 1. Likelihood maximization with PyTorch
In the following example, the maximum likelihood criterion is implemented in
PyTorch, in order to find the parameters of the statistical model

Hθ :=
{

1
(2πθ2

σ)
1
2
e

− (x−θµ)2

2·θ2
σ ; 1

2θσ
e− |x−θµ|

θσ

}

of probability distributions pθ : R → R, pθ : x 7→ pθ (x) and with

Θ := {θµ, θσ} , θµ ∈ R, θσ ∈ R+

3The proof holds for any pθ satisfying the C1 and C2 conditions, both for discrete and
continuous random variables. For the latter, an integral over X replaces the sum and by
applying condition C2 in order to derive under the integral and viceversa.
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The two probability distributions in Hθ correspond to Gaussian and Laplace
distributions respectively. The “true” probability distribution belongs to Hθ

and it is set by selecting two parameters

θ̄µ = µX , θ̄σ = σX

Therefore, pθ̄µ,θ̄σ
= pµX ,σX

∈ Hθ , which implies that θ̂ ≈ θ∗. The random
variable X generates the data set of i.i.d. realizations DX = {xi}N

i=1, with
N =10000. For the sake of simplicity, instead of maximizing the empirical av-
erage log-likelihood defined in Equation (15), the code minimizes the empirical
average Negative Log-Likelihood N LL, defined as:

N LL(θ; DX) = arg min
θ∈Θ

N∑

i=1
ln 1
pθ (xi)

(20)

which still satisfies the convergence in probability expressed in Theorem 9 that
reads:

∀θ ̸= θ∗,∀ε > 0 lim
N→+∞

P

[
1
N

ln pθ (DX) < ε+ 1
N
pθ∗ (DX)

]
= 1 (21)

In particular, given the statistical model in this example, the N LL function
for a Gaussian distribution reads:

N LL(θ; DX) = N

2 ln (2π) +N ln θσ + 1
2θ2

σ

N∑

i=1
(xi − θµ)2 (22)

and for a Laplace distribution:

N LL(θ; DX) = N (ln θσ + ln 2) + 1
θσ

N∑

i=1
|xi − θµ| (23)

The minimization is achieved by using the AdamW optimizing algorithm (see Sec-
tion 3.4.5 and https://pytorch.org/docs/stable/generated/torch.optim.
AdamW.html), over ne=100000 epochs.

The code below minimizes the N LL to find the “best” estimators θ̂µ ≈ θ̄µ = µX

and θ̂σ ≈ θ̄σ = σX . The result of the iterative minimization is depicted in
Figure 1

1 #␣Source:␣https://stackoverflow.com/questions/72469496/
2 #how-to-use-pytorch-for-maximum-likelihood-estimation-with-restrict
3 #-optimization
4 import␣numpy␣as␣np
5 import␣torch
6 from␣matplotlib␣import␣pyplot␣as␣plt
7
8 '''
9 Gaussian␣probability␣distribution
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Figure 1: Iterative minimization (with AdamW algorithm) of N LL (θµ, θσ; DX). The
convergence of the “best” parameters (θ̂µ, θ̂σ) towards the “true” parameters (θ̄µ, θ̄σ)
is shown, with the respect to the iteration number (epoch). The “true” probability
distribution corresponds to N (µX , σX), with µX=5 and σX=2. The figure was generated
with code below.

10 '''
11 #␣Fix␣the␣pseudo-random␣generator␣see␣to␣grant␣reproductibility
12 torch.manual_seed(0)
13 #␣Create␣a␣dataset␣of␣nX␣samples␣from␣normal␣distribution
14 N␣=␣10000
15 #␣real␣mean
16 mu_X␣=␣torch.tensor(np.array([5.0]),
17 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
18 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=False).tile((N,))
19 #␣real␣standard␣deviation
20 sigma_X␣=␣torch.tensor(np.array([2.0]),
21 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=False)
23
24 #␣generate␣random␣samples␣from␣p=N(mu_X,␣sigma_X)
25 D_X␣=␣torch.normal(mean=mu_X,␣std=sigma_X)
26 D_X.requires_grad␣=␣False
27
28 #␣Initialize␣the␣values␣of␣the␣estimators
29 theta_mu␣=␣torch.tensor(np.array([0.5]),
30 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
31 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=True)
32 theta_sigma␣=␣torch.tensor(np.array([10.0]),
33 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
34 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=True)
35
36 #␣Define␣the␣optimizer
37 learning_rate␣=␣0.0001
38 optimizer␣=␣torch.optim.AdamW([theta_mu,␣theta_sigma],␣lr␣=␣learning_rate)
39
40 n_e␣=␣100000
41
42 #␣Minimize␣the␣Negative␣Log-Likelihood␣iteratively
43 track_nll=[]
44 track_theta_mu␣=␣[]
45 track_theta_sigma␣=␣[]
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46 for␣epoch␣in␣range(n_e):
47 ␣␣#␣Compute␣negative␣log-likelihood
48 ␣␣nll␣=␣N*(0.5*np.log(2.0*np.pi)+theta_sigma.log())
49 ␣␣nll+=␣((((D_X-theta_mu)/theta_sigma).pow(2))/2.0).sum()
50 ␣␣optimizer.zero_grad()
51 ␣␣nll.backward()
52
53
54 ␣␣if␣epoch␣%␣100␣==␣0:
55 ␣␣␣␣print("NLL:␣{};␣theta_mu:␣{};␣theta_sigma:␣{}".format(nll.data.numpy(),
56 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣theta_mu.data.numpy(),
57 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣theta_sigma.data.numpy()))
58 ␣␣optimizer.step()
59 ␣␣track_nll.append(float(nll))
60 ␣␣track_theta_mu.append(float(theta_mu))
61 ␣␣track_theta_sigma.append(float(theta_sigma))
62
63 #␣plot␣convergence␣curves
64 fig,␣ax␣=␣plt.subplots(nrows=1,␣ncols=3,␣sharex=True,␣figsize=(12,4))
65 ax[0].plot(track_nll,
66 ␣␣␣␣␣␣␣␣␣␣␣color='k',
67 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
68 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\mathcal{NLL}$")
69 ax[1].plot(track_theta_mu,
70 ␣␣␣␣␣␣␣␣␣␣␣color='k',
71 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
72 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\theta_\mu$")
73 ax[2].plot(track_theta_sigma,
74 ␣␣␣␣␣␣␣␣␣␣␣color='k',
75 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
76 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\theta_\sigma$")
77 ax[0].set_xlim(0,n_e)
78 ax[0].set_xlabel("epochs")
79 ax[1].set_xlabel("epochs")
80 ax[2].set_xlabel("epochs")
81 ax[0].set_title(r"$\mathcal{NLL}\left(\theta_\mu,\theta_\sigma;\mathcal{D}_x\right)$",␣fontsize=15)
82 ax[1].set_title(r"$\theta_\mu\left(\mathcal{D}_x\right)$",
83 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣fontsize=15)
84 ax[2].set_title(r"$\theta_\sigma\left(\mathcal{D}_x\right)$",
85 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣fontsize=15)
86 fig.savefig("NLL_gauss.png",␣dpi=300,␣bbox_inches="tight")
87

1 #␣Source:␣https://stackoverflow.com/questions/72469496/
2 #how-to-use-pytorch-for-maximum-likelihood-estimation-with-restrict
3 #-optimization
4 import␣numpy␣as␣np
5 import␣torch
6 from␣matplotlib␣import␣pyplot␣as␣plt
7
8 '''
9 Laplace␣probability␣distribution

10 '''
11 from␣torch.distributions.laplace␣import␣Laplace
12 #␣Fix␣the␣pseudo-random␣generator␣see␣to␣grant␣reproductibility
13 torch.manual_seed(0)
14 #␣Create␣a␣dataset␣of␣nX␣samples␣from␣normal␣distribution
15 N␣=␣10000
16 #␣real␣mean
17 mu_X␣=␣torch.tensor(np.array([5.0]),
18 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
19 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=False).tile((N,))
20 #␣real␣standard␣deviation
21 sigma_X␣=␣torch.tensor(np.array([2.0]),
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Figure 2: Iterative minimization (with AdamW algorithm) of N LL (θµ, θσ; DX). The
convergence of the “best” parameters (θ̂µ, θ̂σ) towards the “true” parameters (θ̄µ, θ̄σ)
is shown, with the respect to the iteration number (epoch). The “true” probability
distribution corresponds to Laplace (µX , σX), with µX=5 and σX=2. The figure was
generated with code below.

22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
23 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=False)
24
25 #␣generate␣random␣samples␣from␣p=N(mu_X,␣sigma_X)
26 generator␣=␣Laplace(mu_X,␣sigma_X)
27 D_X␣=␣generator.sample()
28 D_X.requires_grad␣=␣False
29
30 #␣Initialize␣the␣values␣of␣the␣estimators
31 theta_mu␣=␣torch.tensor(np.array([0.5]),
32 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
33 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=True)
34 theta_sigma␣=␣torch.tensor(np.array([10.0]),
35 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dtype=torch.float64,
36 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣requires_grad=True)
37
38 #␣Define␣the␣optimizer
39 learning_rate␣=␣0.0001
40 optimizer␣=␣torch.optim.AdamW([theta_mu,␣theta_sigma],␣lr␣=␣learning_rate)
41
42 n_e␣=␣100000
43
44 #␣Minimize␣the␣Negative␣Log-Likelihood␣iteratively
45 track_nll=[]
46 track_theta_mu␣=␣[]
47 track_theta_sigma␣=␣[]
48 for␣epoch␣in␣range(n_e):
49 ␣␣#␣Compute␣negative␣log-likelihood
50 ␣␣nll␣=␣N*(np.log(2.0)+theta_sigma.log())
51 ␣␣nll+=␣(D_X-theta_mu).abs().sum()/theta_sigma.abs()
52 ␣␣optimizer.zero_grad()
53 ␣␣nll.backward()
54
55
56 ␣␣if␣epoch␣%␣100␣==␣0:
57 ␣␣␣␣print("NLL:␣{};␣theta_mu:␣{};␣theta_sigma:␣{}".format(nll.data.numpy(),
58 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣theta_mu.data.numpy(),
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59 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣theta_sigma.data.numpy()))
60 ␣␣optimizer.step()
61 ␣␣track_nll.append(float(nll))
62 ␣␣track_theta_mu.append(float(theta_mu))
63 ␣␣track_theta_sigma.append(float(theta_sigma))
64
65 #␣plot␣convergence␣curves
66 fig,␣ax␣=␣plt.subplots(nrows=1,␣ncols=3,␣sharex=True,␣figsize=(12,4))
67 ax[0].plot(track_nll,
68 ␣␣␣␣␣␣␣␣␣␣␣color='k',
69 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
70 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\mathcal{NLL}$")
71 ax[1].plot(track_theta_mu,
72 ␣␣␣␣␣␣␣␣␣␣␣color='k',
73 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
74 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\theta_\mu$")
75 ax[2].plot(track_theta_sigma,
76 ␣␣␣␣␣␣␣␣␣␣␣color='k',
77 ␣␣␣␣␣␣␣␣␣␣␣linewidth=3,
78 ␣␣␣␣␣␣␣␣␣␣␣label=r"$\theta_\sigma$")
79 ax[0].set_xlim(0,n_e)
80 ax[0].set_xlabel("epochs")
81 ax[1].set_xlabel("epochs")
82 ax[2].set_xlabel("epochs")
83 ax[0].set_title(r"$\mathcal{NLL}\left(\theta_\mu,\theta_\sigma;\mathcal{D}_x\right)$",
84 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣fontsize=15)
85 ax[1].set_title(r"$\theta_\mu\left(\mathcal{D}_x\right)$",
86 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣fontsize=15)
87 ax[2].set_title(r"$\theta_\sigma\left(\mathcal{D}_x\right)$",
88 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣fontsize=15)
89 fig.savefig("NLL_laplace.png",␣dpi=300,␣bbox_inches="tight")

Based on Equation (19) and assuming an unbiased estimator (see Equation (30)),
i.e., EDX ⊂X

(
θ̂
)

= 0, in his seminal work, Fisher stated the concept of infor-
mation associated to the parameters I(θ∗) as the variance of ∇θ ln pθ (θ∗;X )
:

IF (θ∗;X ) = Ex∼pθ∗

[
∇θ ln pθ (θ∗;X ) ⊗ ∇θ ln pθ (θ̂;X )

]
≥ 0 (24)

IF (θ∗;X ) in Equation (24) is called Fisher Information Matrix (FIM), and it
is a N ×N positive semidefinite matrix. The FIM corresponds to the variance
of the score Vx∼pθ∗ [s (θ∗;X )] If X is composed by i.i.d. variables, the FIM
reads:

IF (θ∗; DX) =
N∑

i=1
Ex∼pθ

[
∇θ ln pθ (θ∗;xi) ⊗ ∇θ ln pθ (θ∗;xi)

]
−

−
N∑

i=1

N∑

j=1,j ̸=i

Ex∼pθ

[
∇θ ln pθ (θ∗;xi) ⊗ ∇θ ln pθ (θ∗;xj)

]
= N IF (θ∗;X1)

(25)

with the term
∑N

i=1
∑N

j=1,j ̸=i Ex∼pθ

[
∇θ ln pθ (θ∗;xi) ⊗ ∇θ ln pθ (θ∗;xj)

]
= 0

because of the fact that the score function is centered in θ∗ [Bil95; Cou20;
Cam22]. Equation (25) is another way to express the fact that the variance of
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a sum of i.i.d. variable is the sum of the variances. If IF (θ∗) is positive definite,
then it defines a Riemann metric on the N -dimensional parameter space. A set
of i.i.d. random variables, with high Fisher information has a score with large
variance, i.e., it is informative. The “narrower” (in average on DX) is minimum
of the log-likelihood, the more informative is θ∗ and therefore the higher is the
variance of the scire (the largest the span of data around the minimum) [Cam22;
Cou20]. Under the two following extra regularity conditions:

C3 For almost every x ∈ □, it exists a continuous mapping h : Θ → pθ such
that h : θ × □ 7→ hθ (x) with h ∈ C2(Θ)

C4 ∀θ ∈ Θ, ∀i, j, 1 ≤ i, j ≤ p the transport theorem can be applied as
follows4:

∇θ ⊗
∫

□
∇θpθ (θ;X ) µ(dx) =

∫

□
∇θ ⊗ ∇θpθ (θ;X ) µ(dx) (26)

Under C1, C2, C3 and C4 regularity conditions and for ∇θpθ (θ∗;X ) ∈ C2 (Θ),
the Fisher’s information can be also expressed, following Equation (25), as
follows:

IF (θ∗; DX) = −Ex∼pθ
[Hℓ(θ∗,DX)] (27)

with Hℓ being the Hessian matrix of ℓ (θ; DX) = ln pθ (DX). For i.i.d. samples
in DX , this is proven by considering Equation (24) and conditions C1, C2, C3
and C4:

IF (θ∗; DX) =
N∑

i=1
Ex∼pθ

[
∇θ ln pθ (θ∗;xi) ⊗ ∇θ ln pθ (θ∗;xi)

]
=

=
N∑

i=1
∇θ ln pθ (θ∗;xi) ⊗ ∇θpθ (θ∗;xi) =

=∇θ ⊗
(

N∑

i=1
∇θ ln pθ · pθ (θ∗;xi)

)
−

−
N∑

i=1
∇θ ⊗ ∇θ

(
ln pθ (θ∗;xi) · pθ (θ∗;xi)

)
= −Ex∼pθ

[Hℓ(θ∗,DX)]

(28)

In order to determine the accuracy of the iterative gradient descent methods
employed in machine learning to approximate θ∗ with θ̂ (see Section 4.2), the
Cramér-Rao bound (CRB) can be helpful since it represents an accuracy limit
to θ∗.

Theorem 13. Cramér-Rao bound
Given a set of i.i.d. variables DX = {xi}N

i=1, sampled from a probability dis-
tribution pθ∗ ∈ Hθ , with pθ∗ (x) =

∏N
i=1 pθ∗(xi), and a statistical model (or

4Under the same conditions that led to Equation (6)
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algorithm) to estimate θ∗, that reads θ = A (x) then the mean estimator reads:

θ̄ = Ex∼pθ∗ [A (X )]

and the variance of the estimator is bounded by below as follows:

Vx∼pθ∗ (A (X )) ≥
∥∇θ∗ θ̄∥2

N · IF (θ∗;X1) (29)

A is unbiased if:

Vx∼pθ∗ (A (X )) ≥ 1
N · IF (θ∗;X1) (30)

Proof. The gradient ∇θ∗A can be computed by differentiating under the inte-
gral, as:

∇θ∗A = Ex∼pθ∗

[
A (X ) · ∇θ∗ ln pθ∗ (X )

]
=

= Cx∼pθ∗

[
A (X ) · ∇θ∗ ln pθ∗ (X )

]
+

+Ex∼pθ∗ [A (X )] · Ex∼pθ∗

[
∇θ∗ ln pθ∗ (X )

]

Since θ∗ generates the i.i.d. dataset the score is centered (see Equation (18)),
which implies that the following expression holds

∇θ∗A = Cx∼pθ∗

[
A (X ) · ∇θ∗ ln pθ∗ (X )

]

and the square norm is bounded by above as follows (Cauchy-Schwartz’s in-
equality):

∥∇θ∗A∥2 =
∥∥∥Cx∼pθ∗

[
A (X ) · ∇θ ln pθ∗ (X )

] ∥∥∥
2

≤

≤ Vx∼pθ∗ [A (X )] + Vx∼pθ∗

[
∇θ∗ ln pθ∗ (X )

]

The term Vx∼pθ∗

[
∇θ∗ ln pθ∗ (X )

]
corresponds to IF (θ∗;X ) = N · IF (θ∗;X1)

which proves the CRB in the general case.
A is unbiased if θ̄ = θ∗ which implies that:

Vx∼pθ∗ (A (X )) = Ex∼pθ∗

[(
θ̄ − θ∗)2] ≥ 1

N · IF (θ∗;X1) (31)
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Remark 14. Choosing an unbiased Equation (31) CRB allow to assess the
accuracy of the estimator θ̂ = arg max

θ∈Θ
L (θ; DX), obtained, for instance, via

gradient descent algorithm A (X ).
The CRB states that the higher is the information of an estimator θ̂, the
higher is the variance of the score and, because of the CRB, the lower is its
variance (the narrower is the log-likelihood maximum). The FIM and the
CRB steer the convergence rate of any algorithm that attempts at maximize
the log-likelihood of any statistical model adopted to infer from the available
dataset. However, from a practical standpoint, the FIM matrix (dense) can
easily reach a unbearable computational cost, which is why, in practice, it is
rarely explicitly adopted. First order gradient descent methods are adopted
instead (see Equation (63)).

Remark 15. Provided the CRB for an unbiased estimator, its “efficiency” can
be measure as the ratio between the variance lower bound expressed by the
CRB and stated in Equation (31) and the variance of the estimator:

ηθ = 1
N · IF (θ∗;X1) · Vx∼pθ∗ (A (X )) ≤ 1 (32)

Remark 16. One can notice that, maximizing the log-likelihood leads to min-
imize the so called Kullback-Leibler distance DKL

(
p∥pθ

)
= Ex∼p

[
ln p

pθ

]
<

+∞5 between pθ and the true probability distribution p(x) (unknown). As a
matter of fact:

max
θ∈Θ

Ex∼p

[
ln pθ

]
= max
θ∈Θ

Ex∼p

[
ln
pθ

p

]
+ max
θ∈Θ

Ex∼p [ln p]︸ ︷︷ ︸
≤0

≤ min
θ∈Θ

Ex∼p

[
ln p

pθ

]

(33)
DKL

(
p∥pθ

)
measures a distance between the real probability distribution and

parametric probability density pθ . Note that DKL

(
p∥pθ

)
̸= DKL

(
pθ∥p

)
. It is

worth noticing that, in practice, DKL

(
p∥pθ

)
> DKL

(
p∥Hθ

)
= inf
θ∈Θ

DKL

(
p∥Hθ

)
̸=

0 if p /∈ Hθ . This means that our estimator will have poor chances to discover
P [Cou20; Cam22].

Example 2. Compute DKL

(
pθ∥p

)
with PyTorch6

To avoid underflow issues when computing this quantity, this loss expects the
argument input in the log-space. As all the other losses in PyTorch, this func-
tion expects the first argument, input, to be the output of the model (e.g. the
neural network) and the second, target, to be the observations in the dataset.

5As a convention 0 · ln 0 = 0 · ln 0
0 = 0

6https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html

270 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



1 from␣torch␣import␣nn
2 import␣torch.nn.functional␣as␣F
3 #␣loss␣=␣loss_pointwise.sum()␣/␣input.size(0)
4 kl_loss␣=␣nn.KLDivLoss(reduction="batchmean")
5 #␣input␣should␣be␣a␣distribution␣in␣the␣log␣space
6 ptheta␣=␣F.log_softmax(torch.randn(3,␣5,␣requires_grad=True),␣dim=1)
7 #␣Sample␣a␣batch␣of␣distributions.␣Usually␣this␣would␣come␣from␣the␣dataset
8 p␣=␣F.softmax(torch.rand(3,␣5),␣dim=1)
9 output␣=␣kl_loss(ptheta,␣p)

10
11 #␣alternatively
12 kl_loss␣=␣nn.KLDivLoss(reduction="batchmean",␣log_target=True)
13 log_target␣=␣F.log_softmax(torch.rand(3,␣5),␣dim=1)
14 output␣=␣kl_loss(ptheta,␣log_target)

The following theorem proves that, provided an extra regularity condition of
the statistical model and thanks to the CRB, the MLE estimator converges in
standard normal probability to θ∗.

Theorem 17. MLE convergence in standard normal probability [Cou20;
Cam22]. Provided a statistical model Hθ :=

{
Pθ ,θ ∈ Θ ⊂ RdΘ

}
with regu-

larity conditions C1, C2, C3, C4, an i.i.d. dataset DX = {xi}0<i≤N gen-
erated by a parameter θ∗ ∈ Int (Θ), a Maximum Log-likelihood Estimator
θ̂ = arg max

θ∈Θ
ℓ (θ; DX) and a further regularity condition C5 of Hθ that reads:

∥∇θ ⊗ ∇θ ⊗ ∇θ ln pθ∥ < M (X ) ∀θ ∈ Θ,Ex∈pθ
[M (x)] < +∞ (34)

all MLE sequences θ̂N converge in standard normal probability to θ∗:

lim
N→+∞

P
[
|p√

N(θ̂N −θ∗) − N
(
0, I−1

F (θ∗; DX)
)

|
]

= 1 (35)

Therefore, because of the CRB, the MLE is an asymptotically “optimum” esti-
mator, i.e. its efficiency ηθ̂N

(defined in Equation (32)) converges in probability
to 1:

lim
N→∞

P

[∣∣∣ 1
N · IF (θ∗;X1) · Vx∼pθ∗ (A (X )) − 1

∣∣∣
]

= 1 (36)

Proof. According to Remark 11, the MLE sequence θ̂N exists and it is unique.
Moreover, the estimator maximizes the log-likelihood, so its score is nihil in θ̂N

but not necessarily in θ∗. Therefore, a Taylor expansion around θ̂N (see the
regularity conditions C1 to C5) reads:

s (θ∗; DX) = ∇θ ln pθ∗ (θ∗; DX) = Hℓ (θ∗; DX)
(
θ∗ − θ̂N

)
+ o

(
∥θ∗ − θ̂N ∥

)

The score s (θ∗; DX) (a gradient, therefore linear) is the sum of N i.i.d. scores
with zero mean (see Equation (18)) and variance equal to the FIM. In this
case, the central limit Theorem 8 states that the probability distribution of
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the variable
√

N
IF (θ∗;DX )s (θ∗; DX) converges in distribution (see Definition 7)

to N (0, I), or alternatively, the the probability distribution of the variable√
Ns (θ∗; DX) converges in distribution to N (0, IF (θ∗; DX)). Now, the Taylor

expansion of the Hessian around θ∗ reads:

Hℓ

(
θ̂N ; DX

)
= Hℓ (θ∗; DX) +

(
∇θ ⊗ ∇θ ⊗ s (θ∗; DX)

)
.
(
θ̂N − θ∗

)
+

+o
(

∥θ̂N − θ∗∥
)

with ∇θ⊗∇θ⊗∇θ ln pθ (θ; DX) = ∇θ⊗∇θ⊗s (θ; DX). Provided C3 and C4,
the FIM N IF (θ∗;X1) is equal to Hℓ (θ∗; DX) (see Equation (27)). Provided
C5, the latter term ∇θ ⊗∇θ ⊗s

(
θ̂; DX

)
is bounded by M (DX) and therefore

it tens to 0 for N → +∞ which implies the limit :

lim
N→+∞

√
N
(
θ̂N − θ∗

)
= lim

N→+∞

√
Ns (θ∗; DX)
N IF (θ∗;X1)

converges in distribution to N
(
0, I−1

F (θ∗; DX)
)
, which proves the statement.

Remark 18. Theorem 17 establishes the confidence intervals of the MLE algo-
rithm, providing the possibility of assessing the probability (standard normal)
that the MLE approaches the “true” probability distribution pθ∗ (x) [Cam22].

Remark 19. For N N , the Fisher approach can fail because θ∗ is not unique,
since the loss function LDXY

defined in (P) in Section 2 is not convex [Cam22].
Moreover, in practice, the dimension of the probability space m ≫ dX , which
implies that the problem is over-parametrized, which makes it difficult to find
unbiased estimators [Cam22].

1.4 The Shannon’s approach
The concept of information was better defined by Shannon, in the framework
of the so called source coding problem, i.e. the problem of a source emitting
a message and a receiver capturing it. The message is meaningful only if the
receiver had no a priori knowledge of the message itself. Part of the infor-
mation attached to the message is lost if the receiver has already have a clue
of it [Clo22]. Deterministic messages bare zero information. Essentially, the
whole theory of information relies on the basic concept of entropy that - in
analogy with thermodynamics - provides an average level of information or
uncertainty of a random variable’s value. In its discrete form, the entropy of a
discrete random variable X that can assume any value in DX = {xi ∈ X }N

i=1
with the discrete probability distributions p(DX) = (p1, . . . , pN ) reads:
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H(p(DX)) = −
N∑

i=0
p(X = xi) · ln(p(X = xi)) = −Ex∼p [ln p(x)] (37)

Some examples:

• The entropy of the discrete uniform distribution U reads:

H(U(DX)) = −
N∑

i=1

1
N

· ln
(

1
N

)
= lnN = ln |DX | (38)

In this case, each xi ∈ DX has the same probability 1
N

• The entropy of a deterministic variable of distribution p(xi)δ(xi − xj)
reads:

H(δ) = −
N∑

i=1
δ(xi − xj) · ln δ(xi − xj) = −1 · ln 1 = 0 (39)

• The discrete uniform distribution has the largest entropy:

0 ≤ H(p) ≤ H(U(DX)) = lnN (40)

As a matter of fact,

max∑N

i=1
pi=1

H(p1, . . . , pN ) =
N∑

i=1
min∑N

i=1
pi=1

pi ln pi arg min
pi∈[0,1]

pi ln pi = 1
e

Unfortunately, choosing pi = 1
e does not necessarily yield

∑N
i=1 pi = 1,

but, recalling that p(xi) = 1
αp(αxi) and assuming p(xi) = p(xj), ∀i, j ∈

N , the uniform probability distribution p = pi = p(αxi) can be normal-
ized by α = e

N , i.e. pi = 1
N with xi ∼ U(DX), whose entropy is lnN (see

Equation (38)) [Cam22].

A practical explanation of what the Shannon’s entropy means is provided
in [Rio18] and adapted to mechanics in [Clo22]. Consider the Darcy’s law for
a fixed total discharge Q across a set of N independent and laterally isolated
parallel channels of length L and area A, with 1D laminar flow and random
hydraulic conductivity. The total discharge

Q =
(

N∑

i=1
Ki

)
∆h ·A
L

with an overall hydraulic head ∆h. The random hydraulic conductivity of each
channel Ki is considered as a random variable, sampled from a set of values
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Figure 3: Example of the Darcy’s law in a set of N parallel channels with random
hydraulic conductivity Ki.

DK = {K1, . . . ,Kb} with cardinality |DK | = b and p(K) = (p1, . . . , pb). What
is then the average number of channels with random hydraulic conductivity
Ki ∈ DK that delivers the total discharge Q? If one considers a uniform
discrete distribution of hydraulic conductivity pi = 1

b , K ∼ U (DK), given the
fact that one could pick N times any value of Ki in DK , the probability of a set
of N independent channels is defined as p

(
{Ki}N

i=1

)
= b−N and the average

number of channels reads:

En∼p [N ] = −En∼p

[
logb p

(
{Ki}N

i=1

)]
= H(p1, . . . , pN ) − 1

ln b (41)

For uniform distribution, H(p1, . . . , pN ) is a positive monotonic function of N .
− 1

ln b plays the role of normalization constant. Instead, for a generic distribu-
tion of the Ki, the likelihood of N reads:

p
(

{Ki}N
i=1

)
=

N∏

i=1
pbi

i = b
N
(∑N

i=1
fi logb pi

)
= b−N ·(DKL((f1,...,fN )∥(p1,...,pN ))+H(f1,...,fN ))

(42)
with bi being the number of times that Ki is picked and fi = bi

N its empirical
frequency (

∑b
i=1 fi = 1). For the law of large numbers (by Bernoulli), fi −→

N→∞
pi, so in this case, when the number of channels is very large, the likelihood of
N reads:

p
(

{Ki}N
i=1

)
= b−N ·H(p1,...,pN ) (43)

The expected number of channels is the Shannon’s entropy of the set of pipes.
A large entropy H(p1, . . . , pN ) → 0 leads to a low likelihood of N , since the
total discharge value remains highly uncertain, yet less likely to occur, whereas
a decrease in H(p1, . . . , pN ) translates into a more likely-to-occur configuration
of N channels. In a deterministic case, only one possible configuration is pos-
sible, with probability p

(
{Ki}N

i=1

)
= 1.

Moreover, any bi follows the Binomial distribution bi ∼ B(N, pi) =
(

N
bi

)
pbi

i (1 −
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pi)N−bi and Efi
(fi) = 1

N Ebi∼B(N,pi) [bi] = pi
7. Therefore, Equation (43) corre-

sponds to the likelihood for an average value of bi, i.e., of having p
(

{Ki}N
i=1

)
≈

∏N
i=1 p

E[bi]
i =

∏N
i=1 p

Npi

i . Random configurations of N channels with large en-
tropy deliver a highly unknown total discharge, but they occur with low proba-
bility. Instead, “typical” configurations, with average number of channels with
hydraulic conductivity Ki have low entropy and high probability to occur. The
number of possible combinations (with repetitions) of values of hydraulic con-
ductivity isNb = (N+b−1)!

b!·(N−1)! and it correspond to the number of possible total dis-
charge values Q =

(∑N
i=1 fiKi

)
∆h·A

L . Each value Q is attained NQ = N !∏N

i=1
bi!

unique times with a probability that is the sum over NQ the disjoints configu-
rations pQ = NQ · p

(
{Ki}N

i=1

)
. If one considers the “typical” configurations,

corresponding to N very very large, pQ = NQ · p
(

{Ki}N
i=1

)
≈ 1 [Clo22]8.

This implies 1
N

ln NQ

ln b ≈ H(p
(

{Ki}N
i=1

)
), which means that the entropy ap-

proximates - in logarithmic scale - the average number of i.i.d. configurations
(or states) that delivers the total discharge Q, normalized with the respect
to the base b and of the number of channels. In a non-“typical” configura-
tion, NQ ≤ b−N ·H((f1,...,fN )∥(p1,...,pN )) with H ((f1, . . . , fN )∥(p1, . . . , pN )) repre-
senting the cross-entropy between the empirical frequencies approximating the
probability distribution of Ki. The cross-entropy is defined as:

H((p1, . . . , pN )∥(q1, . . . , qN )) = −
N∑

i=1
pi · ln qi (44)

1.4.1 Why the logarithm?

Shannon’s observed that, being the uncertainty or surprise associated to a ran-
dom variable X inversely proportional to its probability of occurrence P (ω),
deterministic events provide poor information and two events measured sepa-
rately provide a total amount of information equal to the sum of the two single
contributions. Based on this evidence, Shannon defined the self-information
of an event ω ∈ (Ω, E ,P) as a strictly decreasing monotonic function of the
probability P (X):

I(ω) = f(P (ω)) ≥ 0 (45)
7bi ∼ B(N, pi). The expression g(t) = Ebi∼B(N,pi)

[
et·bi

]
=∑N

bi=1 et·bi
(

N
bi

)
p

bi
i (1 − pi)N−bi = (etpi + (1 − pi))N allows to compute the expected

value of bi, since g′(0) = Ebi∼B(N,pi) [bi] = N · pi

8When N is very large, the Stirling’s approximation applies: N ! ≈ (2πN)
1
2 · NN ·

e−N and ln bi! = bi · ln bi − bi = Npi · ln(Nbi) − Npi. With this approximation,
NQ ≈ (2πN)

1
2 bN·logb(e)·(H(f1,...,fN ))+DKL((f1,...,fN )∥(p1,...,pN )) = (2πN)

1
2 p− logb(e)(N) ·

eNDKL((f1,...,fN )∥(p1,...,pN )) [Clo22]. More at https://michael-franke.github.io/
intro-data-analysis/the-maximum-entropy-principle.html

Gatti 275

ALERT Doctoral School 2023



with f : [0, 1] 7→ [0,∞) such that I(ω) = 0 if P (ω) = 1 and I(ω) = ∞ if
P (ω) = 0. f has to be additive for two independent events (ω1, ω2) ∈ Ω2, i.e.
I(ω1 ∩ ω2) = I(ω1) + I(ω2) with P (ω1 ∩ ω2) = P (ω1) · P (ω2). The additive
property implies that:

I(ω1∩Y ) = f(P (ω1∩ω2)) = f(P (ω1)·P (ω2)) = I(ω1)+I(ω2) = f(P (ω1))+f(P (ω2))
(46)

Equation (46) happens to be a Cauchy’s logarithmic functional equation, whose
only monotone solution is in the form f(x) = − logb(x) = − ln x

ln b , with b > 1
(since f : [0, 1] 7→ ∞) and

I(ω) = f(P (ω)) = − logb P (ω) = − lnP (ω)
ln b , b > 1 (47)

Therefore, the Shannon’s entropy is the expected self-information of a random
variable, quantifying how surprising the random variable is on average:

H(p(ω1), . . . , p(ωN )) =
n∑

ωi∈ω

p(ωi) · I(ωi) = Eωi∼pi
[I(ω)] (48)

1.4.2 Shannon’s entropy: some fundamental property

The Shannon’s entropy of random variable X can be defined as the limit (in
probability sense) of the self-information of a uniform random variable. This
is proven by the following theorem:

Theorem 20 (Mallat and Campagne [Cam22]). If Xi are i.i.d., with probability
law PX , with a set of realization xi ∈ DX , with probability distribution p(xi):

∀ϵ > 0, lim
N→∞

P

[∣∣∣− 1
N

lnP (X1, . . . , XN ) − H(P (X))
∣∣∣ ≤ ϵ

]
= 1 (49)

This result is rather fundamental. Mallat provides an insightful interpretation
of Theorem 20: the self-information − 1

N lnPX(X1, . . . ,XN ) is concentrated
on a surfaces defined by the equation − 1

N lnPX(X1, . . . ,XN ) ≈ H(X), pro-
vided an arbitrary small thickness ϵ. In machine learning practice, algorithms
are trained by assuming datasets of i.i.d. samples, trying to approximate the
underlying - yet unknown - entropy H(P (X )), associated with the true data
probability distribution. However, in order to achieve a good approximation of
the real entropy, several i.i.d. examples are required, so to refine the thickness
ϵ.

• The joint entropy of two discrete random variables X and Y reads:

H(p(X ,Y )) = −
N∑

i,j=1
p(X = xi,Y = yj) ln p(X = xi,Y = yj) =

= − E(x,y)∼p [ln(p(X ,Y ))]

(50)
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• The conditional entropy of two discrete random variables X and Y reads:

H(p(Y |X = xi)) = −
N∑

j=1
p(Y = yj |X = xi) ln p(Y = yj |X = xi) =

= − Ey∼p(y|x) [ln(p(Y |X = xi))]
(51)

and

H(p(Y |X )) = −Ex∼p(x) [H(p(Y |X = x))] =

= −
N∑

i,j=1
p(Y = yj |X = xi)p(X = xi) lnp(Y = yj |X = xi) =

= −
N∑

i,j=1
p(X = xi,Y = yj) ln p(Y = yj |X = xi) = −E(x,y)∼p [ln p(Y |X )]

(52)

•

H(p(X ,Y )) = H(p(Y |X )) + H(p(X )) = H(p(X |Y )) + H(p(Y )) (53)

• The Kullback-Leibler distance DKL (p∥q) has the following properties:

– DKL (p∥q) ≥ 0, since, due to the concavity of ln(x), ln(y) − ln(x) ≤
(ln x)′ · (y− x) and setting x = p and y = q the following expression
holds:

Ep

[
ln q
p

]
= −DKL (p∥q) ≤ Ep

[
q − p

p

]
= 0

– DKL (p∥q) = 0 implies that p ≡ q if and only if

supp(p) ∩ supp(q) ̸= ∅

Otherwise, when p and q have two disjoint supports, it often occurs
that DKL (p∥q) = 0 or DKL (p∥q) = 0 → ∞. This pathological
situation occurs quite often in practice, especially for genereative
algorithms such as GAN (see [Goo+14]).

– The Kullback-Leibler distance between p(X ,Y ) and p(X ) · p(Y ) is
called mutual information I(X,Y ) [Che+16; Cam22]:

I(p(X ,Y )) = H(p(Y )) − H(p(Y |X )) =
= H(p(X )) − H(p(X |Y )) = DKL (p(X ,Y )∥p(X ) · p(Y ))

(54)
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The proof is straightforward, since H(p(X ,Y )) = H(p(Y |X )) +
H(p(X )) = H(p(X |Y )) + H(p(Y )) ≥ 0 and

I(p(X ,Y )) = −H(p(X ,Y )) + H(p(X )) + H(p(Y )) =

= E(x,y)∼p

[
p(X ,Y )

p(X ) · p(Y )

]
= DKL (p(X ,Y )∥p(X ) · p(Y )) ≥ 0

– I(p(X ,Y )) is strictly connected to the notion of self-information
presented in Section 1.4.1. I(p(X ,Y )) if X ,Y are two independent
events.

– The notion of mutual information is widely used in practice. Max-
imizing I(p(X ,Y )) at constant H(p(X )) requires H(p(Y |X )) → 0,
i.e., forcing the disentanglement between X and Y [Che+16].

– The mutual information enters in one of the alternative definitions
of the ELBO, in Equation (88):

ELBO = Ex∼p

[
Ez∼qϕ(Z |x)

[
ln pθ (Z |X )

]]
−

− DKL

(
pθ (Z )∥qϕ(Z )

)
− I(Z ,X )

(55)

Maximize the ELBO demands to minimize I(Z ,X ) = H(qϕ(X )) −
H(qϕ(X |Z )) [Mak19], i.e. find a joint data distribution qϕ(X ,Z )
“highly generative” , i.e. with a large conditional entropy H(qϕ(X |Z )).
In this sens, the statistical model associate to qϕ can widely span
the dimensionality of whole dataset X .

1.4.3 From discrete to continuous

The definition of entropy in Equation (37) can be easily extended to continuous
random variables with X isomorphic to RdX . In this case, it is called differential
entropy [Cam22]:

Hd(p(X )) = −
∫

X
p(x) · ln(p(x)) · µ(dx) (56)

Compared to H(p(X )), Hd(p(X )) is not always positive. For instance, Hd [U([0, b])] =
log b < 0 if b < 1. The differential entropy of a multivariate normal distribution
reads:

Hd(N(µ,Σ)(X )) = − ln
(

(2π)− n
2 det (Σ)− 1

2
)

Ex∼N(µ,Σ)

[
(x − µ) ⊗ Σ−1 (x − µ)

]
=

=dX

2 ln 2π + 1
2Tr (Σ)

(57)
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Figure 4: Differential entropy Hd(pϵ) of a normal distribution pϵ = N (0, 1).

The differential entropy of a normal distribution increases with the dimension
of the data space dX .

Moreover, Tr (Σ) is dominated by the spectral radius ρ(Σ) = sup
λ∈σ(Σ)

|λ|. In

other words, the surprise related to a random multivariate normal variables
increase with the dimension of the space in which the variable lives and with the
correlation between its components Σ. The factor 1

2 Tr (Σ) represents a factor
of “scale”, since Hd (bX ) = Hd (X ) + ln b, in analogy with what presented for
its discrete counterpart in Section 1.4.

1.4.4 Typical set

In the discrete case, the approximation evoked in the Section 1.4.2 for large
number of observations holds because of the well-know law of large numbers
(the weak form in Theorem 3), which implies that the estimated mean of a set
of i.i.d. variables with the same average converges in probability to the true
mean. In other words, Equation (43) is formally expressed as (see [Cam22]):

lim
N→+∞

P

[∣∣∣ 1
N

logb p
(

{Ki}N
i=1

)
+ H(p1, . . . , pN )

∣∣∣ ≤ ε

]
= 1, ∀ε > 0 (58)

Equation (58) defines the “typical” set as:

A(N)
ε =

{
(K1,K2, . . . ,KN ) ∈ DN

K |

P

[∣∣∣ 1
N

logb p
(

{Ki}N
i=1

)
+ H(p1, . . . , pN )

∣∣∣ > 1 − ε

]} (59)
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Equation (58) represents the extension of the typical set to a large number of
observations. In this case, almost all the observations fall belong to the typical
set, ∀ε > 0. Therefore, the concept of typical set allows defining the notion on
Shannon’s entropy for a discrete variable as well as to provide the lower and
upper bounds of its probability distribution that read:

b−N(H(p)+ε) ≤ p
(

{Ki}N
i=1

)
≤ b−N(H(p)−ε) (60)

Equation (60) provided that for the typical set, the additivity of the entropy
function allows to write NH(p) = H(p1, p2, . . . , pN ), which does not depend on
the realization itself. Moreover, the observations reach the asymptotic equipar-
tion of states, by randomly occupying the typical set. Moreover, the inequality
in Equation (60) allows to compute the cardinality of the typical set, since:

1 =
∑

{Ki}N
i=1∈DN

K

p
(

{Ki}N
i=1

)
≥

∑

{Ki}N
i=1∈A

(N)
ε

p
(

{Ki}N
i=1

)
≥

≥
∑

{Ki}N
i=1∈A

(N)
ε

b−N(H(p)+ε) = card
(
A(N)

ε

)
b−N(H(p)+ε)

1 − ε ≤
∑

{Ki}N
i=1∈A

(N)
ε

p
(

{Ki}N
i=1

)
≤

≤
∑

{Ki}N
i=1∈A

(N)
ε

p
(

{Ki}N
i=1

)
b−N(H(p)−ε) = card

(
A(N)

ε

)
b−N(H(p)−ε)

(61)

In the continuous case, the equivalent of Equation (58) reads:

lim
N→+∞

P

[∣∣∣ 1
N

ln p
(

{Ki}N
i=1

)
+ Hd (p (X ))

∣∣∣ ≤ ε

]
= 1, ∀ε > 0 (62)

since:
lim

N→+∞
1
N

ln p
(

{Ki}N
i=1

)
= Ek∼p [ln p (X )] (63)

However, the number of elements in the typical set is infinite, in the continuous
case. Therefore, one should define the typical volume Ω

(
A

(N)
ε

)
=
∫

A
(N)
ε

dx, in
the Lebesgue measure, bounded as follows (see Equation (61), with b = 2):

(1 − ε) · 2N(Hd(K)−ε) ≤ Ω
(
A(N)

ε

)
≤ 2N(Hd(K)+ε) (64)

since

1 =
∫

ΩK

p (k) dk ≥
∫

A
(N)
ε

p (k) dk ≥ 2−N(Hd(p)+ε)

1 − ε ≤
∫

A
(N)
ε

p (k) dk ≤ 2−N(Hd(p)−ε) · Ω
(
A(N)

ε

) (65)
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Therefore, thanks to Equation (65), one assumes that the typical volume has a
size ≈ 1

p(K) , the probability being constant regardless the realization and close
to the inverse of the size of the volume set (uniform), and that the differential
entropy Hd(p) can be seen as the logarithm to the base 2 of the characteristic
N -dimensional length of the typical volume tessellation.

1.5 The principle of maximum entropy (MaxEnt)
Any statistical model conceived to infer a physical problem must be compat-
ible with the available observations (xk, yk). The latter serve as verification
baseline. In particular, the easiest strategy to calibrate a statistical model is
to match the average observations µyk

(x) = Ex∼p [yk (x)], with p (x) being
the true (yet unknown) data probability distribution. Any statistical model
hθ formulated to infer new samples of the quantity of interest y, is associate
to a parametric probability distribution pθ , whose differential entropy must
be compatible with the constraints imposed by the observations. However,
these constraints on the observations are not sufficient to approximate the
“true” probability distribution p, based on the statistical model pθ . According
to [Jay57], pθ must maximize its differential entropy, so that the typical volume
is the largest as possible and the probability distribution on it is the most uni-
form possible. This framework is resolved by the following theorem [Cam22]:

Theorem 21. Gibbs-Boltzmann theorem
Provided a family of probability distributions q ∈ H, the solution to the following
constrained optimization problem:




max
q∈H

Hd(q) = max
q

(
−
∫

ΩX

ln q (x) · q (x) dx
)

ck (q) = µyk
−
∫

ΩX

yk (x) · q (x) dx = 0, ck : Rn → R, 1 ≤ k ≤ K

(66)

(67)

if it exists it is defined as pθ ∈ H, which reads:

pθ (x) = arg max
q∈H,c:c=0

Hd(q) = e−
∑K

k=1
yk(x)·θk

Z

with Z a normalization constant. Moreover, Hd

(
pθ
)

≥ Hd (p), ∀θ ∈ Hθ ⊂ H
and if pθ = p, then Hd

(
pθ
)

= Hd (p)

Proof. The proof of the Gibbs-Boltzmann theorem is proven thanks to the
Kuhn-Tucker theorem. The set

K =
{
q|c(q) = 0, ck ∈ C1 (Rn) ,∀k = 0, . . . ,K

}
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represents the set of continuous and differentiable constraint functions. If the
derivatives dck

dq are linearly independent, and if ∃w ∈ R such that its Gâteaux
derivative9 along w satisfies the expression:

Dwck(q) = 0, k = 0, . . . ,K

the constraints are “qualified” (or active). In this context, the Kuhn-Tucker
theorem grants the existence of a probability distribution pθ ∈ Hθ ∩ K and of
a set of coefficients λ1, . . . , λK , with λi ∈ R, for which:

DqHd(pθ ) +
K∑

k=0
Dqck(pθ ) = 0, ∀q ∈ K (68)

The result of Equation (68) can be recast into the condition for which the
Lagrangian function defined as:

L(q,λ) = Hd(q) +
K∑

k=1
λk · c(q) + λ0

(∫

ΩX

q (x) · µ (dx) − 1
)

pθ represents a stationary point of the Lagrangian functional, since the Kuhn-
Tucker theorem in Equation (68) can be reformulated as:

DqL(pθ ,λ) = ∂L
∂t

(pθ + tq,λ)
∣∣∣
t=0

=

= −
∫

ΩX

q (x) · (ln pθ (x) + 1) · µ (dx) −

−
K∑

k=1
λk ·

∫

ΩX

yk (x) · q (x) · µ (dx) + λ0 = 0, ∀q ∈ K

(69)

which leads to:

pθ (x) = pλ (x) = eλ0−1 · e−
∑K

k=1
λk·yk(x) (70)

Equation (70) implies that the penalty coefficients λi are the parameters that
structure the space Hθ . However, the definition of pθ in Equation (70) needs to
be normalized, in order to assure that

∫
ΩX

pθ (x)µ (dx) = 1. This is achieved
if:

∫

ΩX

eλ0−1 · e−
∑K

k=1
λk·yk(x) · µ (dx) = 1 ⇐⇒

⇐⇒ Z = e1−λ0 =
∫

ΩX

e−
∑K

k=1
λk·yk(x) · µ (dx)

(71)

9

Dwf(q) = df(q + tw)
dt

∣∣∣
t=0
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The stationarity of the Lagrangian function also implies that pθ must respect
the constraint and force the expected value to converge to the “true” one (µ):

∇λL
(
pθ ,λ

)
= 0 ⇒∫

ΩX

yk · p (x)µ(dx) = µyk
(x) =

∫

ΩX

yk · pθ (x)µ(dx)
(72)

The family of exponential probability distributions Theorem 21 states
that the probability distribution that maximizes the entropy belongs to the
exponential family. Moreover, the probability distribution that maximizes the
entropy allows to describe the log-likelihood function as:

ln pθ (x) = − lnZ −
K∑

k=1
yk (x) · θk = − lnZ − ⟨y (x) ,θ⟩ (73)

The gradient of the term − lnZ reads:

−∇θ lnZ = Ex∼pθ
[y (X )] (74)

which implies the gradient of log-likelihood function reads:

∇θ ln pθ (x) = Ex∼pθ
[y (X )] − y (x) (75)

and the following property:

∇θpθ (x) = pθ (x) · ∇θ ln pθ (x) =
(

Ex∼pθ
[y (X )] − y (x)

)
· pθ (x) (76)

Moreover, the Fisher’s information computed as the mean Hessian in Equa-
tion (28) corresponds to the covariance of the observations yk (x) if pθ maxi-
mizes the entropy [Cam22]:

∇θ ⊗ ∇θ

(
ln pθ

)
=
∫

ΩX

∇θpθ (x) ⊗ y (x)µ (dx) =

=
∫

ΩX

(
Ex∼pθ

[y (X )] − y (x)
)

⊗ y (x) · pθ (x) · µ (dx) =

=Ex∼pθ
[y (X )] ⊗ Ex∼pθ

[y (X )] − Ex∼pθ
[y (X ) ⊗ y (X )] =

= − Cx∼pθ
(y (X ))

(77)

Remark 22. The interesting aspect of Equation (77) is that it depends only on
the information provided by the observations yk (x). In the case of neural net-
works, yk depends on the weights themselves though, since yk = hθ (xk) [Cam22].
The maximum entropy principle has a strong analogy with the Fisher infor-
mation theory, since the value of the “best” estimator θ̂ that maximizes the
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log-likelihood is unbiased (see Equation (30) for the definition). Equation (75)
adds the fact that θ̂ makes the observations y (X ) converge towards their
average values, that maximize the log-likelihood. Moreover, for a sufficiently
large dataset N → +∞, the MLE θ̂N tends to be normally distributed, i.e.,
its probability distribution tends to belong to the exponential family. In other
words, the MLE not only maximizes the (log-)likelihood but also the entropy of
the underlying dataset. In other words, the maximum entropy of a statistical
model is reached by maximizing the log-likelihood of an exponential probability
distribution [Cam22].

Remark 23. The quest for the best estimator can be seen as a minimax opti-
mization problem. The optimization targets the approximation of the unknown
differential entropy lower bound Hd (p) represented by the “true” data proba-
bility distribution (Hd

(
pθ
)

≥ Hd (p)). In order to achieve this lower bound, a
statistical model Hθ is chosen (the choice of the architecture of the N N ) among
all the possible statistical models H. By adjusting the parameters θ, the para-
metric probability distribution pθ ∈ Hθ induced by the statistical model must
realize the maximum of its differential entropy and comply with the obser-
vations (see Theorem 21). To summarize, the optimization task that neural
networks try to accomplish is expressed by the following minimax problem:

θ̂ = arg min
θ∈Θ

max
pθ ∈Hθ

Hd

(
pθ (Y |X )

)
(78)

1.6 Learning with variational inference and reconstruc-
tion

In supervised learning, the dataset is labeled, i.e.

DXY = {(xi,yi) ∈ X × Y}N
i=1

The learning task is therefore to approximate the conditional probability dis-
tribution p(y |x) with a statistical model Hθ . In this case the “best” approxi-
mation can be found by minimizing the conditional entropy as follows:

θ̂(DXY ) = arg min
θ∈Θ

E(x,y)∈DXY
ln 1
pθ (Y |X ) (79)

The first order gradient method adopted to minimize the loss function reads
(see Equation (63)):

θ(i+1) = θ(i) − η(i)∇θLDXY

(
θ(i)
)
, η(i) ∈ R+

The analogy with the concept of MaxEnt and MLE exposed in Remark 22,
in order to minimize the negative log-likelihood N LL (equivalent to maximize
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the (log-)likelihood, as expressed by Equation (20)) the MLE can be found
according to the following recursive formula [Cam22]:

θ(i+1) = θ(i) − η(i)
(
µy − Ex∼p

θ(i) [y (X )]
)
, η(i) ∈ R+ (80)

By identification,

∇θLDXY

(
θ(i)
)

= µy − Ex∼p
θ(i) [y (X )]

The recursive algorithm in Equation (80) ends when the entropy of the para-
metric probability distribution is close to its maximum value. However, in
machine learning applications, the dataset at stake is sampled from an un-
known probability distribution p (x). There is no certainty that p ∈ Hθ . This
implies that computing µy = Ex∼p [y (X )] is rather intricate since θ∗ ∈ Θ such
that x ∼ p = pθ∗ may not exist. µy could be estimated via its sample average,
provided that enough observations are available (curse of dimensionality). As
far as the computation of Ex∼p

θ(i) [y (X )] goes, the parametric distribution in-
duced by the set of weights pθ(i) is known, which pave the way to the use of the
family of cumbersome, yet effective, Monte Carlo methods (Importance Sam-
pling, Metropolis-Hastings, Gibbs Sampling, Markov chains,...). Neural net-
works follow another strategy: a N N is conceived to estimate y (x) = hθ (x)
and its statistics, depending on the weights themselves.
In unsupervised learning, in order to maximize the likelihood of the statistical
model, the common approach is to consider a latent manifold (Z, EZ , PZ) with
a arbitrary yet unknown probability distribution, that represents an encoded
version of the data at stake [Mak19]. The joint probability distribution p(X ,Z )
is unknown but it can be approximated by choosing an arbitrary distribution
p(Z) (often Gaussian or Uniform, for the sake of simplicity) and identify a joint
model distribution that reads

pθ (X ,Z ) = pθ (X |Z ) · p(Z ) (81)

The aggregate prior distribution:

pθ (X ) =
∫

Z
pθ (X |z) · µ(dz) (82)

corresponds to the likelihood in Equation (8), that is maximized to find the
best θ ∈ Θ provided an arbitrary generative distribution p(Z ). However, one
can also identify a joint data distribution as follows:

qϕ(X ,Z ) = qϕ(Z |X ) · p(X ) (83)

The aggregate posterior distribution is identified by:

qϕ(Z ) =
∫

X
qϕ(Z |x) · p(x)µ(dx) (84)
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The maximum likelihood matching consists into discover p(X) by matching
it with pθ (X ). Learning the real data distribution with variational inference
means to match pθ (X,Z) and qϕ(X,Z).
Finally, one can define the joint reconstruction distribution as:

r(ϕ;θ)(X ,Z ) = p(X |Z ) · q(Z ) ̸= qϕ(X ,Z ) ̸= pθ (X ,Z ) (85)

and its aggregate reconstruction distribution [Mak19] as:

r(ϕ;θ)(X ) =
∫

X
r(X , z) · µ(dz) (86)

There are different ways to maximize the log-likelihood. The most intuitive one
is the maximize its variational lower bound or Evidence Lower BOund (ELBO),
as proposed by Kingma and Welling [KW22]. The authors stated the following
inequality10:

Ex∼p

[
ln pθ (X )

]
≥

≥Ex∼p

[
Ez∼qϕ(Z |x)

[
ln pθ (Z |X )

]]
− Ex∼p

[
DKL

(
qϕ(Z |X )∥pθ (Z )

)]
= ELBO

(87)

According to Equation (87), maximizing the ELBO maximizes the log-likelihood,
towards pθ (X ) matching the real data distribution p(X ). In order to maximize
the ELBO, one needs to:

• Make the posterior qϕ(Z |X ) match the arbitrary probability distribution
on the latent manifold pθ (Z ). In this way, the negative term in ELBO
represented by the Kullback-Leibler distance between the two above men-
tioned distributions Ex∼p

[
Ez∼qϕ(Z |x)

[
− ln pθ (Z |X )

]]
goes to zero;

• Maximize the log-likelihood of the conditional distribution pθ (X|Z)

For both tasks, the learning algorithm has to perform the maximization “in
average” over the available dataset. However, the ELBO maximization can be
reformulated in other ways [Mak19], such as :

ELBO = Ex∼p

[
Ez∼qϕ(Z |x)

[
ln pθ (Z |X )

]]
− DKL

(
pθ (Z )∥qϕ(Z)

)
− I(Z ,X ) =

= Ez∼pθ (Z )

[
DKL

(
qϕ(X |Z )∥pθ (X|Z )

)]
− DKL

(
qϕ(Z )∥pθ (Z)

)
− H(p(X )) =

= −DKL (qϕ(X ,Z )∥rϕ;θ(X ,Z )) − DKL

(
qϕ(Z )∥pθ (Z )

)
− H(p(X ))

(88)
10With some mathematical intricacy, one can prove that

Ex∼p

[
ln pθ (X)

]
= Ex∼p

[
DKL

(
qϕ(Z|X)∥pθ (Z|X)

)]
−Ex∼p

[
Ez∼qϕ(Z|x)

[
− ln pθ (Z|X)

]]
−

−Ex∼p

[
DKL

(
qϕ(Z|X)∥pθ (Z)

)]
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Equation (88) implies the notion of Shannon’s entropy H(p(X )) of the real
data distribution and mutual information I(Z ,X ). Those two concepts will be
introduced in the following subsections.

2 Theoretical aspects of Multi-Layer Percep-
trons

2.1 Why the MLP?
Historically, the MLP has been largely studied (see for instance [HDD; Cyb89;
Hec92; Les+93; Pin99]) because of the following fundamental result: the uni-
versal approximation theorem.

Theorem 24. Universal approximation theorem for a 1-hidden-layered percep-
tron [Cam19]
Given a function g ∈ C(R) and a class of function

Hg := span
{
g(⟨w,x⟩ + b),w ∈ RdX , b ∈ R

}

, then Hg is dense for the uniform convergence on compact space, iff g is not
polynomial.

This theorem implies that a MLP hθ ∈ Hg, with one hidden layer, can ap-
proximate any function f : RdX 7→ R if g is not polynomial. In this case,
Theorem 24 states that Hg is dense in C

(
RdX

)
[Cam19], i.e. that

Theorem 25. ∀ε > 0,∃hθ ∈ Hg such that ∀X□ ⊂ RdX compact set, ∀x ∈
RdX |f(x) − hθ(x)| ≤ ε

For the full proof of this fundamental theorem, we refer to [Cam19]. However,
the proof’s outline unveils some interesting aspects related to the MLP archi-
tecture. In particular, the proof relies on the following fundamental lemma:

Lemma 26. Approximation with Fourier basis [Cam19]
Any function f ∈ C(RdX ) can be approximated on any compact set of RdX , with
an arbitrary precision ε, with a Fourier series. In other words:

∀f ∈ C(RdX ), ∀ compact set X□ ⊂ RdX , ∀ε > 0,∃N ∈ N,

∃ {wn}N
n=1 ∈ RdX such that ∀x ∈ X□ :

∣∣∣f (x) −
N∑

n=1
(an · cos (⟨wn,x⟩) + bn · sin (⟨wn,x⟩))

∣∣∣ ≤ ε

(89)

The proof is provided by Equation (210). The Fourier theory assures that Equa-
tion (89) is verified whenever f ∈ C∞(R∞). But this is a rather strong restric-
tion for practical purposes. As outlined in the following, based on Lemma 26,
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the Theorem 25 adopts a non-polynomial approximation of the harmonic func-
tions cos (⟨wn,x⟩) and sin (⟨wn,x⟩), in order to prove the universal approxi-
mation property. In particular, the harmonic functions are approximated - in
analogy with Equations (13) and (14) - by a series of K ridge functions

g

(
K∑

k=1
w

(o)
k ⟨wn,x⟩ + b(o)

)

which concludes the proof of Theorem 24.

In particular, Mallat [Cam19] shows that the bounded compact support X□
can be embedded in a hyperrectangle [−T, T ]dX , on which a hyperrectangular
regular grid of points is defined. This grids serves as support for the harmonic

orthonormal basis BdX
:=

dX⊗
m=1

Bm of L2
(

[−T, T ]dX

)
, obtained by tensorization

of the basis Bm :=
{
e

iπnmt
T

}
nm∈Z

of L2 ([−T, T ])11. Thus, f can be decom-
posed on its basis (see Equation (210)):

f (x) = 1
(2T )dX

∑

(n1,...,ndX
)∈ZdX

f̂(w(n1,...,ndX ))
dX∏

m=1
e

iπnmxm
T =

= 1
(2T )dX

∑

n∈Z

f̂(wn) · ei⟨wn,x⟩
(90)

For practical purposes, a truncation of the infinite series in Equation (90) is
required. This corresponds to filter the high frequencies by forcing {wn}n>N0

=
0. The truncation error e, in L2

(
[−T, T ]dX

)
norm is defined as12:

11The standard scalar product in L2 ([−T, T ]) reads

⟨f , g⟩L2([−T,T ]) =
∫ T

−T

⟨f∗ (t) , g (t)⟩ dt

For any two values of the basis Bm, it holds that:

〈
e

iπnj t

T , e
iπnkt

T

〉
L2([−T,T ])

=
∫ T

−T

e
−iπnj t

T · e
iπnkt

T dt = δjk

Which proves their orthonormality.
12According to [Cam18], the proof of the Lemma is based on a uniform convergence norm,

but ∥ · ∥L2 and | · | are not equivalent in infinite dimension. However, if f ∈ C∞, the uniform
convergence is proved, by Theorem 40. Unfortunately, this is not true if f ∈ C0, but the
Stone-Weierstrass theorem allows to approximate (via uniform convergence) the function
with a series of polynomial functions p(x) that can be differentiated infinite times, whose
Fourier coefficients p̂(k) decay fast and therefore the approximation is still valid.
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e2 = 1
(2T )dX

∫

[−T,T ]dX

∣∣∣f (x) − 1
(2T )dX

N0∑

n=1
f̂(wn) · ei⟨wn,x⟩

∣∣∣
2
dt ≤

≤ 1
(2T )dX

∑

∥wn∥2≥C(ε)

|f̂(wn)|2
(91)

The truncation threshold C(ε) depends on the accuracy of the approximation
expressed by e ≤ ε and it implies to limit the norm of the weights:

∥wn∥2 ≤ C(ε) ∀n > N0

In practice, this truncation is imposed by adding a penalty to the empirical
loss in Equation (92), corresponding to the Lp-norm of the weights (often L2

or L1):

LDXY
(hθ) = 1

N

∑

(x
k

,y
k

)∈DXY

ℓ (hθ (xk) ,yk) + λ · ∥w∥p (92)

Another interesting aspect of Theorem 24 and inherently of Lemma 26 is related
to the behaviour of the Fourier coefficients f̂(wn). The latter are the interpo-
lation weights for reconstructing the signal with the Inverse Fourier Transform
(see Equation (210). Therefore, their values are intimately related to the func-
tion regularity. Theorem 40 implies that, provided an arbitrary precision ε,
the higher the regularity of f , the faster the decay of its Fourier coefficients
with ∥w∥2. This means that a lower number of wavelengths is demanded to
approximate f . This result allows to estimate the number of weights needed
by a 1-hidden layer MLP to approximate any regular function f ∈ Cp, based
on the Theorem 24. In particular, the number of weights N ∝ MdX increases
with the dimension of the input data dX . Another reason why the number of
weights in the hidden layer can easily become very very large is the irregularity
of the function f to approximate: which implies to employ a larger number of
high-frequency Fourier coefficient to reach the desired precision e ≤ ε [Cam19].
As a matter of fact, irregular functions have a broader-band Fourier spectrum
(see for instance the Dirac delta δ(x − x0)). In this case, M can become very
large because of the Heisenberg uncertainty principle defined by the Theorem 43
that explicitly states the underlying trade-off between time and frequency lo-
calization [Mal09].

Controlling the error via a L2 norm as done in Equation (91) does not necessar-
ily imply the uniform convergence stated in Theorem 25, unless f ∈ C∞(RdX ).
However, even for f ∈ C0(RdX ), the Stone-Weierstrass theorem that states the
possibility of approximating f with a series of functions pi(x) =

∫
X□

Ni(x −
y) · f(y)dy , with Ni polynomials of order q, provided that

∫
X□

Ni(x)dx = 1.
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In this case,

∀ε > 0,∀x ∈ X□,∃R(ε) such that ,∀x ∈ [−R,R]dX |f (x)−
N∑

i=1
αi·pi (x) | ≤ ε

One can easily recognize here the basics of the Finite Element Method. More-
over, the Fourier coefficients N̂i(k) decay as fast as ∥w∥−q, but, compared with
Equation (89), the series of polynomes Ni does not represent the Fourier trans-
form of f [Cam19]. Plus, Theorem 25 demands non-polynomial functions in
order to assure the uniform convergence.

Finally, the Theorem 24 adopts ridge functions such as those presented in Sec-
tion 2.2 to assure the universal approximation power of a 1-hidden-layer MLP .
First, based on the Hölder’s inequality, each argument in the approximating
the Fourier series can be bounded as follows on X□:

⟨wn,x⟩ =
dX∑

i=1
wn,ixi ≤

(
dX∑

i=1
w2

n,i

) 1
2

·
(

dX∑

i=1
x2

i

) 1
2

= ∥wn∥2 ·∥x∥2 ≤ C(ε)·T ·dX

(93)
Recalling the expression of the truncation error e ≤ ε in Equation (91), the
approximation based on ridge functions employed to approximate the harmonic
functions can be expressed as13:

|f̂(wn)|·| cos (⟨wn,x⟩) −
K∑

k=1
w

(o)
k · g(⟨wn,x⟩ + bn)| ≤

≤M · | cos (⟨wn,x⟩ + bn) −∑K
k=1 w

(o)
k · g(⟨wn,x⟩ + bn)|

1 + ∥wn∥p+1+ε

with ⟨wn,x⟩ ≤ C(ε) · T · dX

(94)

The approximation in Equation (94) represents the outcome of a 1-hidden-
layer MLP with linear output activation function g(o)(a) = a and b(o) = 0.
For instance, if one selects a combinations of translated (via the biases bn)
ReLU functions for the hidden layer activation function g, the approxima-
tion in Equation (94) represents a piece-wise linear interpolation of f (see
Remark 39 [Cam19]). In order to keep the error

e
′
n = | cos (⟨wn,x⟩) −

K∑

k=1
w

(o)
k · g(⟨wn,x⟩ + bn)|+

+| sin (⟨wn,x⟩) −
K∑

k=1
w

(o)
k · g(⟨wn,x⟩ + bn)|

13For the sinus function, the same considerations apply.
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small enough, i.e., e′
n ≤ ε

N , with N being the number of weights for which
∥wn∥2, one needs at least K = 2T ·N ·C(ε)·dX

ε per each Fourier coefficient. The
total amount of ridge functions g to approximate f (x) is then K · N =
2T ·N2·C(ε)·dX

ε . In particular, if we fix C(ε), N ≈ C(ε)dX in order to keep
e = O( C(ε)

2T ). Therefore, the total number of ridge functions required by the
MLP is

NK = K ·N ≈ 2T · C(ε)2dX +1 · dX

ε

(N sine et cosine functions approximated by K ridge functions each). When-
ever the Fourier coefficients decrease slowly with the frequency, because of the
irregularity of the function, C(ε) increases accordingly and therefore one re-
quires a larger number of hidden neurons N to keep the a lower approximation
error. The increasing dimension dX of the dataset imply an even larger number
of parameters.

Considering that ∥f∥L2(R) < ∥f∥W k,2(R) ≤ ∥f∥L2(R) + ∥f (k)∥L2(R), and accord-
ing to Equation (91), the L2 approximation error is bounded as follows [Cam19]:

e2 ≤ 1
(2T )dX

∑

∥wn∥2≥C(ε)

|f̂(wn)|2 < 1
(2T )dX

∑

∥wn∥2≥C(ε)

1 + ∥wn∥2k
2

C(ε)2k
|f̂(wn)|2

(95)
If f ∈ W k,2, ∃0 < B < +∞ such that ∥f∥W k,2(R) ≤ ∥f∥L2(R)+∥f (k)∥L2(R) < B,
which implies that the approximation error is bounded, i.e. e < B

C(ε)2k = ε,
which implies that [Cam19]:

C(ε) =
(
B

ε

) 1
2k

NK ≈ 2T ·B 2dX +1
2k · dX

ε
2dX +1

2k

(96)

Equation (96) implies that, for a fixed approximation accuracy ε, the number
of hidden neurons in 1-hidden-layer MLP increases as ε

2dX +1
2k , i.e., the number

of neuron remains constant whether the regularity of the function k increases
with the dimension of the data space dX . Therefore, the 1-hidden-layer MLP
can theoretically approximate poorly regular functions in large dimension, pro-
vided that the number of hidden neurons is large enough (very large) [Cam19].
The number of hidden neurons estimated by Mallat in [Cam19] can be refined
though. In particular, according to [Mai99], the following theorem holds:

Theorem 27. Lower bounds for approximation by MLP neural networks [Mai99]
Given a function f : [−T, T ]dX → R, T > 0, with f ∈ W k,2, then it exists a
1-hidden-layer MLP hθ, with sigmoid activation function and NK hidden neu-
rons, such that the L2-error e = ∥f −hθ∥L2([−T,T ]dX ) is lower than a tolerance
ε if:

NK ≈ ε
1−dX

k (97)
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This theorem implies that to reduce the error by an order or magnitude, the
number of neurons must be multiplied by 10

dX −1
k . For instance, an W 2,2 func-

tion defined over R3 demands to multiply by a factor 10 to decrease by 10 the
approximation error.

2.2 On the sparsity of the MLP
To go further, [Bar93] proposed a strategy to weaken the assumptions on the
function regularity, yet breaking the curse of dimensionality. In particular,
[Bar93] proposes to focus on functions with L1 first order derivative. As a
matter of fact, if f ∈ W 1,1 (RdX

)
, then:

f ∈ W 1,1 (RdX
)

⇐⇒ ∥f (x) ∥L1(RdX ) < +∞, ∥∇xf (x) ∥L1(RdX ) < +∞
(98)

According to Remark 41 and following the strategy based on the Fourier analy-
sis, proposed by S.Mallat [Cam19], Equation (98) implies the norm ∥f (x) ∥W 1,1(RdX ) =<
+∞ is equivalent to ∥f (x) ∥L1(RdX ) + ∥∇xf (x) ∥L1(RdX ). Since ∇xf (x) ∈
L1 (RdX

)
, its Fourier transform exists and it reads iw f̂ (w). Recalling the

conditions of Equation (89), and bounding the compact support X□ where the
data live, with a regular grid discretizing the volume [−T, T ]dX ⊇ X□, we can
locally approximate ∇xf (x) with its Fourier series on [−T, T ]dX :

∇xf (x) =
∑

wn∈ZdX

iwnf̂ (wn) e−i⟨wn,x⟩, ∀x ∈ [−T, T ]dX (99)

On the compact support [−T, T ]dX , the L1-norm of ∇xf (x) is bounded as
follows:

∥∇xf (x) ∥L1(RdX ) =
∫

[−T,T ]dX

∥∇xf (x) ∥1dx =
∫

[−T,T ]dX

∥
∑

wn∈ZdX

iwnf̂ (wn) e−i⟨wn,x⟩∥1dx ≤

≤
∫

[−T,T ]dX

∑

wn∈ZdX

∥wn∥1 · |f̂ (wn) |dx < +∞

(100)

In the revisited version of the work of Barron [Bar93], by S. Mallat [Cam19],
the regularity condition in Equation (100) is adopted show the accuracy of
approximating f with the function in Equation (18).

Theorem 28. Approximation bounds of a neural network [Bar93; Cam19]
Given a function f : Rn → R, with f ∈ W 1,1 (RdX

)
and provided a constant

Cf =
∑
wn∈ZdX |f̂ (wn) | < +∞, then ∃ {wn}n≤NK

, with K = C2
f

ε2 such that

∥f (x) −
NK∑

n=1
f̂ (wn) e−i⟨wn,x⟩∥L2(RdX ) ≤

C2
f

NK
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Proof. In order to prove the revisited version of [Bar93] work, S.Mallat in [Cam19]
proposes to reindexing the Fourier coefficients f̂ (wn) in descending order, i.e.,
according to an indexing I : Z → N such that that

|f̂ (wn) | > |f̂ (wm) | =⇒ I(n) < I(m),∀m,n ∈ Z

Cf can therefore be rewritten as

Cf =
∑

n∈N

|f̂ (wn) | =
NK∑

n=1
|f̂ (wn) | +

∑

n>NK

|f̂ (wn) |

Since the Fourier coefficients have been reordered in descending order:

Cf ≥
NK∑

n=1
|f̂ (wn) | ≥ NK |f̂

(
wNK

)
|

which implies that the N th
K smaller Fourier coefficient is lower than Cf

NK
. To

conclude the proof, the approximation error can be rewritten as:

∥f (x) −
NK∑

n=1
f̂ (wn) e−i⟨wn,x⟩∥2

L2(RdX ) = ∥
∑

n>NK

f̂ (wn) e−i⟨wn,x⟩∥2
L2(RdX ) ≤

≤
∑

n>NK

C2
f

k2 ≤ C2
f

∫ +∞

NK

1
x2 dx =

C2
f

NK

Remark 29. The original version of Theorem 28 by [Bar93] proves that con-
sidering W 1,1 (RdX

)
functions, the L2-error of approximation is bounded by

above by the constant
∫

RdX
∥w∥1·|f̂(w)|dw

√
NK

.

The importance of Theorem 28 resides in the fact that, penalizing the learning
algorithm with a ℓ1 norm on the weights θ allows to promote sparsity and
achieve parsimony. In other words, the 1-hidden-layer MLP will learn how
to approximate the labelling function with the least amount of hidden features
(the famous above mentioned dictionary) and with an approximation error that
is not dependent on the dimension of the input space (or alternatively, for a
fixed accuracy, the design of the N N will require an amount of hidden neurons
that is independent of the dimension of the data space.

3 Advanced topics in CN N
In the following, a collection of labeled images DXY = {Xk, yk}N

k=1 of W × H
pixels each is considered. Any image Xk of the database is represented by a set
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of pixels, each one associated to a color expressed by a 3-dimensional vector
on the Red Green Blue (RGB) scale ψ : R3 → R3 (see Section 2.5). Therefore,
the image Xk ∈ RW ×H×3 can be alternatively indicated by the color vector ψ
as:

X (x1, x2, :) = ψ (x1, x2, 0) =
= ψR (x1, x2, 0, :) e1 + ψG (x1, x2, 0, :) e2 + ψB (x1, x2, 0, :) e3,

(x1, x2) ∈ [0, 1]2

(101)

For the sake of simplicity, the image is spanned over a [0, 1]2 domain, by a
regular grid of W × H pixels with a 2D index x = x1e1 + x2e2, (x1, x2) ∈
[0, 1]2. In the following, in order to simplify the mathematical formulation,
it is assumed that the image ψ : R3 → R3 with x3 = 0 for all 2D image
and ψ : (x1, x2, 0) 7→ ψ (x1, x2, 0). The 0 is omitted to avoid cumbersome
notation. The label yk belongs to an alphabet A for a classification purposes,
and yk ∈ RdY in regression problems. The alphabet is usually coded as a
one-hot vector, i.e. a binary vector of the size of the alphabet.

3.1 A group-theory vision of classification
If it exists a labeling function f : X 7→ y, we can study its regularity and invari-
ance with respect to any transformation applied to the image, that preserves
all the labeling function level sets

Lc(f) = [X ∈ X | f (X) = c] , ∀c ∈ Im (f)

. This invariance is expressed by a symmetry group [Mal16; Cam20]14:

G := [g|∀X ∈ L (f) , f (g.X) = f (X)] (102)

Some standard transformation:

• Translation:

gX = gψ (x) = ψ
(
x − cg

)

with cg ∈ R2 (103)

14One can prove that G is a groups since, ∀g1, g2, g3 ∈ G and ∀X ∈ X :
• f ((g1g2) g3X) = f (g3X) = f (X) = f (g3X) = f (g2 (g3X)) = f (g1 (g2g3) X) (associa-

tive)

• ∃Id such that f (Id.X) = f (X) (neutral element)

• ∃g−1 such that f
(

g−1g.X
)

= f
(

g−1X
)

= f (X) (inverse element)

The group si Abelian if g1g2 = g2g1 (optional).
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• Rotation:

gX = gψ (x) = ψ
(
Rgx

)

with g ∈ [0, 2π] and Rg ∈ SO(2)
(104)

• Roto-translation:
gX = gψ (x) = ψ

(
Rg

(
x − cg

))

with g ∈ [0, 2π] , cg ∈ R2 and Rg ∈ SO(2)
(105)

• Normalization:
gX = gψ (x) = sgψ (x)

with sg ∈ R
(106)

• More general, the group of diffeomorphisms acts according to the follow-
ing law:

g (X (x)) = ψ (g (x)) (107)

If we knew all the elements of G, we would know f entirely, since we could apply
several deformation to the image preserving all the level sets f (x) = c,∀c. S.
Mallat, who contributed to develop this original theory, asserts that it is hard
to know before hand all the possible strain fields which the labelling function
is invariant to. We can guess some (the classification is insensitive to roto-
translations, for instance) but definitely not all of them [Mal16; Cam20]. In
other words, the dimension of G is too large. But we can infer it from a
subgroup of plausible strain fields H. As a matter of fact, ∀g ∈ H, X and gX
belong to the same equivalence class. For instance, the image X engenders the
following equivalence class:

[X] :=
{

X
′ ∈ L (f) | X

′
= hX, h ∈ H

}

Note that, since f
(

X
′
)

= f (hX) = f (X). The ensemble quotient associated
to [X] reads:

L (f) |H := ([X] ∈ P (X ) ,X ∈ X ) (108)
with P (X ) being the power set of X . For all X0 ∈ L (f) |H, f (gX0) ∈ [X0]: in
other words, for each image X0, classified, for instance, as the image of “cat”,
despite any roto-translation or other known transformations of the group sym-
metries g ∈ H, the class of the transformed image gX0 remains classified as
“cat”. The advantage of this strategy, based on the group theory, formulated by
S. Mallat is that it reduces the dimensionality: as a matter of fact, we can find
the subgroup of transformations H, with dim(L(f)|H) =dim(L(f))−dim(H),
that are common to all the images belonging to the the equivalence class, i.e.
to all the images classified by f in the same way.
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3.1.1 Continuum Mechanics applied to image classification?

Several invertible transformation g1, g2, . . . , gn can be applied to X, but the
labelling function should not be affected. All groups of G can potentially
generate subgroups

{
gk, k ∈ Z

}
. Any set of groups A = {g1, . . . gn} gen-

erates a subgroup {A}, whose elements are defined by permutations of the
product g1g2 . . . gn. In particular, it is interesting to study the group orbit
OX = {gX}g∈G for which f

(
OX

)
= f (X). We borrow from continuum me-

chanics (see [Hil79; TN04; KD21] the theoretical framework necessary to de-
scribe continuous transformations that can be applied to the image, provided
that each infinitesimal transformation preserves the label f (X). This approach
provides a more flexible description of the ensemble of possible group actions
g ∈ H on the image, that can be a priori very very large and not limited to
finite roto-translations. In particular, we can think of the image pixels as a
set of points {Xn}W ×H

n=1 ∈ B15, disposed on a regular grid on the R2 space,
via the placement function p : B → (E ,R) (the 2D euclidean space, with ref-
erence system R defined by (O, e1, e2)), which is smooth and it preserves the
orientation (positive Jacobian, i.e., two points cannot occupy the same posi-
tion). B is defined as a “body” [TN04], an abstract manifold of dimension 2,
endowed with a Fréchet derivative [KD21]. The image can be placed in (E ,R)
in different configurations t, occupying a volume R3 ⊃ Ωt = Im(pt) = pt (B).
The space of configurations is defined as the ensemble of placement functions
pt ∈ C∞ (B, E) and it called embedding Emb∞ (B, E) ⊂ C∞ (B, E), which is
an infinite-dimensional differentiable manifold. In particular, the placement
p0 (pn) places any pixel of any image in the reference configuration p0, in a
coordinate of the R3 space referred as to

x0 = p0 (p) , ∀p ∈ B

and the same pixel in a configuration pt,

x = pt (p) , ∀p ∈ B

More generically, in analogy with mechanics, the color can be seen as a spa-
tial pixel-wise vector field ψ (x; t), where the “time” t stands for the non-
dimensional continuum index defining successive transformations g1, g2, . . .,
gt, . . .. As a matter of fact, the image can be distorted from an arbitrary
reference configuration p0 and classified in the same way all along the or-
bit OX = {gtX}gt∈G,t∈R. Moreover, data augmentation techniques are di-
rectly based upon enlarging the dataset at stake by applying arbitrary roto-
translations or other kinds of diffeomorphims to the original image dataset (see
Figure 5). Now, we should introduce a transformation from two different
configurations, in order to deform or roto-translate the image, i.e., a diffeo-
morphisms between two configurations, called deformation φ : Ω0 → Ωt and
defined as:

x = φ (x0) φ = pt ◦ p−1
0

15X are denoted as material coordinates
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Figure 5: Data augmentation on Modified National Institute of Standards and Technology
database (MNIST) dataset [LeC98]

The image in the arbitrary reference configurations occupies a volume Ω0 and,
when distorted by a diffeomorphisms, it occupies a volume Ωt, so that φ :
Ω0 → Ωt. One can notice that the phase flow associated to φ (x) and denoted
as φ (x; t) has the following properties:

φ (x0, 0) = Id(x0) = x0, φ (φ (x0, s) , t) = φ (x0, s+ t) (109)

If φ ∈ C1 (Ω0), its gradient exists and it defined as:

dx (t) = F (x0, t)dx0 + o (∥dx0∥) F (x0, t) =
2∑

n=1

∂φ (x0, t)
∂xn

⊗ en (110)

The linearization or variation of a spatial tensor field ψ (x) is formally equiv-
alent, in mechanics, to the Lie derivative of the spatial field itself. The Lie alge-
bra is based on the well know pull-back operation by any p ∈ Emb∞ (B, E) [KD21]:

Ψ (X ) = p∗ψ = JF−1 (ψ ◦ p) (111)

with J = det (F) and F−1 the inverse gradient. The inverse of the pull-back is
the push-forward:

ψ (x) = p∗Ψ = 1
J

FΨ ◦ p−1 (112)

The pull-back operation allows to refer to the body B itself, where each pixel is
identified in an abstract sense. The Lie algebra defines the fixed tangent planes
of the differentiable geodetic OX , generated by the gradient F (X ; t), that allow
to pass from a transformation at time t to another one infinitesimally close at
time t + dt. The Lie derivative is an infinitesimal version of the pull-back
and it reads, for a contravariant vector ψ , along the vector X of material
coordinates [KD21]:

Luψ = ∂

∂t

∣∣∣
t=0
φ (x; t)∗

ψ (113)
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In other words, the Lie derivative consists into compute the pull-back on ψ ,
compute its Gateaux derivative d

dt

∣∣∣
t=0

Ψ (X + tc) and finally push it forward to
the spatial configuration. For the sake of clarity, let us define the Lie derivative
for a vector field ψ , by firstly defining the following phase flow in R3 (Landau
notation):

φ (x; −t) = x − tu (x) + o(t) (114)

and the associated Gateaux derivative along y ∈ R3:

Dyφ (x; −t) = y − tDyu (x) + o(t) (115)

From now on, let us assume that u (x) is Fréchet differentiable, with the
bounded linear operator

Dxu =
3∑

n=1

∂u (x)
∂xn

⊗ en

that represents the gradient of the vector u and for which

Dyu (x) = Dxu (x) .y

In continuum mechanics, this implies that the displacement field does include
discontinuity or fractures. Plugging y = φ (x; t) in Equation (115), the latter
reads:

Dφ(x;t)φ (x; −t) = (I − tDxu (x) + o(t)) (x + tu (x) + o(t)) =
= φ (x; t) − tDxu (x) + o(t)

(116)

Moreover, the Taylor expansion of the continuous map ψ reads:

ψ (φ (x; t)) = ψ (x) + tDuψ (x) + o(t) (117)

The Lie derivative defined in Equation (113) can now be explicitly written as:

Luψ = lim
t→0

Dφ(x;t)φ (x; −t) (ψ (φ (x; t))) −ψ (x)
t

=

= lim
t→0

(I − tDxu (x) + o(t))
(
ψ (x) + tDuψ (x) + o(t)

)
−ψ (x)

t
=

= lim
t→0

(I − tDxu (x) + o(t))
(
ψ (x) + tDxψ (x)u + o(t)

)
−ψ (x)

t
=

= Dxψ (x)u (x) − Dxu (x)ψ (x) =
= Duψ (x) −Dψu (x) = [u,ψ ]

(118)

with [u,ψ ] being called the Lie brackets. Coming back to images X, considered
as planar continuum bodies, for the sake of simplicity, the translation g in
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Equation (103), corresponds to a deformation φ (x; −1) = x − cg, with cg =
u (x), such that:

gX = ψ
(
x − cg

)
= ψ (x − u (x)) = X+D−u(x)ψ (x)+o (∥u∥) = ψ (φ (x; 1))

Locally, the group g of dimension 2 reflects a translation on a image in its
actual configuration x, with a hyper tangent plan defined by

Dxψ (x; t) =
2∑

n=1

∂ψ (x)
∂xn

⊗ en

The translation on the hyper tangent plane is provided by u1 and u2 that rep-
resents the local displacement components on the hyper-plane tangent to the
group orbit and along which infinitesimally-close translations from the local
diffeomorphism can be performed. The group action is resolved by the term
D−u(x)ψ (x). S. Mallat in his works [Mal16; Cam20] proposes to refer to the
reference configuration x0 and to decompose the displacement into two com-
ponents: a global and a local one, obtained by approximating the displacement
vector at the first order Taylor expansion around it:

u (x) = u (x0) + Dxu (x0) (x − x0)

with an associated deformation (at first order in Equation (114), for t = 1)
that reads:

φ (x; −1) = (I − Dxu (x0)) (x − x0) + x0 − u (x0) (119)

The local action is represented by the local strain (I − Dxu (x0)) (x − x0) and
the global translation by x0 −u (x0). According to Equation (117), the image
transformation, based on this local diffeomorphism reads:

ψ (φ (x; −1)) = ψ (x) + Dxψ (x) ((I − Dxu) (x − x0) + x0 − u (x0)) (120)

In analogy with group theory, the term Dxψ ((I − Dxu) (x − x0) + x0 − u (x0))
represent the group action on ψ . In analogy with the infinitesimal strain theory
in mechanics, the small displacement hypothesis is granted by

sup
x∈Ωt

∥u (x) ∥ ≪ L

and the small strain assumption by

sup
x∈Ωt

∥Dxu (x) ∥ ≪ 1

with L being the characteristic size of the image (in this case, since the coor-
dinates are normalized, L = 1).
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3.1.2 Group invariance

The Lie algebra allow us to conceive a classifier hθ insensitive to diffeomorphism
(i.e., approximating the labelling function f , if it exists), by directly working
on the grid of pixels. The dimension of such group of diffeomorphism is poten-
tially high [Mal16; Cam20]. In the following, we attempt at approximating the
labelling function f with a function hθ : X → R defined as:

hθ (X) =
N∑

n=1
ϕn(X)wn = ⟨z (X) ,w⟩ (121)

The idea of S.Mallat is to learn f by making the group symmetries of hθ to
match the same invariants g ∈ G. In other words, it is necessary that the G is
a symmetry group of z , i.e. the ensemble quotient in Equation (108) [Mal16;
Cam20]. The problem is that z cannot be constructed out of the symmetry
groups of G, since those are potentially infinite and not known before hand. If
we consider the group of diffeomorphisms, we hope we can learn the subgroup
of diffeormophisms that do not affect the labelling function by adjusting the
weights w, since forcing z to learn the invariant would be too cumbersome and
this strategy could lead to overfit the data. Moreover, S. Mallat showed a re-
markable result in his works [Mal16; Cam20]: the canonical group invariant are
not working for approximating the labelling function. In simple words, learning
the canonical group invariants means to learn the parameters sg, cg,Rg defined
in Equations (103), (104) and (106) respectively. In other words, in analogy
with mechanics, the idea behind this strategy is to refer all the configuration
to the reference one x0, provided that this reference configuration is known
before hand (a deformable templates, see [GM98]). For instance:

• Scale renormalization:

gX = sgψ (x) = ψ (x0) ∀sg ⇒ sg =
∑H

i=1
∑W

j=1 ∥ψ (x0,1j , x0,2i) ∥
∑H

i=1
∑W

j=1 ∥ψ (x1j , x2i) ∥
(122)

If the average norm of ψ (x0) is 1, all possible scale factors sg of the sort
do not changeψ (x) = g−1ψ (x0) =

(∑H
i=1
∑W

j=1 ∥ψ (x1j , x2i) ∥
)
ψ (x0).

• Recentering:

gX =ψ
(
x − cg

)
= ψ (x0)

cg =
∑W

j=1 x1j∥ψ (x1j , x2i) ∥e1 +
∑H

i=1 x2i∥ψ (x1j , x2i) ∥e2∑H
i=1
∑W

j=1 ∥ψ (x1j , x2i) ∥
⇒cg = x − x0

(123)

with ψ (x) = g−1ψ (x0) = ψ
(
x0 + cg

)
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However, this approach is doomed to fail according to S. Mallat [Mal16; Cam20],
since the template image is not accessible nor defined in some cases. S. Mallat
proposes an alternative approach, i.e., he proposes to remove the diffeomor-
phism, by selecting a feature space F orthogonal to the weight space Θ:

hθ (X) = ⟨z (gX) ,w⟩ = hθ (gX) = ⟨z (gX) ,w⟩
⇐⇒ ⟨z (X) − z (gX) ,w⟩ ∀w ∈ Θ

(124)

Retrieving the infinitesimal strain theory in Equation (120) and the Taylor
expansion in Equation (117) with t = −1, Equation (124) can be linearized as
follows:

⟨z (X) − z (gX) ,w⟩ = ⟨z (ψ (x)) − z (ψ (φ (x; −1))) ,w⟩ ≈
≈ −Dψz (ψ (x)) (ψ (φ (x; −1))) ∀w ∈ Θ

(125)

In other words, Equation (125) highlights the fact that the gradient of the
hidden features z engenders the space Z = Θ⊥, for all images X ∈ L(f),
identified via the learning process that determines the optimum weights w.
A trivial strategy to achieve this result would be to force the invariance of
z (gX) = z (X) with the respect of any group action, so that z (X) = z (gX) =
z (ψ (x0)). However, this requirement can be rather prohibitive to achieve.
A weaker condition is to assure that the feature a Lipschitz functions [Mal16;
Cam20], in order to assure they remains “close” for infinitesimal group action,
i.e., the following property must hold:

∥z (X) − z (gX) ∥ ≤ C

(
sup
x∈Ωt

∥u (x) ∥ + sup
x∈Ωt

∥Dxu (x) ∥
)

∥z (X) ∥ (126)

Therefore, provided that a small strain and/or a small translations is applied
to the image, if the hidden features are Lipschitz, their variation are bounded.
However, natural images can be rather discontinuous, which hinders the extrac-
tion or Lipschitz features that are stable against infinitesimal groups actions.
In this case, seemingly small strain and translations can definitely cause a mis-
match between the original and deformed image and the distance

∥z (X) − z (gX) ∥ = ∥z (X) ∥ + ∥z (gX) ∥−

−2
W∑

i=1

H∑

j=1
⟨z (ψ (i, j)) , z (ψ (i, j))⟩ ≈ ∥z (X) ∥ (127)

because the projection of a features onto the new one is small because the strain
is not “small” enough to assure the feature stability. There is no absolute limit
amplitude for diffeomorphism to assure the fact that the features remain Lip-
schitz.
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If one considers a linear diffeomorphisms, with u (x) = ε.x, with a small
symmetric strain tensor ε = ε11e1 ⊗ e1 + ε22e2 ⊗ e2, with 0 ≤ ε1 ≪ 1, 0 ≤
ε2 ≪ 1, representing constant bi-directional stretching, Equation (120) reads:

ψ (φ (x; −1)) = ψ (x) + Dxψ (x) ((I − ε)x) (128)

If one considers features z (X) obtained by Fourier transform of the image,
defined as follows:

z (X) = F (X) =
∫

R2
ψ (x) e−i⟨k,x⟩dx = ψ̂ (k) (129)

the features corresponding to the bi-directionally stretched image read:

z (gX) = F (gX) =
∫

R2
ψ (x − ε.x) e−i⟨k,x⟩dx =

= det −1 (I − ε)
∫

R2
ψ (x) e−i⟨(I−ε)−Tk,x⟩dx =

= 1
(1 − ε1) (1 − ε2) ψ̂

(
(I − ε)−T

k
)

(130)

According to Equation (130), a bi-directional stretch smoothens the image,
since high-frequencies features are contracted by a factor (I − ε)−T towards
the low frequencies and amplified by a factor 1

(1−ε1)(1−ε2) . Therefore, even
for small strain, the Fourier features are not necessarily stable by stretching
(see Section 3.1.2). The Lipschitz condition is strictly related with features
that assure the scale separability, which is obtained by wavelet transform in
combination with non-linear activations (see [Mal09]).

3.2 Average Pooling
The most trivial strategy to force invariance by translation and dilatation ( φ =
x+ c+ diag (α1, α2, 0)x), mentioned in Section 3.1.2 is to apply consecutively
multiple group actions to each feature map and sum the contribution, such as
: ∑

g∈G

g.X =
∑

g∈G

ψ
(
x − cg

)
(131)

because Equation (131) represents the average image, that can be rewritten
as
∑

g∈Gψ
(
x

′
g

)
by change of variables x′

g (x) = x + c + diag (α1, α2, 0)x −
cg. Another interesting interpretation is given by the fact that the Fourier
transform of a translated vector ψ

(
x − cg

)
in R2 is independent of cg in the

following condition [Cam20]:

F
(
ψ
(
x − cg

))
= ei⟨k,cg⟩ · F (ψ (x)) = F (ψ (x)) ∀cg ⇐⇒ k = 0 (132)

with ψ̂ (0) = F (ψ (x)) (0) being the average of the ψ (x). Averaging the im-
age cancels all local image features and all the previously applied group actions
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along the group orbit (and of their order).

To avoid this loss of information, z (X) can be obtained by performing an
averaging as in Equation (131) on a linear combination of Nc feature maps
zc (X), corresponding to different channels. In other words, according to S.
Mallat [Cam20], the features are obtained by average pooling, defined as:

z (X) =
Nc∑

c=1

∑

g∈G

eczc

(
ψ
(
x − cg

))
=

=
Nc∑

c=1


∑

g∈G

gzc (X) ec


 = AvgPooling

(
Nc∑

c=1
zc (X) ec

) (133)

Average pooling in Equation (133) grants the sought invariance by translation
(or other group action) provided that each feature map zc (each channel) is
equivariant by translation:

Nc∑

c=1
zc (X) ec =

Nc∑

c=1


∑

g∈G

zc (gX) ec


 =

Nc∑

c=1


∑

g∈G

zc

(
ψ
(
x − cg

))
ec


 =

=
Nc∑

c=1


∑

g∈G

gzc (X) ec




(134)

The equivariance by translation of each feature map suggests that each channel
should be rendered by a covariant operator, such as the linear convolution
(see Figure 6). In other words, features z are invariant by group action
(translation, rotation, diffeomorphisms) thanks to average pooling performed
on feature maps that commute with the same group action, i.e., if the image
is deformed, each feature map follows the same deformation, according to the
following expression:

zc(gX) = zc

(
ψ
(
x − cg

))
= zc

(
ψ (x) − cg

)
= gzc (x) (135)

Pooling layers can be applied on the top of a standard MLP of the type
described in Section 2.2, for classification purposes. However, MLP are not
necessarily producing translation-equivariant output. The average pooling out-
put is independent of translations and dilatation, so that the classification is
not affected (see Section 2.5 for technical details about the AvgPooling imple-
mentation). cg is called stride and it can be larger than 1 pixel, which consists
into an average operation with subsampling. Moreover, the average operation
does not require the previous knowledge of G such as in the approach that
learns the canonical invariants (see the recentering in Equation (123)).
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Figure 6: Convolutional feature maps extracted from a digit image belonging
to the Omniglot dataset (https://www.omniglot.com) and translated by using
the elasticdeform library (https://elasticdeform.readthedocs.io/en/latest/
license.html).

3.3 Convolutional layer
Assuming equivariant group action on the feature maps, the effect of any further
group actions g′ on the feature maps vanishes (because of the sum over all the
groups):

z (g′X) =
Nc∑

c=1

∑

g∈G

zc (g (g′X)) ec =
Nc∑

c=1

∑

g∈G

g′zc (gX) ec (136)

In order to force the equivariance to translation (but also with the respect to
rotation and other small strain) of each feature maps z (X) =

∑Nc

c=1 zc (X) ec,
the latter must be the result of a convolution, as defined in Appendix A and
reported in the following expression:

z (ψ (x)) =
∫

R2
H (u) .ψ (x − u) du + b (137)

with H the causal convolution kernel (i.e. the response function of the LTI
system) and with b the filter bias. H has usually a compact support. Since
the image is a discrete signal defined by via the sampling functions s1 and s2
as (see Equation (226)):
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ψ [i, j] = s1

(x1i

W

)
· s2

(x2j

H

)
I ⋆ψ (x) (138)

the feature maps are the result of a discrete convolution that reads:

z [j, i] =
kW −1∑

u=0

kH −1∑

v=0
H [u, v] .ψ [i− u, j − v] + b, (i, j) ∈ J0,W K × J0, HK

(139)
with f [u, v] = f

(
u
W , v

H

)
and z being stored in C order, contiguous along the

rows. Each feature map zc (X) = ⟨H ⋆ψ , ec⟩+bc corresponds to a LTI filter on
the image, for a total of Nc filters. Refer to Section 2.5 for an extensive excursus
on practical aspects related to the the implementation of discrete convolution.

Remark 30. Strided convolutions, defined as:

z (ψ (x)) =
∫

R2
H (u) .ψ (diag (sW , sH , 0)x − u) du (140)

with strides sW ≥ 1 and sH ≥ 1, are a way of reducing the dimensionality
of the data, but they represent a loss of information (since some pixels are
skipped) and they disrupt the translation-equivariance (or covariance, stated in
Equation (199)) because they infringe the Nyquist-Shannon theorem [AW19].
In other words, when the convolution is strided, if the underlying image is
translated, the resulting feature maps do not match the translated feature maps
of the original image. As a matter of fact, discrete signals should be the result
of a sampling at at least twice the highest frequency in the input analog signal,
in order to grant its correct reconstruction. In the case of strided convolution,
the image/feature map is sampled according ot the stride values, disregarding
some of the information contained in the original signal. In order to counteract
this problem, the number of feature maps increases accordingly, but still they
are not translation-equivariant [MMD20]. On the other hand, downsampling
due to non-strided convolutions or pooling, break the hypothesis (valid for
continuous signals) of translation invariance [SG20]. This effect is mitigated
by adding zero-padding at the edge of the image.

Remark 31. Despite breaking feature maps’ equivariance, subsampling is still
largely employed with success. According to [MMD20], this is mostly because
of the subsampling “shiftability” property. Shiftability is defined as the trans-
lation scaled by the associated subsampling stride, i.e.:

zc(gX) = zc

(
ψ
(
x − cg

))
= zc

(
ψ (x) − diag

(
1
sW

,
1
sH

, 0
)
cg

)
(141)

with sW and sH being the stride along the image width and height respectively.
In other words, the subsampled feature maps obtained by strided convolution
are equivariant to all group translations by a vector that is a fraction of the
stride. Shiftability is a scaled version of the translation-equivariance. For
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a stride couple (sW , sH), there exist sW · sH equivariant translations of the
feature map, i.e. ∀(αW , αH), with 1 ≤ αW ≤ sW and 1 ≤ αH ≤ sH the
following expression holds:

zc(gX) = zc

(
ψ
(
x − diag (αW , αH) cg

))
= zc

(
ψ (x) − diag

(
αW

sW
,
αH

sH
, 0
)
cg

)

(142)

Equation (142) proves that subsampling reduces the so called “image move-
ment” [MMD20], defined as the amount of translation of the feature map from
the untranslated position x0: shiftable feature maps are equivariant to αW ≥ 1
and αH ≥ 1 times larger. However, subsampling reduces the so called “image
similarity” due to the information loss of skipping pixels. The reduced sim-
ilarity prevents the invariance to translation of feature maps. The preserved
similarity depends on the “local homogeneity” of the image [MMD20]: the
larger the correlation length of ψ (x), the higher the local homogeneity and
the larger will be the preserved similarity despite subsampling. However, the
input image ψ (x) should not be treated explicitly (e.g., by applying a Gaus-
sian blur). Instead, feature maps remain “similar” by using strided pooling: the
stride (subsampling) reduces the “image movement”, while, at the same time,
pooling increases local homogeneity, by averaging over the kernel [MMD20].

The role of non-linear activation Convolutional filters are applied to the
image or to the feature maps of the previous layers, followed by non-linear
activation functions γ16 that are also equivariant by translation and small strain
(see Figure 7):

γ (zc (gX)) = gγ (zc (X)) (143)

The easiest choice is to adopt pixel-wise non-linear activation functions [Cam20].

Figure 7: Action of the average pooling, convolution and convolution with ReLU acti-
vation on a distorted image gX.

Moreover, S. Mallat suggests that non-linear activation functions can be adopted
to threshold local pattern (or noise).

16γ is used instead of the standard notation g, in order to avoid confusion with the group
action.
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4 Optimizing a Neural Network

4.1 Gradient Descent (GD) algorithm: first order ap-
proach

If one considers a function LDXY
: Θ → R, with Θ ⊂ RdΘ and f ∈ C1(Θ), the

Taylor expansion expressed by the following expression holds:

Tθ̂LDXY
(θ) = LDXY

(
θ̂
)

+
〈

∇θLDXY

(
θ̂
)
,θ − θ̂

〉
+ o

(
∥θ − θ̂∥

)
(144)

with o
(

∥θ − θ̂∥
)

being a quantity such that lim∥θ−x̂∥→0
o(∥θ−θ̂∥)

∥θ−θ̂∥ = 0. Being
K convex, the following function is positive (by Theorem 73):

〈
∇θLDXY

(
θ̂
)
,θ − θ̂

〉
≥ 0, θ ∈ K (145)

This means that, at the first order,

Tθ̂LDXY
(θ) ≥ LDXY

(
θ̂
)

and 〈
∇θLDXY

(
θ̂
)
,θ − θ̂

〉
= O

(
∥θ − θ̂∥

)

. In this sense, to minimize LDXY
on a convex set K one needs to search in

the direction of −∇θLDXY
, i.e., at the first order:

θ = θ̂ + η∇θLDXY

(
θ̂
)

(146)

with η ∈ R+ being the learning rate, and replacing it in Equation (145), the
Euler’s inequality is satisfied and LDXY

(θ(η)) ≥ LDXY

(
θ̂
)
, ∀η ∈ R+. In

alternative, the following function ξ : R+ × Θ → R

ξ : (η,θ) 7→ LDXY
(θ − η · ∇θLDXY

(θ)) (147)

gives an idea of how LDXY
evolves along the half-line directed along −∇θLDXY

(θ).
The Taylor expansion of ξ with the respect to η reads:

T0ξ (η;θ) = LDXY
(θ) − η∥∇xLDXY

(θ) ∥2 + o (η) (148)

In this sense, provided η > 0 small enough, LDXY
(θ − η · ∇θLDXY

(θ)) ≤
LDXY

(θ). The choice of the gradient is even the optimal one, due to the
following result (derived from Equation (145):

−r ∇θLDXY
(θ)

∥∇θLDXY
(θ) ∥ = arg min

∥δθ∥=r

LDXY
(θ + δθ) (149)
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Therefore, the standard Gradient Descent algorithm (GD) iteratively updates
the weights according to the following scheme (inspired by Equation (146)):

θ(i+1) = θ(i) − η(i)∇θLDXY

(
θ(i)
)
, η(i) ∈ R+ (150)

This choice is particularly attractive from a computational standpoint, since:

∇θLDXY

(
θ(i) − η(i)∇θLDXY

(
θ(i)
))

= ∇θLDXY

(
θ(i+1)

)
(151)

However, η(i) must be small enough to grant the Euler’s inequality

TθLDXY

(
θ̂
)

≤ LDXY
(θ)

to be satisfied at the first order. η can be updated at each iteration. For
instance, the greedy choice of η(i) reads:

η(i+1) = arg min
η>0

ξ
(
η;θ(i)

)
(152)

The greedy choice is reached when

ξ′
(
η(i),θ(i)

)
=
〈

∇θLDXY

(
θ(i) − η(i)∇θLDXY

(
θ(i)
))

,∇θLDXY

(
θ(i+1)

)〉
= 0

which is reached when the gradients of the loss function at two consecutive
epochs are orthogonal.

4.2 Gradient Descent algorithm: second order approach
If LDXY

is twice differentiable, then its Taylor’s expansion at the second order
reads:

TθLDXY
(δθ) = LDXY

(θ) + ⟨∇θLDXY
(θ) , δθ⟩ +

1
2

〈
HLDXY

(θ) .δθ, δθ
〉

+ o(∥δθ∥2)
(153)

Analogously, the Hessian HLDXY
(θ) appears in the Taylor’s expansion of the

gradient:

Tθ∇θLDXY
(δθ) = ∇θLDXY

(θ) + HLDXY
(θ) .δθ + o(∥δθ∥) (154)

The Hessian HLDXY
(θ) is symmetric. Moreover, if the Hessian is positive semi-

definite (i.e., non-negative eigenvalues), then LDXY
is convex. LDXY

is strictly
convex is the Hessian’s eigenvalues are strictly positive (see Remark 58).
Therefore, the Hessian allows to decide whether θ is a local minimum (posi-
tive semi-definite, see Theorem 75) or a global minimum (positive definite, see
Theorem 78). Moreover, second order methods are based on the Hessian, i.e.,
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the so called Newton’s method, which are based on the general gradient descent
algorithm:

θ(i+1) = θ(i) − H−1
LDXY

(
θ(i)
)
.∇θLDXY

(
θ(i)
)

(155)

Second order methods, if the Hessian is positive definite, converge faster than
the first method in Equation (150), but more computationally expensive, since
the Hessian must be computed and inverted at each epoch [Pey20]. The first or-
der approximation defined by Equation (150) is a special case of the generalized
Gradient Descent in Equation (150), for HLDXY

(
θ(i)
)

= η(i)I.

Remark 32. The optimal conditioning is achieved for Hessians that are close
to the identity. In the supervised case, if the loss function LDXY

is inter-
preted as the average log-likelihood of the parametric probability distribution
pθ (y |x) = pθ

(
y = hθ (x)

)
, under certain regularity conditions for pθ (see

Section 1.3 for further details), the Hessian can be interpreted as the Fisher
information associated to hθ . Moreover, if pθ belongs to the family of expo-
nential probability distributions (among which, there it exists the probability
distribution that maximizes the conditional entropy H (Y |X ), according to the
principle of maximum entropy exposed in Section 1.5), of the type

pθ = e−⟨θ ,y⟩

Z

then the Hessian corresponds to the minus covariance of the observations
−Covx∼pθ

[y (X )] [Cam22]. In this case, each diagonal term of the Hessian
corresponds to the variance V arx∼pθ

(yk (X )). Therefore, in order to facilitate
the optimal conditioning and force the Hessian to approximate the identity, one
can perform the so called batch normalization (BatchNorm), which consists into
normalizing yk and replace it by:

y
′
k =

yk − Ex∼pθ
[yk]

V arx∼pθ
(yk (X )) (156)

The BatchNorm operation eases the convergence of the gradient descent al-
gorithm, since it replaces the diagonal terms of the Hessian by 1, without
computing the Hessian explicitly. In N N , BatchNorm is often applied after
the pre-activation at each layer, so to force the Hessian diagonal to 1. However,
this is not always sufficient, since in complex N N with non-linear activation
functions, the Hessian (or the FIM, see Equation (24)) is not expressed in its
orthonormal basis, which is unknown a priori. Therefore, there could be extra
diagonal terms that prevent the optimal conditioning of the Hessian.

The analogy with the classical pre-conditioning methods in linear algebra is
evident. Replacing θ(i+1) − θ(i) = δθ in Equation (153), the following second
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order Taylor’s expansion is obtained:

TθLDXY

(
θ(i+1) − θ(i)

)
=LDXY

(
θ(i)
)

−

−
〈

∇θLDXY

(
θ(i)
)
,HLDXY

(
θ(i)
)
.∇θLDXY

(
θ(i)
)〉

+

+o(∥HLDXY

(
θ(i)
)
.∇θLDXY

(
θ(i)
)

∥)
(157)

Given the expression in Equation (157), if HLDXY

(
θ(i)
)

is positive definite

and ∇θLDXY

(
θ(i)
)

̸= 0, then LDXY

(
θ(i+1)

)
< LDXY

(
θ(i)
)

, which means
that the Newton’s method are effectively attempting to iteratively minimize
the Empirical Loss function [Pey20].

4.3 Convergence analysis of first order methods
Theorem 33. Convergence analysis of functions with Lipschitz gra-
dients [Nes83]
A function f : K → R, defined over a non-empty convex set K ⊂ H, with H
being a Hilbert space, f proper and strictly convex on K, with f ∈ C1(K) and
a gradient ∇xf ∈ Lip(K) with Lipschitz constant β. If ∃δmin, δmax ∈ R+ such
that:

0 < 1
β

= δmin ≤ δk < δmax = 2
β

then ∃xk+1 = xk − δk∇xf (xk) that converges to x̂ = arg min
x∈K

f (x) and there

exists a constant A > 0 such that

f (xk) − f (x̂) ≤ cst.
k + 1 (158)

Furthermore, if f is strongly convex of coefficient α, there exists 0 ≤ ρ < 1
such that:

∥xk − x̂∥ ≤ ρk∥x0 − x̂∥ (159)

with 0 < ρ ≤ 1.

Proof. Following the proof presented by [Pey20], since f is strongly convex on
a convex set K, by Theorem 77 it exists a unique minimizer x̂. Moreover,
the strict convexity implies Item 2. The fact that ∇xf ∈ Lip(K) implies that
∀
(
xk+1,xk

)
∈ K2:

f
(
xk+1

)
≤ f (xk) +

〈∇xf (xk) ,xk+1 − xk

〉
+ β

2 ∥xk+1 − xk∥2 (160)
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as stated by the upper bound in Proposition 81. Replacing the update scheme
xk+1 − xk = −δk∇xf (xk) in Equation (160), one obtains the following ex-
pression:

f
(
xk+1

)
≤ f (xk) + δk

(
δk · β

2 − 1
)

∥∇xf (xk) ∥2 (161)

A necessary requirement to pursue the minimizer of f is δk < 2
β = δmax, so

that f
(
xk+1

)
≤ f (xk) and therefore τk = δk

(
δkβ

2 − 1
)
< 0. To prove the

existence of a lower bound δmin the convexity property Item 2 must be evoked:

f (x̂) ≥ f (xk) + ⟨∇xf (xk) , x̂ − xk⟩ (162)

Comparing Equation (161) and Equation (162), replacing the update scheme
xk+1 − xk = −δk∇xf (xk) and considering that τk < 0 leads to:

f
(
xk+1

)
≤ f (x̂) + ⟨∇xf (xk) ,xk − x̂⟩ + τk∥∇xf (xk) ∥2 =

= f (x̂) + ∥xk − x̂ + 2τk∇xf (xk) ∥2 − ∥xk − x̂∥2

4τk
=

= f (x̂) + ∥xk − x̂∥2 − ∥xk − x̂ + 2τk∇xf (xk) ∥2

4|τk| =

= f (x̂) +
∥xk − x̂∥2 − ∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2

4|τk|
(163)

From Equation (163), it must be noted that, in order to assure that f
(
xk+1

)
≥

f (x̂), one must assure that:

∥xk − x̂∥2 − ∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2 ≥ 0 (164)

Adopting the well known relation ∥a∥2 − ∥b∥2 ≤ ∥a − b∥2, one obtains:

δ2
k (δkβ − 2)2 ∥∇xf (xk) ∥2 ≥ ∥xk − x̂∥2−

−∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2 ≥ 0
(165)

and again:

∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2 = ∥∇xf (xk) ∥ ·
(∥xk+1 − x̂∥2

∥∇xf (xk) ∥ +

+δ2
k (δkβ − 1)2 ∥∇xf (xk) ∥ + 2δk (δkβ − 1) ∥xk+1 − x̂∥

)

(166)

and finally, calling ε = ∥xk+1−x̂∥
∥x

k
−x̂∥ :

g (ε) = ε2 + 2δk (δkβ − 1) ε+ δ2
kβ

2 (2δ2
kβ

2 − 6δkβ + 5
)

− 1 ≥ 0 (167)
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In order to satisfy Equation (167) for all ε > 0, δk > 1
β = δmin, as shown

- for different values of β - in Figure 8 (blue-graded curves). Orange-graded
lines in Figure 8 corresponds to values of δk <

1
β : in this case, it is possible to

achieve g (ε) > 0 with β ≤ 1, provided that ε > εmin > 0. This means that
∥xk+1 − x̂∥ > εmin∥xk − x̂∥ which implies that the GD algorithm may not
converge. For β > 1, the algorithm never converges for δk <

1
β .

Summing Equation (163) ne times, one obtains:

ne

(
f
(
xne−1

)
− f (x̂)

)
≤

ne−1∑

k=0
f
(
x̂k+1

)
− ne · f (x̂)

≤
ne∑

k=0

∥xk − x̂∥2 − ∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2

4|τk|

(168)

If for instance δ = δmin = 1
β , then:

f
(
xne−1

)
− f (x̂) ≤ β

2ne

ne−1∑

k=0
∥xk − x̂∥2 − ∥xk+1 − x̂∥2 =

= 2
neβ

(
∥x0 − x̂∥2 − ∥xne

− x̂∥2) ≤ β∥x0 − x̂∥2

2ne

(169)

Equation (169) proves Equation (158) [Pey20].
Finally, following [Pey20], in order to prove the second part of the theorem,
expressed in Equation (159), f has to be strongly convex, which implies, by
Item 2 and adopting the assumption that ∇xf (x̂) = 0, that :

α

2 ∥xk+1 − x̂∥ ≤ f
(
xk+1

)
− f (x̂) ≤

≤∥xk − x̂∥2 − ∥xk+1 − x̂ + δk (δkβ − 1) ∇xf (xk) ∥2

4|τk|
(170)

Replacing, for instance, δk = 1
β in Equation (170) it implies that:

α

2 ∥xk+1 − x̂∥ ≤ β

2
(
∥xk − x̂∥2 − ∥xk+1 − x̂∥

)

and the following expression proves the statement in Equation (159):

∥xne
− x̂∥ ≤

(
β

η + β

)ne
2

∥x0 − x̂∥ (171)

with ρ =
√

β
α+β and 0 < ρ ≤ 1 since η ≤ 0.

312 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



Remark 34. As noted in Remark 82, β
α represents the conditioning number of

the Hessian matrix κ (Hf ). In this sense, Equation (171) can be rewritten as:

∥xne
− x̂∥ ≤

(
κ (Hf (x))

1 + κ (Hf (x))

)ne
2

∥x0 − x̂∥ (172)

For large conditioning number, the convergence of the algorithm is harder and
strongly dependent on the initial guess x0.

5 On the automatic differentiation

5.1 Backward propagation via adjoint gradient operator
In order to described how the Automatic Differentiation algorithm works, some
basics must be recalled.
For any tensor field (i.e. multi-linear application) of order m + n, denoted as
T : Rn × Rm 7→ R, with T ∈ Rn ⊗ Rm and ∀x ∈ Rm, the derivative of the tensor
field T(·,x) along the vector v ∈ Rm reads [For+15]:

DvT(·,x) = lim
h→0

T(·,x + hv) − T(·,x)
h

, h ∈ R,∀v ∈ Rm (173)

If it exists, DvT(·,x) ∈ Rn and the partial derivative along the ith component
ei of the orthonormal base Bm reads [For+15]:

∂T(·,x)
∂xi

= De
i
T(·,x), ∀x ∈ Rm (174)

The gradient of T(·,x) is defined as the operator ∇x : Rm 7→ Rn [For+15]:

∇xT(·,x) : v 7→ DvT(·,x) (175)

The gradient is a tensor field of order m+ n+ 1 and a linear operator on v :

Dav+buT(·,x) = lim
h→0

T(·,x + h · (av + bu)) − T(·,x)
h

= a·DvT(·,x)+b·DuT(·,x)
(176)

which implies that:

DvT(·,x) =
m∑

i=1
⟨v , ei⟩Dei

T(·,x) =
m∑

i=1
⟨v , ei⟩

∂T(·,x)
∂xi

= ∇xT.v ,

∇xT =
m∑

i=1

∂T(·,x)
∂xi

⊗ ei

(177)

Since the gradient is a tensor ∇xT(·,x) of order m+n+ 1, it maps any vector
v ∈ Rm into its dual space Rm∗ = Rn and the following expression holds:

DvT∗(u,x) = ⟨∇xT.u,v⟩ ∈ R, ∀v ,x ∈ Rm,∀u ∈ Rn (178)
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In the back-propagation framework, the above mentioned basic notions related
to the gradient of tensor fields can be applied to T(·,x) = LDXY

(θ) ∈ R, with
x ≡ θ ∈ Rm. Moreover, the adjoint correspond to to transposition operator.
The quest for a minimum is steered by the following well established Euler’s
inequality

Theorem 35. (Necessary condition, A convex set) Given any open set Ω ⊂ Rn,
a convex subset A ⊂ Ω and a function f : Ω → R, f : x 7→ f (x) with
f ∈ C1 (Ω), the necessary condition for x̄ to be a local minimum of f on A
reads:

⟨∇xf (x̄) ,y − x̄⟩ ≥ 0, ∀y ∈ A (179)

Theorem 35 implies the iterative expression in Equation (79), provided a convex
set Θ and a function LDXY

∈ C1(Θ). The gradient of each weight θj is updated
as in Equation (79):

θ
(i+1)
j = θ

(i)
j −α∂LDXY

∂θj

(
θ

(i)
j

)
= θ

(i)
j −α·De

j
LDXY

(1,θ(i)) = θ
(i)
j −α·∇θLDXY

.ej

(180)
In particular, the Automatic Differentiation exploits the basics differential alge-
bra presented above for composite non-linear functions of the type LDXY

(θ) =
LDXY

◦ l ◦ gi ◦ aj(θk), adopting the chain rule in Equation (80). As a matter of
fact, considering, without loss of generality, a composite function f = h◦g with
f : Rm 7→ R, h : Rm 7→ R and g : R 7→ R, with f : x 7→ f (x), g : y 7→ z = g(y)
and h : x 7→ y = h (x), the chain rule in Equation (80) applies to f , g and h
according to the following expressions:

Dxf (x) = Dyg (h(x)) .Dvh(x) =
(
dg

dy

)∗
(h (x)) ·Dvh(x) (181)

Moreover, the adjoint derivative reads:

Dvf
∗ (x) = Dvh

∗(x).Dyg
∗ (h (x)) = Dvh

∗ (x) dg
dy

(h (x)) (182)

Replacing Equation (182) in Equation (178), the gradient of f is immediately
computed. It is worth noticing that, once the forward pass LDXY

(θ) = LDXY
◦

l ◦ gi ◦ aj(θk) is performed, the backward pass in Equation (182) is obtained
with no further computation, since Dvh∗(x) = Dvh

T (x) and
(

dg
dy

)∗
= dg

dy .
Moreover, each adjoint operation is local to the tensor itself, since it performed
by simply inverting the graph constructed in the forward pass, i.e., by flipping
the input-output connection. Therefore, the standard Automatic Differentia-
tion implementation17 bundles the gradients of a tensor to the tensor itself, in
order to reduce the memory consumption (no duplicate tensors) and exploit
the same graph (see Figure 43).

17https://autodiff.github.io/
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5.2 Counteract vanishing gradients with ELU and SELU
activation functions

A valid alternative to ReLU is represented by Exponential Linear Unit [CUH16]
ELU , depicted in Figure 9. The ELU function reads:

g (a) =ELU (a) =
{

a,a > 0
α · (ea − 1) ,a ≤ 0

(183)
(184)

ELU is well known to prevent the so called bias shift [CUH16]. In order to
explain the latter, the analogy between Empirical Loss function and negative
log-likelihood exposed in Remark 22 must be retrieved. Provided this analogy,
if one focuses on the kth hidden layer, with Nℓ ≥ k > 1 the derivative ∂LDXY

∂θ
(k)
c

can be seen a the derivative of the negative log-likelihood ∂ ln pθ(y|x)
∂θ

(k)
c

, for any
label y in the database.
For the sake of clarity, let us consider layer the weights and biases of each of
the u(k+1) neurons in the kth layer, defined by the vector θ(k), that reads:

θ(k) =
[
b(k),W

(k)
11 ,W

(k)
12 , . . . ,W

(k)
1u(k) ,W

(k)
21 , . . . ,W

(k)
u(k+1)u(k)

]
=

=
[
b(k),w(k)

] (185)

with a total amount of scalar weights/biases n(k)
θ = u(k+1) · u(k) + 1.

To access each entry of θ(k), a scalar indexing function i is defined as follows:

i(m,n) = 1 + n+ u(k) ·m, 0 ≤ m ≤ u(k+1), 0 ≤ n ≤ u(k)

with

θ
(k)
i(0,0) = b(k)

θ
(k)
i(m,n) = W (k)

mn, 1 ≤ m ≤ u(k+1), 1 ≤ n ≤ u(k)

(186)

considering Equation (97), Equation (104) and the derivative of the loss func-
tion with the respect to bias and weights expressed in Equation (99) and Equa-
tion (98), ∂ ln pθ(y|X )

∂θ
(k)
i

reads [CUH16]:

∂ ln pθ (y|x)
∂θ

(k)
i

= ∂LDXY
(hθ (x) , y)
∂a

(k)
i

· ∂a
(k)

∂θ
(k)
i

= δ(x) · ∂a
(k)

∂θ
(k)
i

(x) (187)

∂a(k)

∂θ
(k)
c

(x) is obtained by considering Equation (99) if θ(k)
i is a bias and Equa-

tion (98) if θ(k)
i is a weight:

∂a(k)

∂θ
(k)
c

=





1, m = n = 0, θ
(k)
i(0,0) = b(k)

h(k−1)
n , 1 ≤ m ≤ u(k+1), 1 ≤ n ≤ u(k) θ

(k)
i(m,n) = W (k)

mn

(188)

(189)
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The Fisher Information Matrix (FIM, see Equation (24)) with the respect to
the weights θ(k) of the kth neuron, reads:

(
I(k)
F

)
iric

= E(x,y)∼pθ

[
∂ ln pθ (Y |X )

∂θ
(k)
ir

· ∂ ln pθ (Y |X )
∂θ

(k)
ic

]
=

= E(x,y)∼pθ

[
δ2 (X , Y ) · ∂a

(k)

∂θ
(k)
ir

· ∂a
(k)

∂θ
(k)
ic

] (190)

The Fisher information of two weights within the kth layer depend on the value
of δ2 (x, y) ≥ 0, i.e., the probability of drawing samples (xi, yi) is higher for
higher values of δ (x, y). The mean value in Equation (190) can be computed by
observing that the samples y drawn via the MLP have a probability distribution
pδ2 (x, y) that reads:

pδ2 (x, y) = δ (x, y)2 · pθ∫
X ×Y δ(u, u)2 · pθdudu

= δ (x, y)2 · pθ

E(x,y)∼pθ

[
δ (X , Y )2

] (191)

Plugging Equation (191) in Equation (190), the latter can be rewritten as:

(
I(k)
F

)
iric

= E(x,y)∼pθ

[
δ2 (X , Y )

]
· E(x,y)∼p

δ2

[
∂a(k)

∂θ
(k)
ir

· ∂a
(k)

∂θ
(k)
ic

]
(192)

The so called bias shift is defined as the 0th column of the FIM, considering
only the bias columns, as follows:

bs =
n

(k)
θ∑

ir=1

(
I(k)
F

)
iric(0,0)

eir
= E(x,y)∼pθ

[
δ2] · E(x,y)∼p

δ2

[
∇θ(k)a

(k)
]

=

= C(x,y)∼pθ

(
δ2,∇θ(k)a

(k)
)

+ E(x,y)∼pθ

[
∇θ(k)a

(k)
]

· E(x,y)∼pθ

[
δ2]

(193)

bs captures the statistical change of mean due the bias b(k) because of to the
correlation among input and output units. As a matter of fact, this is confirmed
by the fact that the bias shift drops to zero whenever E(x,y)∼p

δ2

[
∇θ(k)a(k)

]
= 0

or, equivalently, whenever

C(x,y)∼pθ

(
δ2,∇θ(k)a

(k)
)

= −E(x,y)∼pθ

[
∇θ(k)a

(k)
]

· E(x,y)∼pθ

[
δ2] (194)

which implies that the derivative of the loss function at the output units δ
and its gradient with the respect to the output of the input units are decor-
related [CUH16]. [CUH16] showed that, when computing the back-propagation
(see solution (G)), one can mitigate the effect of the bias shift, by pre-multiplying
the gradient ∇θ(k)LDXY

by the inverse of the FIM I(k)−1
F , obtaining a weight

update vector ∆θ(k) that reads:
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∆w =
[
I(k)−1
F

]
1:,1:

(
∇wLDXY

− ∆b(k) [bs]1:

)

∆b(k) = s

(
∂LDXY

∂b(k) − [bs]T1:

[
I(k)−1
F

]
1:1:

∇wLDXY

)
(195)

(196)

with

s = E−1
(x,y)∼pθ

[
δ2]+

+ E−1
(x,y)∼pθ

[
δ2] · ET

(x,y)∼p
δ2

[
∇θ(k)a

(k)
]

· V−1
(x,y)∼pδ2

[
∇θ(k)a

(k)
]

· E(x,y)∼p
δ2

[
∇θ(k)a

(k)
]

(197)

Whenever the bias shift drops to 0, the weight update in Equation (196) is
equivalent to the standard update rule (see solution (G)). The correction of
the bias shift strongly depends on the correlation of the incoming units which
is captured by

[
I(k)
F

]−1

11
and it is equivalent to shift the mean activations of the

incoming units toward zero (by a term −αE(x,y)∼p
δ2

[
∇θ(k)a(k)

]
) and scaling

up the bias unit (by a factor α) [CUH16]. The correction of the bias shift
proposed in Equation (196) is effective but cumbersome to compute, since the
FIM can become extremely large whenever the number of hidden neurons in the
kth layer is large. Therefore, [CUH16] proposed to adopt an ELU activation
function to mitigate the bias shift instead. As a matter of fact, ELU(a) < 0
for a < 0 and ∂ELU(a)

∂a ≥ 0,∀a, saturating to 0 for a → −∞. The ELU units
activate for a > 0, similarly to ReLU , but they keep active with a positive
derivative even for a < 0 and negative small value that promote the bias shift
correction toward zero mean and the bias scaling [CUH16] . Moreover, the
ELU (as depicted in Figure 44) prevents the vanishing gradient at the same
time.

An alternative to ELU is provided by the Scaled Exponential Linear Unit [Kla+17],
SELU . The latter activation reads:

g(a) = SELU(a) = s (max(0, a) + min (0, α (ea − 1))) (198)

and it is depicted, along with its derivative, in Figure 10. SELU has been
conceived to prevent the occurrence of vanishing gradient phenomena by pro-
moting the input/output self-centering of weights’ means and variances towards
0 and 1 respectively, even in the presence of noise and perturbation, that could
engender the overall gradient descent convergence. As a matter of fact, con-
sidering a generic MLP layer ℓ, with pre-activation a(ℓ) =

∑u(ℓ+1)

j1
a

(ℓ)
j ej , for

the sake of simplicity one can assume that all the pre-activation units have the
same average E [aj ] = µa, 1 ≤ j ≤ u(ℓ+1) and the same variance V [aj ] = σ2

a,
1 ≤ j ≤ u(ℓ+1). If one defines the mean and variance of the jth activation
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hj(ℓ) = SELU (aj) respectively µh = E [hj ] and σ2
h = V [hj ], then Figure 11

showed the effect of applying SELU on the mean and variance of each activa-
tion hj [Kla+17]:

SELU makes the MLP layer self-normalizing itself, since it a stable attract-
ing fixed point solution, depending on the values of w =

∑u(ℓ+1)

j1
a

(ℓ)
j and

v =
∑u(ℓ+1)

j1
a

(ℓ)2
j . Moreover, if the pre-activation mean and variance µa and

σ2
a belong to a set A :=

{(
µ, σ2) |µ ∈ [µmin, µmax] , σ2 ∈

[
σ2

min, σ
2
max
]}

, then
SELU (A) ⊆ A, i.e., this inclusion is transitive across layers since a

(ℓ)
j is a

function of h(ℓ−1)
k . SELU dampens the noise and perturbations which make w

and v, recentering each neuron activation mean and variance.

A LTI, Fourier transform and convolution [RE-
CAP]

This recap section is a summary of chapter II Fourier Kingdom in [Mal09], to
which we remand for further details.

A linear time-invariant (LTI) filter is an operator equivariant with the respect
to translation (or covariant):

y (t) = L (x (t)) ⇐⇒ y (t− τ) = L (x (t− τ)) (199)

with y(t) ∈ Rn. From now on, L (·) is assumed to be hold weak continuity
properties, so as to assure its stability against small deviations x (t) + ϵ. If
x(t) ∈ C0 (Rn), then y ∈ C0 (Rn) and they can be represented by:

x (t) =
∫

R
x(τ) · δ(t− τ)dt

y (t) = L
(∫

R
x(τ) · δ(t− τ)dt

)
=
∫

R

n∑

k=1
xk(τ) · L (δ(t− τ)ek) dt

(200)

The term ⟨L(δ (t− τ) ek), eh⟩ = Hhk(t− τ) represents the impulse response of
a LTI filter, whose components reads:

y (t) =
∫

R
H (t− τ) .x (τ) dτ =

∫

R
H (τ) .x (t− τ) dτ (201)

Therefore, the response y(t) is the convolution of the LTI response H with the
input signal x(t), denoted as H ⋆ x (t) = x ⋆H (t).
A LTI filter implies the following properties:

• the convolution operator is commutative and translational covariant (see
Section 3.2);
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• the stability condition on Equation (201) implies that L is bounded if x
is bounded, i.e. if ∃M ∈ R+ such that

∫
R ∥H (τ) ∥dτ ≤ M then:

∥L (x (t)) ∥ ≤
∫

R
∥H (τ) ∥ · ∥x (t− τ) ∥dτ ≤

sup
t∈R

∥x (t) ∥ ·
∫

R
∥H (τ) ∥dτ ≤ sup

t∈R
∥x (t) ∥ ·M

(202)

• The response function can be written as :

H (t) =
n∑

k=1
H (t) .ek ⊗ ek =

n∑

k=1
hk (t) ⊗ ek (203)

• A filter is causal when Hhk (t) < 0, ∀t < 0.

Example 3. Some very well known LTI filters are:

• Amplification and delay:

L (x (t)) = α · x (t− τ) , ⇒ H (t) = αδ (t− τ) · Id (204)

• Uniform moving average:

L (x (t)) = 1
T

∫ t+ T
2

t− T
2

x (u) du = 1
T

∫ T
2

− T
2

x (t− u) du, ⇒ H (t) =
χ[− T

2 ; T
2 ]

T
Id

(205)
with χ[− T

2 ; T
2 ] being the indicator function in the

[
− T

2 ; T
2
]

support.

The LTI has a harmonic spectral decomposition, that relies on the following
eigenvalue problem (see also Equation (203)):

L
(
eiωtek

)
= hk ⋆ e

iωt = ĥk (ω) · eiωt (206)

where eiωt and ĥk are the eigenvector and eigenvalue of L, respectively. The
linear operator has a harmonic decomposition, with ĥk (ω) being the Fourier
transform of hk (t). The Fourier transform of a signal x (t) ∈ L1 (R)18, is
defined as:

F (x (t)) = x̂ (ω) =
∫

R
x (u) · e−iωudu (207)

If x ∈ L1 (R), then ∥x̂ (ω) ∥ ≤
∫

R ∥x (u) ∥du < +∞. Moreover, since f(t) =
e−iωt ∈ C∞ (R) is continuous, if x (t) ∈ L1 (R), x̂ (ω) is continuous, since the
Fourier transform is a linear operator, which is bounded since ∥x (t) e−iωt∥ ≤
∥x (t) ∥, so it’s continuous.

18In Rn, x (t) ∈ L1 (R) iff ∫

R

∥x (t) ∥dt < +∞
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Example 4. Fourier transform of a Gaussian function.
A Gaussian function (such as the standard normal distributions) p (u) = e− u2

2√
2π

,
with p (u) ∈ C∞ (R) decaying very fast at infinite, has a Fourier transform that
reads, by definition:

p̂ (ω) = 1√
2π

∫

R
e− u2

2 e−iωudu

p̂(0) = 1 and p̂ (ω) can be differentiated, to obtain:

dp̂

dω
(ω) = − i√

2π

∫

R
ue− u2

2 e−iωudu

that integrated by part over R provides the following differential equation solved
by p̂ (ω):

dp̂

dω
(ω) = − ω√

2π

∫

R
e−u2

e−iωudu = −ω · p̂ (ω) (208)

The solution of the simple ODE is p̂ (ω) = A · e− ω2
2 , with p̂(0) = A = 1.

Therefore, the Fourier transform of a Gaussian function is a Gaussian function
too. With a similar approach, the function x (t) = e−(a−ib)t2 has a Fourier
transform that reads

x̂ (ω) =
√

π

a− ib
e

− −(a+ib)ω2

4(a2+b2)

Therefore, if the LTI filter is stable, each eigenvalue reads:

ĥk (ω) =
∫

R
h (u) · e−iωudu < +∞ (209)

and it represents the L1 (R)-projection of h (t) on the harmonic of frequency
ω. It follows that Ĥ (ω) =

∑n
k=1 ĥk (ω) ⊗ ek.

If x ∈ L1 (R), its inverse x̂ ∈ L1 (R) is ∈ L1 (R) too19 and it reads:

x (t) = 1
2π

∫

R
x̂ (ω) · eiωtdω (210)

19Adopting the defintion of Fourier transform in Equation (207), the inverse Fourier
transform can be written as F −1 (x̂ (ω)) = 1

2π

∫
R

(∫
R
x (u) eiω(t−u)du

)
dω. However,∫

R2 x (u) eiω(t−u)dudω is not finite, so the Fubini’s theorem - required to prove that the
inverse Fourier transform is finite - does not apply directly. It is first necessary to multiply
the integrand by a Gaussian kernel ĝε (ω) = e− ε2ω2

4 - of the family N
(

0, 2
ε

)
, that converges

to 1 for ε → 0 - so to obtain the function: ϕε (t) = 1
2π

∫
R

∫
R
x (u) ĝε (ω) eiω(t−u)dudω =

1
2π

∫
R
x̂ (ω) ĝε (ω) eiωt. In this case, ∥x̂ (ω) ĝε (ω) eiωt∥ ≤ ∥x̂ (ω) ∥, since the Gaussian kernel

decays fast and x̂ (ω) ĝε (ω) eiωt converges to x̂ (ω) eiωt for ε → 0. This implies that - by the
theorem of dominated convergence - limε→0 ϕε (t) = 1

2π

∫
R
x̂ (ω) eiωt. Moreover, as shown
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Equation (210) proves that the x (t) can be decomposed on a harmonic basis{
eiωt

}
ω∈R

. Again, since f(t) = eiωt ∈ C∞ (R) is continuous, if x̂ (ω) ∈ L1 (R),
x (ω) is continuous, since the inverse Fourier transform in Equation (210) is
a linear operator, which is bounded since ∥x̂ (t) eiωt∥ ≤ ∥x̂ (t) ∥, so it’s con-
tinuous. For discontinuous functions, the harmonic reconstruction in Equa-
tion (210) is not proved.

When both x (t) ,H (t) ∈ L1 (R), the convolution in the Fourier domain be-
comes a contraction (or a product)20:

y(t) = H ⋆ x(t) ⇐⇒ F(y(t)) = ŷ(ω) = Ĥ (ω) .x̂ (ω) = F (H (t)) .F (x (t))
(211)

This implies that, the response to a LTI filter is simply written as:

y (t) = 1
2π

∫

R
Ĥ (ω) .x̂ (ω) eiωtdω (212)

Example 5. Fourier transform of a discontinuous functions

• The Fourier transform of the rectangle function x (t) = 1
T χ[− T

2 ; T
2 ]ei

in Example 4, ĝε (ω) is the Fourier transform of the function

1
2π

∫

R

ĝε (ω) eiωtdω = 1
ε
√

π
e

− t2
ε2 =

√
2

ε
g1

(√
2

ε
t

)

which is a Gaussian kernel that approximates the Dirac delta for ε → 0, keeping the integral
over R equal to 1. This allows to rewrite ϕε (t) =

∫
R
x (u)

√
2

ε
g1

(√
2

ε
(t − u)

)
du. Therefore,

the following expression concludes:

lim
ε→0

∫

R

∥ϕε (t) − x (t) ∥dt =
∫

R

lim
ε→0

∥
∫

R

x (u)
ε
√

π
e

− (t−u)2

ε2 du − x (t) ∥dt

lim
ε→0

∫

R

∥ϕε (t)−x (t) ∥dt =
∫

R

∥ lim
ε→0

ϕε (t)−x (t) ∥dt =
∫

R

∥
∫

R

x (u) δ (t − u) du−x (t) ∥dt = 0

lim
ε→0

ϕε (t) = 1
2π

∫

R

x̂ (ω) eiωtdω = x (t)

20As a matter of fact, the Fourier transform of y (t) can be expanded as:

ŷ (ω) =
∫

R

∫

R

H (u) .x (t − u) e−iωtdudt

This expression can be integrated by means of the Fubini’s theorem because
∥H (t − u) .x (u) ∥ ∈ L1(R2) so

ŷ (ω) =
∫

R2
H (v) .x (u) eiω(u+v)dudv = Ĥ (ω) .x̂ (ω)
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reads:

x̂ (ω) = 1
T

∫ T
2

− T
2

e−iωtdtei =
sin
(

T ω
2
)

T ω
2

ei = sinc
(
Tω

2

)
ei (213)

• The Fourier transform of the Heaviside function x (t) = H (t− τ) ei:

x̂ (ω) =
∫ +∞

τ

e−iωtdt = e−iωτ

iω
(214)

• The Fourier transform of the function x (t) = t ·H (t− τ) ei:

x̂ (ω) =
∫ +∞

τ

te−iωtdtei = −e−iωτ

(
iτ

ω
+ 1
ω2

)
ei (215)

The famous ReLU function can be written as ReLU(t) = t ·H(t), whose
Fourier transform is ˆReLU(t) = − 1

ω2

• The Fourier transform of the symmetric triangle function

x (t) =
(
H(−t) ·ReLU

(
t+ T

2

)
+H(t) ·ReLU

(
−t+ T

2

))
ei

with T ≥ 0 reads:

x̂ (ω) = ei

(∫ 0

− T
2

(
t+ T

2

)
e−iωtdt+

∫ T
2

0

(
T

2 − t

)
e−iωtdt

)

By integrating by parts, one obtains:

x̂ (ω) = e−iω T
2 + eiω T

2 − 2
(iω)2 = T 2

(
e−iω T

2 + eiω T
2

)2

(
2iω T

2
)2 = T 2sinc2

(
Tω

2

)

(216)
One can notice that the triangle function can be written as a convolution
between two rectangular functions, as:

x (t) = χ[− T
2 , T

2 ] ⋆ χ[− T
2 , T

2 ]ei

This expression eases the computation of the Fourier transform, because
of the convolution properties.

• The Fourier transform of the Dirac delta δτ (t) = δ (t− τ) reads:

δ̂τ (ω) =
∫

R
δ (t− τ) e−iωtdτ = e−iωτ (217)
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and the Fourier transform of the Dirac comb

cT (t) =
∑

n∈Z

δ (t− nT ) (218)

reads:
ĉT (ω) =

∫

R

∑

n∈Z

δ (t− nT ) e−iωtdτ =
∑

n∈Z

e−iωnT (219)

ĉT (ω) is periodic of period 2π
T

21. Moreover, the following theorem proves
that ĉT (ω) can be rewritten as a Dirac comb in frequency domain (see
Theorem 37).

In order to extend Fourier theory to discontinuous functions so to leverage
its nice features, the continuity condition can be slightly released, focusing on
functions defined over the Hilbert space L2 (R) (finite energy), a complete space
of functions endowed with a scalar product defined by22:

x (t) ,y (t) ∈ L2 (R) ⇒ ⟨x (t) ,y (t)⟩L2(R) =
∫

R
⟨x (u) ,y∗ (u)⟩ du

∥x (t) ∥L2(R) < +∞; ∥y (t) ∥L2(R) < +∞
(220)

All functions x (t) ,y (t) ∈ L1(R) ∩ L2 (R) inherits the following fundamental
property:

Theorem 36. Parseval’s and Plancherel’s theorem
∀x (t) ,y (t) ∈ L1(R) ∩ L2 (R) ⇒ Parseval formula:

⟨x (t) ,y (t)⟩L2(R) = 1
2π ⟨x̂ (ω) , ŷ (ω)⟩L2(R) (221)

If x ≡ y ⇒ Plancherel formula:

∥x (t) ∥2
L2(R) = 1

2π ∥x̂ (ω) ∥2
L2(R) (222)

Proof. Considering z (t) = x (t) ⋆ y∗ (−t), then z (t) ∈ L1(R) ∩ L2 (R) and
ẑ (ω) = x̂ (ω) .ŷ∗ (ω)23 with

⟨x (t) ,y (t)⟩L2(R) = z(0) =
∫

R
ẑ (ω) dω =

=
∫

R
⟨x̂ (ω) ,y∗ (ω)⟩ dω = ⟨x̂ (ω) , ŷ (ω)⟩L2(R)

.
21e−iωnT · 1 = e−iωnT · e−i2πn = e−i(ω+ 2π

T )nT

22where ∗ stands for complex conjugate
23F (y∗ (−t)) =

∫ +∞
−∞ y∗ (−u) e−iωudu =

(
−
∫ −∞

+∞ y (−u) e(−iω(−u))d(−u)
)∗

= y∗ (ω)
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For discontinuous functions x (t) ∈ L2 (R) but /∈ L1 (R), the inverse Fourier
transform is computed as a limit of a suite of functions {xn (t)}n∈Z ∈ L1(R) ∩
L2 (R)24. An example is represented by the Dirac’s comb, according to the
following theorem.

Theorem 37. Poisson formula
Given two distributions d1 (ω) and d2 (ω) defined as:

d1 (ω) =
∑

n∈Z

e−iωnT , d2 (ω) = 2π
T

∑

n∈Z

δ

(
ω − 2πn

T

)

d1 and d2 are equal in the sense of distributions (or in a weak formulation),
i.e.: ∫

R
d1 (ω) · ϕ̂ (ω) dω =

∫

R
d2 (ω) · ϕ̂ (ω) dω, ∀ϕ ∈ C∞

0 (R)

Proof. d1 (t) is periodic of period 2π
T , which implies that we can prove the

theorem over the compact support
[
− π

T ,
π
T

]
, i.e.:

∫ π
T

− π
T

∑

n∈Z

e−iωnT · ϕ̂ (ω) dω =
∫ π

T

− π
T

2π
T
δ (ω) · ϕ̂ (ω) dω = 2π

T
ϕ̂(0), ∀ϕ ∈ C∞

0 (R)

(223)
If one consider the truncated geometric series:

N∑

n=−N

e−iωnT =
N∑

n=0

(
e−iωT

)n +
N−1∑

n=0

(
eiωT

)n+1

with |eiωT | = |e−iωT | ≤ 1 over
[
− π

T ,
π
T

]
, the sum is equal to25:

N∑

n=−N

e−iωnT = eiω T
2 + e−iω(N+ 1

2 )T

eiω T
2 − e−iω T

2
+ eiω T

2 + eiω(N+ 1
2 )T

e−iω T
2 − eiω T

2

Recalling that 2i sin (α) =
(
eiα − e−iα

)
the truncated series results into:

N∑

n=−N

e−iωnT =
sin
(
Tω
(
N + 1

2
))

sin
(

T ω
2
)

24As a matter of fact L1(R)∩L2 (R) is dense in L2 (R), which is a Hilbert space, so complete.
The suite of functions converges limn→+∞ ∥xn − x∥L2(R) and this suite of function is a
Cauchy’s sequence (∀ε > 0, ∃M ∈ N such that ∥xn − xm∥L2(R) < ε, ∀n, m ≥ M). Since
the xn ∈ L1 (R), their inverse Fourier transform exists and it is noted x̂n (ω). Therefore, for
the Plancherel formula in Equation (222), it holds that ∥xn −xm∥2

L2(R) = 1
2π

∥x̂n −x̂m∥2
L2(R)

and therefore {x̂n}n∈Z is a Cauchy sequence too and (being L2 (R) complete), it converges to
x̂ (ω) ∈ L2 (R) which is the Fourier transform of x (t). Plancherel’s, Parseval’s and properties
of L1 (R) functions apply to L2 (R) too.

25∑N

k=0 qk = 1+qN+1

1−q
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Therefore, Equation (223) can be rewritten as:

lim
N→+∞

∫ π
T

− π
T

N∑

n=−N

e−iωnT · ϕ̂ (ω) dω =

= 2π
T

lim
N→+∞

∫

R
ψ̂ (ω) · ξ̂N (ω) dω

(224)

with

ψ̂ (ω) =
χ[− π

T , π
T ] (ω) · ϕ̂ (ω)

sinc
(

T ω
2
)

and

ξ̂N (ω) =
sin
(
Tω
(
N + 1

2
))

πω
= sinc

(
Tω

(
N + 1

2

))
T
(
N + 1

2
)

π

Recalling that the inverse Fourier transform of the sinc function is the rectangle
function (see Equation (213)), therefore

1
2π

∫

R
ξ̂N (ω) eiωtdω =

χ[T(N+ 1
2 ),T(N+ 1

2 )]
2π

Thanks to the Parseval formula in Equation (221), Equation (224) becomes:

2π
T

lim
N→+∞

∫

R
ψ̂ (ω) · ξ̂N (ω) dω = 4π2

T
lim

N→+∞

∫

R
ψ (t) · ξN (t) dt =

=2π
T

lim
N→+∞

∫ T(N+ 1
2 )

T(N+ 1
2 )

ψ (t) dt = 2π
T
ψ̂(0) =

∫

R

2π
T
δ (u) ψ̂ (u) du

(225)

which proves the statement.

The Poisson formula is rather useful for discrete signals. Discrete digital signals
over N points are defined through convolution with a uniform moving average
function sN

(
n
N

)
of the type Equation (205), as follows:

xN [n] = sN

( n
N

)
Id ⋆ x (t) (226)

In particular, recalling Equation (205), sN

(
n
N

)
samples x (t) with uniform

interval T = 1
N :

sN (t) = χ[0, 1
N ] (t) (227)

which implies that :

xN [n] =
∫ 1

N

0
x
( n
N

− u
)
du =

∫ n
N

n−1
N

x (y) dy (228)
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If x (t) ∈ L1 (R), then, by Equation (226), the Fourier transform of a discrete
signal reads:

x̂N (ω) = ŝN (ω) · x̂ (ω) = e
iω
2N

N
sinc

( ω

2N

)
· x̂ (ω) (229)

Equation (229) proves that:

ŝ (ω) = e
iω
2N

N
sinc

( ω

2N

)
(230)

Analogously, if one considers the a sampling function with vanishing high fre-
quencies, such as ŝN (ω) = 1

N χ[− N
2 , N

2 ], since ŝN (ω) ∈ L1 ∩ L2, according to
Equation (213):

sN (t) = sinc
(
tN

2

)
(231)

Equation (231) paves the way to the following fundamental theorem.

Theorem 38. Nyquist-Shannon sampling theorem
Consider the space SN of functions L2 (R) whose Fourier coefficients vanish at
high frequencies:

SN :=
{
f (t) ∈ L2 (R) |supp

(
f̂ (ω)

)
∈
[
−N

2 ,
N

2

]}

Then ∀x ∈ Sn
N :

x (t) =
∑

n∈Z

x

(
2πn
N

)
sinc

(
N

2

(
t− 2πn

N

))

Proof. sN (t) = sinc
(

tN
2
)

∈ SN corresponds to a rectangle function
χ[− N

2 , N
2 ](ω)

N
in the Fourier domain. Moreover, xN (t− nT ) = x ⋆ sN (t− nT ) Id, with a
phase shift in the corresponding Fourier transform:

F (sN (t− nT )) = ŝN (ω) e−iωnT =
χ[− N

2 , N
2 ] (ω)
N

e−iωnT

Therefore, on the support
[
− N

2 ,
N
2
]
,
{
ŝN (ω) e−iωnT

}
n∈Z

is a orthonormal ba-
sis. Therefore, the Fourier transform of the functions f ∈ SN can be decom-
posed on this basis:

f̂ (ω) = ŝN (ω)
∑

k∈Z

f̂k · e−iωkT , f̂k =
∫ N

2

− N
2

f̂ (ω) · eiωtdω = f ⋆ sinc
(
kTN

2

)

Thanks to the inverse Fourier formula in Equation (210),

f (t) =
∑

k∈Z

f̂k · sN (t− kT )
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It follows that ∀x ∈ Sn
N :

x (t) =
∑

n∈Z

x̂n · sN (t− nT )

Since sN (mT − nT ) = δm,n, x̂n = x (nT ). Finally, taking T = 2π
N proves the

statement.

Remark 39. As a matter of fact, the Theorem 38 proves that a function with a
compact support in the frequency domain can be approximated with a infinite
number of cardinal sinuses. On the contrary, we could be tempted to the same
thing in the inverse order, i.e., to interpolate a signal with a compact support
in time, i.e., discontinuous functions in time. This is the case of the finite
element method or, more in general, the spline approximation problem. The
problem resides in the fact that, in analogy with Theorem 38, one needs an
infinite amount of cardinal sinuses in the frequency domain to reconstruct this
signal.

The continuity of a function is intimately related to the decay of its Fourier’s
coefficients. The following theorem [Mal09] helps understanding this point:

Theorem 40. A function x : R → Rn is bounded and belongs to ∈ Cp(R) if:
∫

R
∥x̂ (ω) ∥ (1 + |ω|p) dω < +∞ (232)

Proof. If x̂ ∈ L1 (R), the dkx
dtk corresponds to (iω)p

x̂ (ω), since:
dpx

dtp
(t) = 1

2π

∫

R
(iω)px̂ (ω) eiωtdω

with:

∥x (t) ∥ ≤ 1
2π

∫

R
∥x̂ (ω) ∥|eiωt|dω ≤ 1

2π

∫

R
∥x̂ (ω) ∥dω < +∞

This inequality applies to all the derivatives of order k ≤ p, under a condition:
∥∥∥d

px

dtp
(t)
∥∥∥ ≤ 1

2π

∫

R
|ω|p · ∥x̂ (ω) ∥dω ≤ 1

2π

∫

R
(1 + |ω|p) · ∥x̂ (ω) ∥dω

If 1
2π

∫
R (1 + |ω|p) · ∥x̂ (ω) ∥dω is bounded by assumption, then all derivatives

of order k ≤ p are bounded, which implies that x ∈ Cp(R)

Theorem 40 proves that ∃M > 0 such that ,∀ε > 0

∥x̂ (ω) ∥ ≤ M

1 + |ω|p+1+ε
(233)

then x ∈ Cp(R). If x̂ has a compact support, then x ∈ C∞(R). The regularity
of x depends on how fast its Fourier coefficients decay: the highest the decay
rate p, the highest the degree of regularity (smoothness) of the function.
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Example 6. Regularity of the function x (t) = 1
T χ[− T

2 , T
2 ] (t) ei.

In this case, x̂ (ω) = sinc
(

T ω
2
)

and ∥x̂ (ω) ∥ ≤ |ω|−1. Therefore, x ∈ C0(R).

Theorem 40 can be revisited by introducing the Sobolev space W k,p, defined
in 1D as:

W k,p (R) := {x : R → Rn, Dαx ∈ Lp (R) ∀0 ≤ |α| ≤ k} (234)

In Equation (234), the Dαx represents the weak derivative of x (t) of order
|α| = k26, defined, ∀ϕ (t) ∈ C∞

C test functions with compact support, as:
∫

R
⟨x∗ (t) , Dαϕ (t)⟩ dt = (−1)|α|

∫

R
⟨ϕ∗ (t) , Dαx (t)⟩ dt ∀ϕ (t) ∈ C∞

C

The Sobolev space defined in Equation (234) is often equipped with the follow-
ing norm, valid for all 1 ≤ p < ∞:

∥x∥W k,p(R) =




k∑

j=0
∥x(j) (t) ∥p

Lp(R)




1
p

=




k∑

j=1

∫

R
∥x(j) (t) ∥pdt




1
p

(235)

The extension of Equation (236) to p = ∞ reads:

∥x∥W k,∞(R) = max
j∈J0,kK

∥x(j) (t) ∥∞ (236)

Remark 41. W k,p equipped with the norm ∥ · ∥W k,p(R) is a Banach space,
therefore a complete normed vector space. It can be proved that the norm
∥x (t) ∥W k,p(R) is equivalent to ∥x (t) ∥Lp(R) + ∥x(k) (t) ∥Lp(R).

Provided the norm equivalence stated in Remark 41, Theorem 40 can be revis-
ited as follows:

Theorem 42. On the regularity of a function
x (t) ∈ W k,2 is bounded and it belongs to Ck (R) if its W k,2 norm is bounded.

Proof. If x (t) ∈ W k,2, then all its derivatives of to the kth one belongs to
L2 (R), with a Fourier transform that exists and it is equivalent to (iω)kx̂ (ω).
Recalling Plancherel formula in Equation (222), the W k,2-norm of the function
x (t) can be rewritten as:

26In general, for a function x : Rm → Rm

Dαx = ∂|α|x
∂α1 x1∂αm xm . . . ∂αm xm
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∥x (t) ∥W k,2(R) =




k∑

j=0
∥x(j) (t) ∥2

L2(R)




1
2

=
∥x̂ (ω) ∥L2(R)√

2π


1 +

k∑

j=1
k>0

|ω|2j




1
2

< +∞

(237)
Considering the equivalence of theW k,2-norm with the norm defined as ∥x (t) ∥L2(R)+
∥x(k) (t) ∥L2(R). Therefore, x is bounded if:

∥x (t) ∥W k,2(R) = ∥x (t) ∥L2(R)+∥x(k) (t) ∥L2(R) =
∥x̂ (ω) ∥L2(R)√

2π
(
1 + |ω|k

)
< +∞
(238)

which implies the condition defined by Theorem 40 and proves the statement.

The Fourier transform is affected by the Heisenberg uncertainty, which implies
that a function x (t) cannot have both a compact support in time and in the
frequency domain, as stated by the following theorem.

Theorem 43. Heisenberg uncertainty [Mal09]
A function x (t) ∈ L2 (R) with a temporal mean u, a temporal variance σ2

t , a
temporal mean ξ and a frequency variance σ2

ω that read:

u = 1
∥x (t) ∥2

L2(R)

∫

R
t∥x (t) ∥2dt ξ = 1

2π∥x (t) ∥2
L2(R)

∫

R
ω∥x̂ (ω) ∥2dω

σ2
t = 1

∥x (t) ∥2
L2(R)

∫

R
(t− u)2 ∥x (t) ∥2dt

σ2
ω = 1

2π∥x (t) ∥2
L2(R)

∫

R
(ω − ξ)2 ∥x̂ (ω) ∥2dω

then
σ2

t · σ2
ω ≥ 1

4

Moreover, if ∃(u, ξ, A, b) ∈ R2 × C2 such that x (t) = A · eiξt−b(t−u)2
ei, then

σ2
t · σ2

ω = 1
4

Proof. u and ξ represent the time and frequency average values. Rearrang-
ing their definition and recalling the Plancherel’s formula in Theorem 36, one
obtains:

0 = 1
2π∥x (t) ∥2

L2(R)

∫

R
(ω − ξ) ∥x̂ (ω) ∥2dω = 1

2π∥x (t) ∥2
L2(R)

∫

R
ω∥x̂ (ω + ξ) ∥2dω
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The Fourier spectrum x̂ (ω + ξ) corresponds to a function y (t) = x (t) · e−iξt,
that has a nil frequency average and whose time average reads:

1
2π∥y (t) ∥2

L2(R)

∫

R
t∥y (t) ∥2dt = 1

2π∥x (t) ∥2
L2(R)

·
∫

R
t∥x (t) ∥2dt = u

Therefore, the function z (t) = x (t+ u)·e−iξt has zero temporal and frequency
average, which simplifies the proof that comes next, since without loss of gen-
erality, we can prove it for u = ξ = 0.
The product of the time and frequency variance reads:

σ2
t · σ2

ω = 1
2π∥x (t) ∥4

L2(R)

∫

R
t2∥x (t) ∥2dt ·

∫

R
ω2∥x̂ (ω) ∥2dω

By applying the Plancherel’s formula to x′ (t), whose Fourier transform is
iωx̂ (ω), the product of the two variance can be rewritten as:

σ2
t · σ2

ω = 1
∥x (t) ∥4

L2(R)

∫

R
t2∥x (t) ∥2dt

∫

R
∥x′

(t) ∥2dt =

= 1
∥x (t) ∥4

L2(R)
∥tx (t) ∥L2(R) · ∥x′

(t) ∥L2(R)

Because of the Hölder inequality, the product of the two variances is bounded
by below as follows:

σ2
t · σ2

ω ≥ 1
∥x (t) ∥4

L2(R)

(∫

R

〈
tx∗ (t) ,x

′
(t)
〉
dt

)2

= 1
∥x (t) ∥4

L2(R)

(∫

R

t

2

(〈
x∗ (t) ,x

′
(t)
〉

+
〈
x∗′

(t) ,x (t)
〉)

dt

)2
=

= 1
∥x (t) ∥4

L2(R)

(∫

R

t

2
(
∥x̂ (ω) ∥2)′

dt

)2
=

= 1
∥x (t) ∥4

L2(R)

(
t

2
(
∥x̂ (ω) ∥2) |R − 1

2

∫

R

(
∥x̂ (ω) ∥2) dt

)2

According to [Wey50], if one assumes that lim
t→+∞

√
t∥x (t) ∥ = 0, the first

integral vanishes and the previous expression becomes:

σ2
t · σ2

ω ≥ 1
4

that proves the first statement.
The Heisenberg inequality becomes an equality if:

σ2
t · σ2

ω = 1
∥x (t) ∥4

L2(R)

(∫

R

〈
tx∗ (t) ,x

′
(t)
〉
dt

)2
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An intuitive guess is the Gaussian function, i.e. ∃(a, b) ∈ C2 such that x (t) =
Ae−bt2

ei such that x′ = −2btx (t) that satisfies the equality constraint. For
u ̸= ξ ̸= 0, the above mentioned translation apply.

B Compendium of fundamental results in opti-
mization [RECAP]

This section presents the basic fundamental results in optimization, that con-
stitute the basis of Machine Learning algorithms. Those notes are a sum-
mary of the Optimization class notes of CentraleSupélec [CP19], Université
Paris-Dauphine [Mul19], École Normale Supérieure [Pey20] and École Poly-
technique [AE23]. Another fundamental reference is [CP11].

Definition 44. Domain of a function f : K → R, with K ⊂ Rn

dom(f) := {x ∈ K|f (x) < +∞} (239)

Definition 45. Epigraph of a function epi(f)={(x, y) ∈ dom(f) × R|f (x) ≤ y}
Definition 46. A function f : K → R, with K ⊂ Rn, is said to be proper iff
dom(f) ̸= ∅
Definition 47. A set K ⊂ H, with H being a Hilbert space, is bounded iff27

∃r > 0,x0 ∈ H|K ⊂ Br (x0)

Definition 48. A set K ⊂ H, with H being a Hilbert space, is closed iff

∀(xn)n∈N ∈ K lim
n→+∞

xn = x ∈ K

Definition 49. A set K ⊂ H, with H being a Hilbert space, is compact iff

∀(xn)n∈N ∈ K ∃ (xnk
)k∈N such that ∃x ∈ K lim

k→+∞
xnk

= x

Proposition 50. If K ⊂ H, with H being a Hilbert space, is compact ⇒ closed
and bounded. The opposite holds iff dimH < +∞
Definition 51. Convex set K ⊂ Rn:

∀(x,y) ∈ K2,∀t ∈ [0, 1] xt = ty + (1 − t)x ∈ K (240)
27Br

(
x0
)

represents a open ball of center x0 and radius r, i.e.

Br(x0) := {x ∈ H∥x − x0∥ < r}
.
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Definition 52. Convex functions f : K → R on convex sets K ⊂ Rn:

∀(x,y) ∈ K2,∀t ∈ [0, 1] f(xt) = f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(y)
(241)

Definition 53. Strictly convex functions f : K → R on convex sets K ⊂ Rn:

∀(x,y) ∈ K2,∀t ∈ [0, 1] f(xt) = f(ty + (1 − t)x) < tf(y) + (1 − t)f(y)
(242)

Definition 54. Strongly convex functions f : K → R on convex sets K:

∀(x,y) ∈ K2,∀t ∈ [0, 1] f(xt) = f(ty+(1−t)x) ≤ tf(y)+(1−t)f(y)−αt(1−t)∥y−x∥2, α > 0
(243)

Proposition 55. f convex on convex set K ⊂ Rn ⇐ f strictly convex on
convex set K ⊂ Rn ⇐ f strongly convex on convex set K ⊂ Rn

Proposition 56. f convex on convex set K ⊂ Rn, f ∈ C1 (K) ⇔

1. f(y) ≥ f(x) +
〈

∇xf (x) ,y − x
〉

∀ (x,y) ∈ K2

Proof. ⇒
f convex on convex set K ⊂ Rn, f ∈ C1 (K) then by Definition 52:
∀(x,y) ∈ K2,∀t ∈ [0, 1] f(xt) = f(ty+(1−t)x) ≤ tf(y)+(1−t)f(x)
If f ∈ C1(K):

lim
t→0+

f (xt) − f (x)
t

= ⟨∇xf (x) ,y − x⟩ ≤ f (y) − f (x) (244)

Proof. ⇐
f ∈ C1(K) and ⟨∇xf (x) ,y − x⟩ ≤ f (y) − f (x), then:

f (x) ≥f (xt) + ⟨∇xf (xt) ,x − xt⟩
f (y) ≥f (xt) + ⟨∇xf (xt) ,y − xt⟩

(245)

and therefore:

(1 − t)f (x) + tf (y) ≥ f (xt) (246)

2.
〈

∇xf (y) − ∇xf (x) ,y − x
〉

≥ 0 ∀ (x,y) ∈ K2
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Proof. ⇔
f convex on convex set K ⊂ Rn, f ∈ C1 (K) then:

f(y) ≥ f(x) +
〈

∇xf (x) ,y − x
〉

∀ (x,y) ∈ K2

f(x) ≥ f(y) +
〈

∇xf (y) ,x − y
〉

∀ (x,y) ∈ K2
(247)

By summing the two inequalities, the proposition is proven.

From a geometric standpoint, Proposition 56 states that a convex function is
always above its tangent plane in x.

Proposition 57. f strongly convex on convex set K ⊂ Rn, f ∈ C1 (K) (elliptic
function) ⇔

1. f(y) ≥ f(x) +
〈

∇xf (x) ,y − x
〉

+ α
2 ∥y − x∥2 ∀ (x,y) ∈ K2

Proof. ⇒
f strongly convex on convex set K ⊂ Rn, f ∈ C1 (K) then by Defini-
tion 54:
∀(x,y) ∈ K2,∀t ∈ [0, 1] f(xt) = f(ty + (1 − t)x) ≤ tf(y) + (1 −
t)f(x) − αt(1 − t)∥y − x∥2

If f ∈ C1(K):

lim
t→0+

f(xt) − f (x)
t

+α(1−t)∥y−x∥2 = ⟨∇xf (x) ,y − x⟩+α∥y−x∥2 ≤ f (y)−f (x)
(248)

which proves the statement.

Proof. ⇐
f ∈ C1(K) and α

2 ∥y − x∥2 + ⟨∇xf (x) ,y − x⟩ ≤ f (y) − f (x), then:

f (x) ≥f (xt) + ⟨∇xf (xt) ,x − xt⟩ + α

2 ∥x − xt∥2

f (y) ≥f (xt) + ⟨∇xf (xt) ,y − xt⟩ + α

2 ∥y − xt∥2
(249)

and therefore:

(1 − t)f (x) + tf (y) − αt(1 − t)∥y − x∥2 ≥ f (xt) (250)

2.
〈

∇xf (y) − ∇xf (x) ,y − x
〉

≥ α∥y − x∥2 ∀ (x,y) ∈ K2
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Proof. ⇔
f convex on convex set K ⊂ Rn, f ∈ C1 (K) then:

f(y) ≥ f(x) +
〈

∇xf (x) ,y − x
〉

+ α

2 ∥y − x∥2 ∀ (x,y) ∈ K2

f(x) ≥ f(y) +
〈

∇xf (y) ,x − y
〉

+ α

2 ∥y − x∥2 ∀ (x,y) ∈ K2

(251)

By summing the two inequalities, the proposition is proven.

From a geometric standpoint, Item 2 states that a convex function is always
above a quadratic function in y , which is above the tangent plane in x.
Elliptic functions have higher curvature (if they belong to C2(K)) since in this
case property 1 in Item 2 adds to the Taylor expansion at the second order28,
as follows:




f (y) ≥ f (x) + ⟨∇xf (x) ,y − x⟩ + α

2 ∥y − x∥2

f (y) = f (x) + ⟨∇xf (x) ,y − x⟩ + 1
2 ⟨Hf (x) (y − x) ,y − x⟩ + o

(
∥y − x∥2)

(252)

(253)
which implies that, at the second order:

1
2 ⟨Hf (x) (y − x) ,y − x⟩ ≥ α

2 ∥y − x∥2, ∀ (x,y) ∈ K2 (254)

Remark 58. Equation (254) proves that C2 strongly convex functions have
“higher” curvature then a quadratic polynomial with coefficient α (whose Hes-
sian reads αI). Moreover, since Hf (x) is real and symmetric, Equation (254)
implies that Hf (x) is positive definite.

Proposition 59. The following properties holds for convex functions :

• A function f : K → R is convex ⇐⇒ epi(f) is convex

• A function f : K → R is convex ⇐⇒ dom(f) is convex

• All linear combinations
∑N

i=1 aifi (x) of convex functions fi : K → R
defined on a convex set K and with positive coefficients ai > 0 is convex
(proof straightforward)

• For a set (fi)i∈I of convex functions fi : K → R, then supi∈I fi is convex.

28In this case, limy→x
o(∥y−x∥)

∥y−x∥ = 0
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• All linear combinations
∑N

i=1 aifi (x) of convex functions fi : K → R
defined on a convex set K and with positive coefficients ai = 1 is convex
(proof straightforward)

• The composition h = g ◦ f of a monotonically increasing convex function
g : R → R and a convex function f : K → R on a convex set K is convex:

Proof. Since f is convex, f (xt) ≤ tf (y) + (1 − t)f (x). Since g is mono-
tonically increasing, g(f (t (y) + (1 − t) (x))) ≤ g(tf (y) + (1 − t)f (x)).
Since g is also convex, g(f (t (y) + (1 − t) (x))) ≤ g(tf (y)+(1−t)f (x)) ≤
tg(f (y)) + (1 − t)g(f (x))

Definition 60. Coercive functions f on unbounded domains K ⊂ Rn:

lim
∥xn∥K →+∞

f (xn) = +∞ (255)

Which implies that ∀M ∈ N,∃N ∈ N such that f (xn) ≥ M , ∀xn such that
∥xn∥K ≥ N

Proposition 61. f strongly convex on convex unbounded set K ⊂ Rn, f ∈
C1 (K) (elliptic function) ⇒ f is coercive

Proof. f elliptic:

f (yn) ≥ f (x)+⟨∇xf (x) ,yn − x⟩+α

2 ∥yn−x∥2 ≥ f (x)−∥∇xf (x) ∥·∥yn−x∥+α

2 ∥yn−x∥2

If ∥xn∥ = ∥yn − x∥ → +∞, then f (x + xn) ≥ f (x) − ∥∇xf (x) ∥ · ∥xn∥ +
α
2 ∥xn∥2 → +∞

Example 7. Some example of convex and coercive functions:

• f : R → R, f(x) = x2 is convex on R ( df
dx = 2x ⇒

(
df
dx (y) − df

dx (y)
)

(y − x) ≥
0)

• f : Rn → R, f (x) = ∥x∥2 is strongly convex on R (∇xf (x) = 2x ⇒
⟨∇xf (y) − ∇xf (x) ,y − x⟩ = 2∥y − x∥2 ≥ 0)

• f : Rn → R, f (x) = 1
2 ⟨Ax,x⟩+⟨b,x⟩+c with A ∈ Mn (R) , b ∈ Rn, c ∈ R

is convex on Rn iff A is semi-positive definite (∇xf (x) = Ax + b ⇒
⟨∇xf (y) − ∇xf (x) ,y − x⟩ = 2∥A (y − x) ∥2 ≥ 0)

• f : Rn → R, f (x) = 1
2 ⟨Ax,x⟩+⟨b,x⟩+c with A ∈ Mn (R) , b ∈ Rn, c ∈ R

is strongly convex on Rn iff A is positive definite and its minimum eigen-
value λmin > 0 (∇xf (x) = Ax + b ⇒ ⟨∇xf (y) − ∇xf (x) ,y − x⟩ =
2∥A (y − x) ∥2 = 2

∑n
i=1 λi|yi − xi|2 ≥ λmin

∑n
i=1 |yi − xi|2 = λmin∥y −

x∥2(α = λmin))
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• f : Rn → R, f (x) = 1
2 ⟨Ax,x⟩+⟨b,x⟩+c with A ∈ Mn (R) , b ∈ Rn, c ∈ R

is strongly convex on Rn, with A is positive definite and its minimum
eigenvalue λmin > 0, f est coercive (Rn is unbounded, f is C1 (Rn) so
elliptic and therefore coercive).

• All function bounded below by a coercive function are coercive

Definition 62. Infimum of a set K ∈ R

m = inf
x∈K

x, m ∈ ]−∞,+∞[ (256)

Iff:

• ∀x ∈ K, m ≤ x

• ∀y ∈ R such that ∀x ∈ K y ≤ x =⇒ m ≥ y
or alternatively:
∀y ∈ R such that m < y =⇒ ∃x ∈ K such that y > x
or alternatively:
∀ε > 0 =⇒ ∃x ∈ K such that x−m < ε
or alternatively:
∃(xn)n∈N ∈ R such that ∀ε > 0 =⇒ ∃N ∈ N such that ∀n ≥ N |xn −
x| < ε
or alternatively:
∃(xn)n∈N ∈ R, limn→+∞ xn = m

The same consideration hold for m = infx∈K f (x), with f : K → R and
K ⊂ Rn.

Definition 63. Infimum limit and supremum of a set K ∈ R

∀(xn)n∈N ∈ R, lim inf xn = lim
n→+∞

inf
k≥n

(xk) (257)

lim supxn = − lim inf −xn (258)

Proposition 64. ∀(xn)n∈N ∈ R, limn→+∞ xn = m ⇐⇒ lim inf xn =
lim supxn = m and lim inf xn ≤ lim supxn

Proof. By definition, lim inf xn = m iff:

∀ε > 0,∃Mi ∈ N such that ∀n ≥ Mi | inf
k≥n

xk −m| < ε

By definition of lim supxn = m iff:

∀ε > 0,∃Ms ∈ N such that ∀n ≥ Ms | sup
k≥n

xk −m| < ε

Since lim inf xn ≤ lim supxn, the following inequality holds:

∀ε > 0,∃M ≥ max {Ms,Mi} ∈ N such that ∀n ≥ M m+ε ≤ inf
k≥n

xk ≤ (xk)k≥n sup
k≥n

xk < ε−m
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which proves the statement.

Definition 65. Lower semi-continuous functions (lsc) [CP19]
f : K ∈ R with K ∈ Rn is lsc iff:

∃(xn)n∈N ∈ K such that when lim
n→+∞

xn = x ⇒ lim inf f (xn) ≥ f (x) (259)

Proposition 66. f : K ∈ R with K ∈ Rn is lsc iff epi(f) is close. All
continuous functions are lsc and so are the sum of lsc functions and supi fi

with fi lsc [CP19].

Definition 67. x̂ is local minimizer of a proper function f : K → R (see Defini-
tion 46) with a non-emptyK ⊂ H andH a Hilbert space if ∃ open neighborhood O (x) ∈
H such that:

f (x̂) ≤ f (x) ∀x ∈ O (x) ∩K (260)
x̂ is a strict local minimizer iff:

f (x̂) < f (x) ∀x ∈ (O (x) ∩K)/ {x} (261)

Definition 68. x̂ is global minimizer of a proper function f : K → R (see
Definition 46) with a non-empty K ⊂ H and H a Hilbert space if:

f (x̂) ≤ f (x) ∀x ∈ K (262)

x̂ is a strict global minimizer iff:

f (x̂) < f (x) ∀x ∈ K/ {x} (263)

Definition 69. The minimum of a function f : K → R with K ⊂ Rn is the
value m ∈ R - if it exists - for which ∃x̂ ∈ K such that:

∀x ∈ K f (x) ≥ m and min
x∈K

f (x) = m = f (x̂) (264)

The following theorems represent the theoretical framework within which the
Machine Learning algorithms are defined. In particular, the following theorems
assess the sufficient and necessary conditions to have local or global minimiz-
ers [CP19; Mul19].

Theorem 70. Bolzano-Weierstrass theorem (Rein analytischer Be-
weis, Bolzano, 1817 and Weierstrass, 1870): Sufficient condition of
existence of a minimizer on a compact set
Given a function f : K → R defined over a non-empty compact set K ⊂ H, with
H being a finite dimensional Hilbert space, f proper and lsc on K =⇒ ∃x̂ ∈ K
such that

f (x̂) = inf
x∈K

f (x) = m ∈ R
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Proof. If ∃m = infx∈K f (x), m ∈ R, by Definition 62 and by Proposition 64
∃ (f (xn))n∈N ∈ H such that m = limn→+∞ f (xn). Since K is compact
∃
(
xnk

)
k∈N

such that limk→+∞ xnk
= x̂ ∈ K (see Definition 49). Finally,

since f is lsc (see Definition 65) lim inf f
(
xk≥n

)
= lim inf f

(
xnk

)
≥ f (x̂).

But, by the property in Proposition 64,

lim
n→∞

f (xn) = m = inf
x∈K

f (x) ⇐⇒ m = lim inf f (xn) ≥ f (x̂)

Therefore, by definition of infx∈K f (x) as the largest minimizer of f (x) over
K, it follows that f (x̂) = m = infx∈K f (x) which proves the theorem.

When K is closed but not bounded, the sufficient condition of existence of a
minimizer requires f to be coercive. The following theorem is thus fundamental
to prove the existence of minimizers on unbounded sets.

Theorem 71. Given a function f : H → R defined over a non-empty fi-
nite dimensional Hilbert space H, f proper coercive and lsc on H =⇒ C =
arg minx∈K f (x) is a non-empty compact set.

Proof. Since f is proper, ∃x0 ∈ K|f (x0) < +∞. In this case, considering
Br (x0) ∈ K the open ball in H of radius r > 0 and center x0, then being f
coercive (see Definition 60) then ∀x /∈ Br (x0) for which ∥x −x0∥ > r it holds
that f (x) > f (x0). On the contrary, B̄r (x0) ∪K is a compact, on which the
Weierstrass theorem applies, i.e., it exists a minimizer x̂ = arg infx∈K f (x) ≤
f (x0). Since f is coercive, then x̂ is a minimizer over H:

f (x̂) = inf
x∈H

f (x)

This result implies that arg minx∈H f ⊂ K is bounded. Moreover, any sequence
(xn)n∈N converging to x̂ ∈ H satisfies the following property:

f (x̂) ≤ lim inf f (xn) = inf
x∈H

f (x)

which implies that arg minx∈H f (x) is also closed and then (since H is finite
dimensional) arg minx∈H f (x) is compact.

For any other open set K ⊂ H is an open set, Theorem 71 does not apply.
Therefore, does a minimizer of f : K → R exist? The answer is positive, but
under certain conditions.

Theorem 72. Sufficient condition of existence of a minimizer on an open set
Given a function f : K → R defined over a non-empty bounded open set K ⊂ H,
with H being a finite dimensional Hilbert space, f proper and lsc on K̄ and
∃x0 ∈ K such that:

∀x ∈ ∂K, f (x) > f (x0)
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=⇒ ∃x̂ such that
f (x̂) = inf

x∈K
f (x) = m ∈ R

Proof. K̄ is closed and bounded, therefore (since H is finite dimensional) K̄ is
compact and the Weierstrass Theorem 70 applies:

∃x̂ ∈ K̄ such that f (x̂) = inf
x∈K̄

f (x) = m m ≤ f (x) , ∀x ∈ K̄

x̂ belongs to K=int(K) (open set). The proof is obtained by reducing to
absurd, i.e. by assuming that x̂ ∈ ∂K. If it were so, provided the assumption
that ∃x0 ∈ K such that ∀x ∈ ∂K, f (x) > f (x0), then

f (x̂) > f (x0) and f (x̂) = m ≤ f (x0) ,x0 ∈ K̄

The conditions are incompatible, which proves that x̂ ∈ K and f (x) ≥ f (x̂)
∀x ∈ K̄, included x0.

The previous theorems assure the existence of a minimizer, but not the neces-
sary condition required to search for one, nor the uniqueness of the minimizer.
For such conditions, the convexity properties should be considered. The fol-
lowing results introduce such conditions.

Theorem 73. Euler’s inequality: necessary condition for a minimizer on a
convex set
Given a function f : K → R defined over a non-empty convex set K ⊂ H,
with H being a Hilbert space, f proper on K and f ∈ C1(K), if x̂ is a local
minimizer of f on K ⇐=

⟨∇xf (x̂) ,y − x̂⟩ ≥ 0, ∀y ∈ K

Proof. Provided that K is convex ∀t ∈ [0, 1] xt = ty + (1 − t)x̂ ∈ K, ∀y ∈ K.
Moreover, f ∈ C1(K) which implies that the following Taylor expansion on f
holds:

f (xt) = Tf x̂ (xt)+o (∥xt − x̂∥) = f (x̂)+⟨∇xf (x̂) ,xt − x̂⟩+o (∥xt − x̂∥) ≥ f (x̂)

such that limt→0+
o(∥xt−x̂∥)

∥xt−x̂∥ = 0. Taking the following limit for t → 0, the
statement is proven:

⟨∇xf (x̂) ,y − x̂⟩ =

= lim
t→0

⟨∇xf (x̂) ,xt − x̂⟩ + o (∥xt − x̂∥)
t

= lim
t→0

f (xt) − f (x̂)
t

≥ 0 ∀y ∈ K

If K is open, the inequality in Theorem 73 becomes an equality and a sufficient
and necessary condition for x̂ to be a minimizer. However, one must first
acknowledge this preliminary result:
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Theorem 74. Euler’s equality: necessary condition for a minimizer of a
function on a convex open set
Given a function f : K → R defined over a non-empty convex set K ⊂ H, with
H being a finite dimension Hilbert space, f proper on K and f ∈ C1(K), if x̂
is a local minimizer of f on K ⇐=

∇xf (x̂) = 0

Proof. ⇒
Since x̂ = arg minx∈K f (x), ∃O(x̂) open neighborhood that, according to
Equation (260) in Definition 67:

f (x̂) ≤ f (x) ∀x ∈ O (x) ∩K

Therefore, if one considers x = x̂ + hy , h ∈ ]0, r0]29 such that x ∈ O (x) ∩
K,∀h ∈ ]0, r0] and ∀y ∈ K, then :

lim
h→0+

f (x̂ + hy) − f (x̂)
h

= ⟨∇xf (x̂) ,y⟩ ≥ 0 ∀y ∈ K

But ⟨∇xf (x̂) ,−y⟩ ≥ 0 too, which implies the only solution: ∇xf (x̂) ≡ 0.

Proof. ⇐
If ∇xf (x̂) ≡ 0, the statement is proven.

If K and f are both convex, the inequality in Theorem 73 becomes a sufficient
and necessary condition for x̂ to be a minimizer.

Theorem 75. Euler’s inequality for convex functions: sufficient and
necessary condition for the existence of a global minimizer of a convex function
on a convex set
Given a function f : K → R defined over a non-empty convex set K ⊂ Rn,
with Rn being a Hilbert space of finite dimension n, f proper and convex on K
and f ∈ C1(K)

x̂ is a global minimizer of f on K ⇐⇒ ⟨∇xf (x̂) ,y − x̂⟩ ≥ 0, ∀y ∈ K

Proof. ⇒
See Theorem 73

Proof. ⇐
Since f is convex, Proposition 55 holds:

f (y) ≥ f (x̂) + ⟨∇xf (x̂) ,y − x̂⟩
29When K ⊂ Rn, the open neighborhood is the open ball Br (x̂).
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But, since x̂ is a minimizer, the following holds too:

f (x̂)+2 ⟨∇xf (x̂) ,y − x̂⟩ ≥ f (y)+⟨∇xf (x̂) ,y − x̂⟩ ≥ f (x̂)+⟨∇xf (x̂) ,y − x̂⟩

which proves the statement.

Proposition 76. Provided that Theorem 75 holds for convex functions on
convex subsets of Rn, if K is open, Theorem 74 holds too, with the Euler’s
inequality that

∇xf (x̂) = 0

.

If f is strictly convex, the minimizer is unique.

Theorem 77. Sufficient and necessary condition for the existence of unique
minimizer of a strictly convex function on a convex set
Given a function f : K → R defined over a non-empty convex set K ⊂ H, with
H being a Hilbert space, f proper and strictly convex on K =⇒

∃!x̂ such that x̂ = inf
x∈K

f (x)

Proof. The proof is obtained by reducing to absurd and assuming that there
are two different minimizers x̂1 ̸= x̂2. In this case, assuming t = 1

2 , x̂1+x̂2
2 ∈ K

which is convex and therefore:

f (x̂1) < f

(
x̂1 + x̂2

2

)
<

1
2f (x̂1) + 1

2f (x̂2) = f (x̂1)

which is not possible.

Finally, if f is strongly convex (see Definition 54), the minimum exists and it
is unique and it satisfies the Euler’s inequality.

Theorem 78. Euler’s inequality for strongly convex functions: Suffi-
cient and necessary condition for the uniqueness of a minimizer (if it exists)
of a strongly convex function on a closed convex set
Given a function f : K → R defined over a non-empty closed and convex set
K ⊂ H, with H being a Hilbert space, f proper and strongly convex on K and
f ∈ C1(K)

x̂ is a unique minimizer of f on K ⇐⇒ ⟨∇xf (x̂) ,y − x̂⟩ ≥ 0, ∀y ∈ K

Proof. Since f proper and f ∈ C1, it is lsc on K. Moreover, f is strongly con-
vex, therefore elliptic, then it is coercive (see Proposition 61). Being coercive,
Theorem 71 holds and therefore the minimizer exists. Moreover, the Theo-
rem 71 states that arg minx∈K f is compact. Again, since f is strongly convex,
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it is also strictly convex (see Proposition 55), which implies - by Theorem 77 -
that the existing minimizers is unique. Finally, f being strongly convex implies
f being convex - again by Theorem 77 - which implies that Theorem 75 holds
and therefore the Euler’s inequality is proven.

Remark 79. In the following we will consider K = Rn, which is convex. There-
fore, the Euler’s inequality in Theorem 73 holds and the vectors y − x̂ span all
the affine space [Mul19].

The strong convexity of the function f has some repercussions on its smooth-
ness, defined by its β-Lipschitz continuity [Pey20]:

Definition 80. A function f : K → R is said to be β-Lipschitz iff

∃β ∈ R+ such that ∀ (x,y) ∈ K2 ⇒ |f (y) − f (x) | ≤ β∥y − x∥ (265)

The function is Lipschitz, i.e. f ∈ Lip(K) for β = supy ̸=x
|f(y)−f(x)|

∥y−x∥ (Lipschitz
constant).

Lipschitz strongly convex functions are sufficiently smooth since they are bounded
by below and by above by a quadratic function, as shown in the following.

Proposition 81. A strongly convex function f : K → R, defined over a non-
empty convex set K ⊂ H, with H being a Hilbert space, f proper and strongly
convex on K, with f ∈ C2(K) and a gradient ∇xf ∈ Lip(K) then ∀ (x,y) ∈
K2:

α

2 ∥y − x∥2 ≤ f (y) − f (x) − ⟨∇xf (x) ,y − x⟩ ≤ β

2 ∥y − x∥2 (266)

or alternatively, since the Hessian operator Hf (x) is symmetric [Pey20]:

αI ⪯ Hf (x) ⪯ βI, ∀x ∈ K (267)

with ⪯ indicating the natural order of symmetric matrices, i.e.:

∀ (A,B) ∈ Sym(Rn)2 ⇒ A ⪯ B ⇐⇒ ⟨A.u,u⟩ ≤ ⟨B.u,u⟩ ∀u ∈ Rn

Proof. The lower bound has been proved in Item 2. For the upper bound, since
f ∈ C2(K) and with xt = ty + (1 − t)x, t ∈ [0, 1]:

f (y) − f (x) =
∫ 1

0
Dt(y−x)f (x) dt = ⟨∇xf (x) ,y − x⟩ +

+
∫ 1

0
⟨∇xf (xt) − ∇xf (x) ,y − x⟩ dt
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Applying the Hölder inequality ⟨a, b⟩ ≤ ∥a∥ · ∥b∥ to the previous expression,
coupled with the Lipschitz property of f , one obtains:

f (y) − f (x) − ⟨∇xf (x) ,y − x⟩ ≤
∫ 1

0
∥∇xf (xt) − ∇xf (x) ∥dt · ∥y − x∥

Applying the Lipschitz property of the gradient, the following expression proves
the statement:

f (y) − f (x) − ⟨∇xf (x) ,y − x⟩ ≤ β

∫ 1

0
t · dt · ∥y − x∥2 ≤ β

2 ∥y − x∥2

Remark 82. If Proposition 81 holds, equivalently Equation (267) does too. In
this case, Equation (267) can be rephrased as:

α∥u∥2 ≤ ⟨Hf (x) .u,u⟩ ≤ β∥u∥2, ∀x ∈ K,∀u ∈ H (268)

Plus, as observed in Remark 58, Hf (x) is positive definite, i.e., all its eigenval-
ues are positive, thus, given the spectral representation of the symmetric real
matrix Hf (x), Equation (268) reduces to:

{
minλi (Hf (x)) ≥ α

max λi (Hf (x)) ≤ β

(269)
(270)

Equation (270) implies that the Hessian matrix must be well conditioned. In
other words, Equation (270) can be replaced by invoking the conditioning num-
ber of the Hessian matrix κ (Hf (x)) = max λi(Hf (x))

min λi(Hf (x)) that must respect the
condition 0 < κ (Hf (x)) ≤ β

α . This aspect is crucial for convergence analy-
sis of gradient descent methods (see Section 4.3 for further details). In other
words, the strongest is the convexity of the function, the more flexible is the
conditioning of the Hessian matrix. On the contrary, a lower Lipschitz con-
stant β on the gradient represents a more stringent conditioning of the Hessian
matrix.
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Figure 9: ELU activation function g(a) and its derivative ∂g
∂a

.

Figure 10: SELU activation function g(a) and its derivative ∂g
∂a

.

Gatti 349

ALERT Doctoral School 2023



Figure 11: Self-centering properties of the SELU activation function, reprinted
from [Kla+17]. µa and µh represent the average pre-activation and activation of any
neuron at layer ℓ of a MLP , whereas σ2

a and σ2
h represent their variances.
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This chapter aims to offer a comprehensive introduction to the integration of prior
knowledge stemming from physics and/or thermodynamics into deep learning algo-
rithms. By means of motivating examples, we explore the capabilities and strengths
of (i) Physics-Informed Neural Networks for the discovery, driven by data, of partial
differential equations and of (ii) Thermodynamics-based Artificial Neural Networks
for the discovery of constitutive equations of complex materials.

1 Introduction

Fuelled by a continuously increasing flow of data, Machine Learning (ML) has been
offering promising solutions to diverse problems in a broad spectrum of disciplines.
As a result, science has experienced a shift of paradigm, where data are no longer
confined to a mere supporting role, but have instead taken center stage as main pro-
tagonists in the scientific narrative. This transformative shift can be considered as the
advent of a “fourth paradigm” [HTT+09], which coexists with and complements the
three traditional scientific paradigms: experimental, theoretical, and computational.

Within such a context, the quest for accurate and predictive data-intensive (or data-
centric) models has received and continues to receive enormous attention. Such mod-
els are often characterized by complex, highly specialized algorithms, e.g. deep neural
networks, with numerous interconnected parameters that are optimized to learn those
patterns and those correlations proper to a training data set. However, while data-
intensive models may fit observations well, many of them face limitations in extracting
interpretable information and knowledge from vast amounts of data. In addition, they
can suffer from physical inconsistencies and poor generalization [KKL+21]. Consis-
tency refers here to the fulfilment of laws of physics and thermodynamics. General-
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ization refers to the ability of making predictions for data that do not belong to the
particular data set used in the learning process (cf. Chapter 2).

To address these challenges, there has been a surging desire, in the last four-to-five
years, to switch the focus from a pure data-centric vision towards a hybrid one that
also accounts for first principles – namely, physics and/or thermodynamics. That is,
leverage the high expressivity (i.e. approximation properties) of ML models but also
embed prior knowledge (or physics-based bias) stemming from our physical under-
standing of the world in order to reach improved performance, reliability, and inter-
pretability. This gave birth to numerous successful methods, sometimes referred to
as physics-informed machine learning1. These approaches enable the enforcement
of prior knowledge through the introduction of appropriate observational, inductive,
and/or learning biases [KKL+21].
Observational biases use data augmentation procedures by leveraging physical prin-
ciples that dictate the generation of the latter2 [LJP+21]. Inductive biases resort to
the design of specialized neural network architectures that, by construction, embed
prior assumptions or physical models, e.g. [HBG+21, MSVMB21]. Learning biases
consists of introducing physical constraints, rather than via specialized architectures,
in a soft manner, by appropriately penalizing the loss functions of conventional neural
networks, e.g. [RPK19]. For more, we refer to [KKL+21].

In this chapter, we focus on two emblematic examples of physics-informed machine
learning. The first one consists of the seminal work carried out by Raissi, Perdikaris,
and Karniadakis on “Physics-Informed Neural Networks” (PINN) [RPK19]. PINN
are a class of supervised deep learning algorithms capable of encoding, through learn-
ing biases, physical laws that govern a given data set, and can be described by partial
differential equations.
The second example is provided by “Thermodynamics-based Artificial Neural Net-
works” (TANN) [MSVMB21], that, through the hardwiring of the laws of thermody-
namics within the architecture of neural networks (inductive and learning bias), enable
the discovery of constitutive equations of complex materials.

After studying this chapter, we hope that the reader will be able to

• Grasp the limitations of machine learning in providing reliable and accurate de-
scriptions of physical phenomena and, at the same time, the need for developing
ML approaches accounting for physics/thermodynamics principles.

• Understand, by means of hands-on and pedagogic examples, how to introduce
physical knowledge in the form of learning biases (e.g. PINN) and inductive bi-
ases (e.g. TANN) to construct high-fidelity physical representations from data.

The codes related to the hands-on example are available on ALERT Geomaterial
GitHub (repository alert-geomaterials/2023-doctoral-school), while those

1There seems to be no strong consensus on the definition of ML models leveraging prior knowledge,
mainly due to the fact that this is a very fast moving field. In this Chapter, we follow the broad definition
suggested in [KKL+21]. Note that this is not the sole possibility, of course.

2For instance, augment the data by leveraging frame indifference and/or symmetries.
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related to TANN can be found at github.com/filippo-masi/TANN-multiscale
and filippo-masi/Thermodynamics-Neural-Networks.
Updated versions of this chapter are also available at filippo-masi.github.io.

Below, we adopt the following notation: a · b = aibi, P : Ḟ = PijḞij , and divy =
∂yi
∂xj

, with x the spatial coordinates, i, j = 1, 2, 3. Einstein’s summation is implied for
repeated indices.

2 Physics-informed neural networks

Physics-Informed Neural Networks (PINN) are a class of supervised deep learning al-
gorithms capable of encoding physical laws governing given data sets whose evolution
can be described by partial differential equations.

The setting considers parametrized and nonlinear partial differential equations (PDE)
of the form

u̇+Nγ [u] = 0, (1)

where u = û(x, t) is the latent (hidden) solution and u̇ its partial derivative with
respect to time – the superposed caret in û serves to distinguish the solution from its
values,Nγ [ · ] is a nonlinear differential operator parametrized by γ, with x ∈ Ω ⊂ Rn
the spatial coordinates and t the time coordinate. Note that expression (1) encapsulates
a wide range of problems in physics including conservation laws, diffusion processes,
advection-diffusion-reaction systems, and kinetic equations. For instance, the heat
transfer equation3 can be retrieved by selecting Nγ [u] = γ∆u, where ∆· denotes the
Laplacian.

2.1 Methodology
By leveraging the high expressivity of neural networks and prescribed physical equa-
tions during the learning process – by means of learning biases – PINN provide a
powerful and general framework, driven by data, to (i) discover solutions of PDE
and/or (ii) the underlying differential equations, by leveraging expression (1).

2.1.1 Solution of partial differential equations

The data-driven solution of PDE aims at finding an approximation of û such that
(1) holds true for fixed model parameters γ, by means of a deep neural network uθ,
parametrized with respect to the network parameters θ – that is, the set of weights and
biases of each layer (see Chapter 7).
In doing so, the expression (1) is reformulated as

ϱ(x, t) ≡ u̇θ +N [uθ], (2)

3u̇ = α∆u, where α is the thermal diffusivity.
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where ϱ(x, t) is a residual. The residual is computed by applying the chain rule for dif-
ferentiating compositions of functions using automatic differentiation (cf. [BPRS18]
and Chapters 7 and 8), see Figure 1. The learning process consists of the minimiza-
tion of a loss function composed of a purely data-driven term and a physics-based one,
namely

L = λuLu + λPDELPDE, (3)

where λu and λPDE are weighting parameters that can be tuned to balance the interplay
between the two losses. Lu and LPDE are, respectively, a supervised loss related to the
(data) measurements u from the initial and boundary conditions and an unsupervised
loss of the PDE, namely

Lu =
1

Nu

Nu∑

i=1

∥∥∥uθ

(
x(i), t(i)

)
− u(i)

∥∥∥

LPDE =
1

NPDE

NPDE∑

k=1

∥∥∥r
(
x(k), t(k)

)∥∥∥ ,
(4)

∥ · ∥ being a metric based on an arbitrary norm (cf. Chapter 2). Here {(x(i), t(i))}
denote the initial and boundary training data on û(x, t), while {(x(k), t(k))} specify
the set of collocation points sampled in the entire domain for ϱ(x, t).

partial differential equation

= 0

Figure 1: NN versus PINN: learning the projectile motion from

2.1.2 Discovery of partial differential equations

In the presence of noisy and/or incomplete measurements u of the state of the system,
PINN can be deployed for the data-driven discovery of PDE by means a of neural
network uθ and learning model parameters γ that best describe the measurement data.
The expression (1) is reformulated as

ϱ(x, t) ≡ u̇θ +Nγ [uθ]. (5)

Exactly as for the discovery of the solution of PDE, the network is trained over the
minimization of the loss (3), where the unknown parameters γ are part of the opti-
mization problem.
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While there is no theoretical guarantee of convergence to a global minimum of the
loss function (3), many benchmarks and applications, e.g. [RPK19], demonstrated
that PINN can achieve accurate predictions when applied to well-posed PDE with
unique solutions, both in terms of data-driven discovery of solutions and of PDE.
PINN are nowadays used to solve not only partial differential equations, but also frac-
tional equations, integral-differential equations, and stochastic PDE, see [CDCG+22]
for an extensive review.
The underlying success depends on accounting for physical biases, employing a suffi-
ciently expressive neural network architecture, and an adequate number of collocation
points (NPDE) – being the sampling choice a crucial aspect, cf. [LP21].

2.2 Hands-on example
Let us consider as an example the (one-dimensional) motion of a projectile, governed
by the ordinary differential equation (ODE) ü(t) + g = 0, that has the following
general solution

u(t) = u(0) + u̇(0)t− 1

2
gt2,

where u, u̇, and ü are the trajectory, velocity, and acceleration of the projectile, re-
spectively; t is the time, and g is the gravitational acceleration.
This example should ring a bell to those who read Chapter 2, on regression methods.
There, we considered exactly the same problem but addressed it with regularized poly-
nomial regression. Here, we aim at learning the same governing equation but instead
by using traditional artificial neural networks and physics-informed ones.

We proceed by reusing the data set generated in Chapter 2, Section 7, and add a
Gaussian measurement noise on the data representing the trajectory, u(i) – following
the formalism introduced above. In doing so, we use the code hereinafter:

t_i = X[0:50:2].copy() # from Chapter 2, Sect. 7

u_i = y[0:50:2].copy() # from Chapter 2, Sect. 7

u_i += 0.1 * np.multiply(np.random.normal(0,1,25), u_i) # add noise

u_i[0] = 0.0 # noise-free initial condition

t_i = torch.tensor(t_i)[:,None] # expand dim

u_i = torch.tensor(u_i)[:,None] # expand dim

Figure 2 displays the exact solution of the ODE for t ∈ [0, 1] s and the noisy data
measurements u(i) used for training, t ∈ [0, 0.5] s.

Then, we continue by defining a neural network (in PyTorch), that we will train (i)
in the traditional way and (ii) following the general setting provided by PINN. The
code below serves to construct a general neural network architecture with inputs of
dimension i dim, outputs of dimension o dim, hidden layers with h dim nodes, and
Tanh activations:

import numpy as np

import torch

torch.manual_seed(123)
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Figure 2: Projectile motion: exact solution of the ordinary differential equation ü +
g = 0 and noisy data measurements u(i) used for training, t ∈ [0, 0.5] s.

np.random.seed(123)

class NeuralNet(torch.nn.Module):

'''Feed-forward neural network'''

def __init__(self,hyper_params,dtype=torch.float32):

super(NeuralNet, self).__init__()

self.dtype = dtype

self.NN = self.constructor(hyper_params) # neural net

self.gamma = torch.nn.Parameter(torch.tensor(1.)) # gamma in PINN

def constructor(self, hyper_params):

'''Construct neural net'''

i_dim,o_dim,h_dim = hyper_params

dim = i_dim

layers = torch.nn.Sequential()

for hdim in h_dim:

layers.append(torch.nn.Linear(dim, hdim, dtype=self.dtype))

layers.append(torch.nn.Tanh())

dim = hdim

layers.append(torch.nn.Linear(dim, o_dim, dtype=self.dtype))

return layers

def forward(self, x):

'''Forward pass'''

return self.NN(x)

In order to train the neural network, without any learning bias, we proceed as it fol-
lows:

dtype=torch.float32

NN_params = [1,1,[12,12]] # [i_dim, o_dim, [h_dim, ...]]

model = NeuralNet(NN_params,dtype) # build neural net

optimizer = torch.optim.Adam(model.parameters(),lr=1e-2) # Adam optimizer

verbose_training = 1000 # display loss

n_epochs = 10000 # number of epochs

for i in range(n_epochs):

optimizer.zero_grad()

u_i_pred = model(t_i) # make predictions

MSE_u = torch.mean((u_i_pred-u_i)**2) # MSE_u

MSE_u.backward() # backpropagate loss

optimizer.step()

if i % verbose_training == 0:

print('epoch:{:5.0f}'.format(i),

'- train_loss:{:8.6f}'.format(MSE_u.item()))
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Note that the architecture is composed of two hidden layers, with 12 nodes each. The
evolution of the predictions of the network, at varying of the number of epochs, is
shown in Figure 3(a). Without any surprise, the neural network (progressively) mas-
sively overfits the training data, and the associated noise. As a result, it cannot nei-
ther generalize nor extrapolate. Indeed, we can notice that the predicted “projectile”
seems to find itself amidst a tempestuous whirlwind, in the training range (t ∈ [0, 0.5]
s), while it magically levitates, defying common sense and the laws of physics (i.e.,
gravity), in the extrapolation range (t > 0.5 s).

Let us see, at this point, what happens if we insert prior knowledge based on physics.
We train the PINN analog of the same neural network and in order to discover the
underlying governing equation, we assume the following physical model:

ϱ(t) ≡ üθ + γ,

where γ is a trainable parameter – in the code snippet above, NeuralNet.gamma. Re-
formulating, we are telling the network that the second order derivative of the solution
is equal to an undetermined constant, that the network will eventually identify.
During the learning process, we sample uniformly distributed time (collocation) points
t(k) ∈ [0, 1] s. Automatic differentiation is used to compute üθ relying on PyTorch’s
functionality torch.autograd.grad():

t_k = torch.linspace(0,1,20).view(-1,1).requires_grad_(True) # collocation pt

model = NeuralNet(NN_params,dtype) # build PINN

optimizer = torch.optim.Adam(model.parameters(),lr=1e-2) # Adam optimizer

verbose_training = 1000 # display loss

n_epochs = 10000 # number of epochs

lambda_PDE = 0.2 # weighting parameter

for i in range(n_epochs):

optimizer.zero_grad()

u_i_pred = model(t_i) # make predictions for ti

MSE_u = torch.mean((u_i_pred-u_i)**2) # MSE_u

u_k_pred = model(t_k) # make predictions for tk

dudt = torch.autograd.grad(u_k_pred, t_k, torch.ones_like(u_k_pred),

create_graph=True)[0] # computes du/dt

dduddt = torch.autograd.grad(dudt, t_k, torch.ones_like(dudt),

create_graph=True)[0]# computes d^2u/dt^2

physics = dduddt+model.gamma # computes the residual

MSE_PDE = lambda_PDE*torch.mean(physics**2) # MSE_PDE

loss = MSE_u + MSE_PDE # add two loss terms together

loss.backward() # backpropagate joint loss

optimizer.step()

if i % verbose_training == 0:

print('epoch:{:5.0f}'.format(i),

'- train_loss:{:8.6f}'.format(MSE_u.item()))

Figure 3(b) displays the evolution of the predictions of the physics-informed network,
as the training advances: much better, isn’t it?
Thanks to the (physical) learning bias we introduced, the physics-informed network
not only possesses good generalization capabilities, but is also able to extrapolate4

4A disclaimer is necessary concerning the capability of the trained PINN model to extrapolate. In
general, there is no guarantee, as for all ML models, that the network enables extrapolation. In this example,
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with high accuracy. By evaluating, at the end of the learning process, the γ parameter,
we can indeed notice that the network finds a good approximation of the gravitational
acceleration, namely gamma = 10.58 m/s2.

(a) (b)

Figure 3: Learning the projectile motion from noisy measurement data using a tradi-
tional neural network (NN) (a) and a physics-informed neural network (PINN) (b).

Before concluding this example, it is worth drawing an interesting analogy between
the addition of physical biases and regularization strategies in ML. In particular, we
have seen in Chapter 2, paragraph 7.1, how regularized regression models based on
the minimization of the ℓ1 and ℓ2 norm can provide similar accuracies compared to the
physics-informed neural network we have deployed for predicting the projectile mo-
tion. It is important to understand that such a similarity is not simply a coincidence.
To fix the ideas, let us evaluate, in Figure 4, the evolution of the ℓ1 and ℓ2 norms
of the parameters of the traditional neural network and its physics-informed sibling.
The latter is characterized by a much smaller norm compared to the traditional neu-
ral network – with a 70% decrease. This means that the physical bias acts as a sort
of regularizer, shrinking the value of most of the network parameters θ to zero. The
opposite is also true: the benefits of regularization techniques lie in the fact that they
enable the discovery of simple models – which, most of the time, are more physical

extrapolation in the domain t ∈ [0, 1] s is made possible thanks to the adopted sampling strategy for the
collocation points, i.e. t(k) ∈ [0, 1] s.
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than very sophisticated ones. In an essence, both techniques (physics and regulariza-
tion) allow for the implementation of a “lex parsimoniae” (see Chapter 2, Section 7,
and [KB22]).
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Figure 4: Evolution, at training, of the ℓ1 and ℓ2 norm (scaled with respect to the
maximum value) of the neural network parameters with and without learning biases
based on physics, respectively PINN and NN.

3 Thermodynamics-based neural networks

Accurate models for the behavior of materials are of fundamental importance in ma-
terial science and (geo-)mechanics. However, heuristic constitutive models, tradi-
tionally derived from first principles (thermodynamics) and empirical approaches (to
ensure calibration over experiments), can hardly describe the behavior of all complex
materials that display path-dependency and possess multiple inherent scales. In such
contexts, multiscale approaches are commonly preferred as they enable to capture the
effects of the fine material scales (here denoted with microstructure) on the average
(macroscopic) behavior. However, the bottleneck of these approaches lies in the cum-
bersome and time-consuming ways with which the auxiliary problem is being solved
which eventually hinders their application in real-case scenarios.

In recent years, ML, particularly deep learning, has been offering new ways to reduce
the computational burden of multiscale approaches. Indeed, taking advantage of the
high expressivity of neural networks (see Chapters 7 and 8), deep learning can en-
able the modeling of several aspects of the behavior of complex materials and show
promise in building high-fidelity replicas or digital twins5.
Yet, constitutive modeling based on neural networks has been facing two major issues

5Let us define the concepts of virtual and digital twins. We do so by adopting the definitions proposed
in [CCAC+20]. A virtual twin refers to the emulation of a physical system by one or more mathematical
models that describe the behavior of the former. To fix the ideas, numerical models, such the Finite Element
Method (FEM) or the Discrete Element Method (DEM), are examples of virtual twins. A digital twin
– term originally coined by General Electric to depict the digital replica of an engine produced in their
manufacturing facilities – is a data-intensive representation (or model) of the same physical system. As
opposite to its virtual siblings, digital twins are usually characterized by reduced computational complexity
and can be deployed for real-time decision-making.
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– inconsistency and poor generalization, cf. Section 1 – that hinder the applicability
of classical “black-box” (i.e., physics-agnostic) approaches [GS98, LS03, LBS09].

To this, new developments were recently proposed to tackle the lack of physical
consistency in neural networks and the consequent constitutive models. In par-
ticular, it has been demonstrated that is possible to structure neural networks in
a way that they deliver, though inductive and/or learning biases (cf. Section 1),
thermodynamics-/physics-consistent constitutive representations, see e.g. [HBG+21,
YZYK22, KFM+22]. Among these approaches, the Thermodynamics-based Artifi-
cial Neural Networks (TANN, [MSVMB21, MS22, MS23]), based on the theory of
internal state variables, are able to uncover constitutive equations from the laws of
thermodynamics. As a direct consequence of the thermodynamically-consistent ar-
chitecture, TANN deliver accurate predictions of the material behavior and show re-
markable generalization abilities in presence of unseen loading paths, both within the
range of the training set (interpolation) and outside (extrapolation).

Herein, we focus on presenting the methodology and the underlying theoretical frame-
work of TANN. Through a pedagogical, example we illustrate how thermodynamics-
based neural networks enable to construct accurate, robust, and reliable digital
twins/replicas of granular media. This approach not only captures the overall macro-
scopic material behavior but also allows to discover the (hidden) internal variables and
to characterize the time evolution of the microstructure at extremely reduced computa-
tional cost. Finally, we demonstrate how to deploy the same framework for speeding-
up state-of-the-art multi- and fine-scale simulations.

3.1 Theoretical framework
We start by briefly recalling the general continuum thermodynamic setting.
The local form of the energy balance and dissipation rate inequality, at the level of an
arbitrary unit volume element6 V and with respect to the reference configuration, read

ė+ divq = P : Ḟ + r, (6)

d̄ = η̇ −
(
T−1r − div

(
T−1q

))
≥ 0, (7)

where e and ė are the volume density of the internal energy and its local time deriva-
tive; P is the first Piola-Kirchhoff stress tensor; F is the deformation gradient and
Ḟ its rate of change; q is the heat flux vector; r is the volume density of possible
external source terms; d̄ is the volume density of the total (mechanical plus thermal)
dissipation rate; η the volume density of entropy; and T the absolute temperature.
Note that all above quantities are functions of the time t, i.e. F ≡ F (t), but for the
sake of simplicity, we voluntarily omitted, and continue to do so, such explicit way of
writing.

6The notion of unit volume element or unit cell, stems from considerations related to the mathematical
theory of asymptotic homogenization. All quantities of interest, except when explicitly written, are herein
expressed in the form of volume averages, e.g. ψ = 1

|V|
∫
V ψ(x) dx, where x ∈ V are the spatial

coordinates and |V| is the volume. For more, we refer to [Mie02, MS22].
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From the combination of the above two expressions – that is, the first and second law
of thermodynamics – we obtain the Clausius-Duhem inequality, namely

d̄ = P : Ḟ − ė+ T η̇ − T−1q ·m
= P : Ḟ −

(
ψ̇ + Ṫ η

)
− T−1q ·m ≥ 0

(8)

the latter involving the Helmholtz free energy density (per unit volume), ψ = e− Ts,
and denoting with m the temperature gradient. Whenever m = 0, the Clausius-
Duhem inequality becomes

d = P : Ḟ − ψ̇ − Ṫ η ≥ 0, (9)

which has to hold at each time t, and where d is the internal (i.e., mechanical) dissi-
pation rate.

Relying on the aforementioned expression, we derive constitutive restrictions on ma-
terial processes. In particular, we follow the seminal work of Coleman and Gurtin
[CG67] and introduce the internal state variables zj , with j = 1, 2, . . . , nz – where
nz is the number of internal state variables. Note that the internal state variables or,
internal variables for short, are introduced to account for the influence of (dissipative)
micromechanisms on the constitutive behavior of materials. At this point, we continue
by assuming the free energy density as a function of the internal variables and the state
variables, F and T – that is,

ψ = ψ̂ (T,F , z) , (10)

where the superposed caret in ψ̂ serves to distinguish the free energy function from
its values and z denotes the internal state vector z = (z1, z2, . . . , znz ). Notice that,
alternatively, one may consider, rather than F , its elastic part in Eq. (10), see e.g.
[Rub01, Ein12, Daf22]. However, here we disregard such a choice as we aim at devel-
oping a constitutive modeling approach that is independent of the requirement of the
decomposition of the deformation gradient, or its rate of change, into an elastic and a
plastic part.
It should also be mentioned that, for a given material, the free-energy function is not
unique for a given deformation gradient (for example, the free energy values ψ and
ψ+c, with c a constant, will give the same stress-strain response and dissipation rate).
From Equation (10), it follows that

ψ̇ = ∂F ψ̂ : Ḟ + ∂T ψ̂ Ṫ + ∂zψ̂ · ż, (11)

where ∂F ψ̂ = ∂ψ̂
∂F . We continue by substituting expression (11) into the Clausius-

Duhem inequality (9), and obtain the following expression for the internal dissipation
rate

(P − ∂F ψ̂) : Ḟ − (η + ∂T ψ̂) Ṫ − ∂zψ̂ (T,F , z) · ż − d = 0, ∀ Ṫ , Ḟ , ż (12)

with −∂zψ̂ (T,F , z) being the thermodynamic forces. It follows that, for satisfying
equality (12) for any Ṫ , Ḟ , ż, every admissible thermodynamic process must satisfy
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the following constitutive restrictions hereinafter, holding true at any time t,

P = ∂F ψ̂ (T,F , z) , (13)

η = −∂T ψ̂ (T,F , z) , (14)

d = −∂zψ̂ (T,F , z) · ż ≥ 0. (15)

A last ingredient allows the closure of the constitutive relationship: the evolution equa-
tion for the internal variables, based on (10) and (12-15) takes the form

ż = f (T,F , z) (16)

such that the dissipation inequality (15) holds true. The above equation can cover a
wide variety of constitutive models, including rate-dependent and rate-independent
plasticity theory through the introduction of Lagrange multipliers (see [EHN07]).
Note that, in some particular cases, e.g. when postulating the existence of a dissipation
potential, analytical expressions for f that satisfy the dissipation inequality by con-
struction, can be retrieved [MM94, EHN07]. Similarly, evolution equations could be
formulated as Onsagerian conductivity equations satisfying the dissipation inequality
(see [Gur96, Ván03, EL18], among others). Yet, the above structure does not origi-
nate directly from thermodynamic considerations and may not be general enough, as
it requires ad-hoc assumptions on the form of the internal variables rates and the ther-
modynamic forces. Thus, in the following, we opt for the more general expression
(16).

3.1.1 The quest for internal state variables

The aforementioned thermodynamics framework builds upon the knowledge of the
internal variables, z. And, whilst TANN can effectively leverage any a priori identified
set of internal variables (as we will see in the next paragraph), the key question is: how
can we identify internal state variables? Traditionally, to determine the number and
nature of internal variables, we must identify the internal mechanisms and phenomena
that influence the behavior of the particular material at hand. This approach, referred
to as the Art of modelling [Mau15], requires adaptation to each specific application
and material and is hardly scalable. To face this difficulty, there has been a recent
interest for devising approaches that automatically reveal – or discover – the internal
variables independent of the type of the material, see e.g. [VBE08, HBG+21, MS22].

Herein, we adopt the approach developed in [MS22], where internal variables are iden-
tified based on the knowledge of the internal degrees of freedom of the microstructure
of the material under investigation. To this end, we introduce a new quantity, referred
to as internal coordinates ξ. These internal coordinates describe the material behav-
ior at the microscopic scale7 and encompass variables such as displacement, velocity,
momentum fields, and internal force networks.

7Herein, we adopt the notion of microscopic scale as the finest scale of a material. Depending on the
degree of fidelity one desires to achieve, microscopic may refer, for instance, to the scale of the grains
composing a granular material or the atoms composing each grain.
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According to this formalism, the identification of internal variables passes from learn-
ing low-rank representations of the internal coordinates by identifying an operator h,
such that

z ≡ h(ξ) and ψ = ψ̂ (T,F , z) . (17)

In parallel and without any loss of generality, a pseudoinverse operator g can also be
postulated, such that

ξ̃ = g (h (ξ)) = g (z) , (18)

where the superposed tilde serves to distinguish a low-rank approximation of the in-
ternal coordinates from the internal coordinates themselves. To rephrase, the adopted
framework implies that the determination of the internal variables boils down to iden-
tifying the operator h – and, additionally, the operator g – from the knowledge of
the microstructural internal degrees of freedom of a material and without any a priori
constitutive choice8.

3.2 Methodology
The thermodynamic framework presented above can be employed in the architec-
ture of neural networks to learn physical and generalizable constitutive models. Such
neural networks are referred to as Thermodynamics-based Artificial Neural Networks
(TANN) [MS22]. TANN can be declined into two configurations, depending whether
the internal state variables are priori known [MSVMB21] or not [MS22]. Both differ-
ential discrete-time and continuous-time formulations can be employed [MS23].

Herein, we briefly recall the main building blocks of the network (for more, we refer
to [MS23]). TANN are composed of two building blocks: the free energy density net-
work and the evolution equation network. The free energy network, shown in Figure
5, is responsible of the prediction of the material stress, from the fulfilment (inductive
bias) of the thermodynamics restrictions (13-15). It consists of one network trained to
predict the value of the free energy density – that is, ψ = ψ̂θ (T,F , z), parametrized
by the neural networks parameters θ. Material stress, entropy, and internal dissipa-
tion rate are computed, using the constitutive restrictions (13-15), by relying on the
automatic differentiation of the operator ψ̂θ with respect to its inputs. The free energy

inp
ut

s

Figure 5: Thermodynamics block. All quantities refer at time t.

8It is worth noticing that we only consider a finite number of internal variables. Whilst this is the case for
all constitutive models developed so far, one may question whether the state space of a real, non-idealized,
material can be proven to be finite or not.
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network is trained by minimizing a loss composed of three contributions, and namely

Lenergy ≡ Lψ + L∇ψ + λregLreg, (19)

where λreg is a weighting parameter. The three terms ensure, respectively, that (i)
the neural network can predict the free energy density, (ii) the gradients of the latter
coincide with the material stresses, entropy density, and intrinsic dissipation rate, and
(iii) the fulfilment (in the form of a learning bias) of the dissipation inequality, namely

Lψ ≡
∥∥∥ψ − ψ̂θ (T,F , z)

∥∥∥ ,

L∇ψ ≡
∥∥∥P − ∂F ψ̂θ (T,F , z)

∥∥∥+
∥∥∥η + ∂T ψ̂θ (T,F , z)

∥∥∥+
∥∥∥d+ ∂zψ̂θ (T,F , z) · ż

∥∥∥ ,

Lreg ≡
∥∥∥
[
∂zψ̂θ (T,F , z) · ż

]∥∥∥ ,
(20)

with ∥ · ∥ being an error metric based on an arbitrary norm (cf. Chapter 2), averaged
over all data points, and [ · ] being the Macaulay brackets. Note that the loss associated
with the free energy density, Lψ , is not a necessary condition for the fulfilment of the
laws of thermodynamics and the accurate prediction of the material response. The
same holds true for the loss associated with the dissipation rate, which can be omitted
in those cases where there is no information related to the values of the dissipation
(cf. paragraph 3.3). Indeed, it can be easily proved that, in absence of the aforemen-
tioned loss terms, the free energy density network, trained only through its gradients,
will still respect the restrictions (13-15), because they are hardwired in the network
architecture.

The evolution equation network, shown in Figure 6, is responsible for learning the evo-
lution equations of the internal variables by means of a neural network fθ (T,F , z).
The training is performed by minimizing the error between the outputs and the rates
of change of the internal variables,

Lż = ∥ż − fθ (T,F , z)∥ . (21)

The above evolution equation can be identified either relying on the aforementioned
(time-continuous) formulation or, rather, by relying on a discrete-time, incremental
one.

inp
ut

s

Figure 6: Evolution law block for a priori determined internal variables. All quantities
refer at time t.
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3.2.1 Data-driven identification of internal variables

To the aforementioned building blocks, a third one adds whenever no constitutive
assumptions are made on the nature of the internal variables. At the heart of the iden-
tification of the internal variables and their evolution equations lies the search for an
appropriate form of the functions g and h9. Here, we identify the latter as the neural
networks of a standard autoencoder10, being the operator hθ(ξ) the encoder and the
operator gθ(z) the decoder.
While autoencoders allow the reconstruction of the internal coordinates and their rates,
a full reconstruction may not be needed to characterize the material response (see para-
graph 3.3). Alternatively, one may prefer other dimensionality reduction techniques,
e.g. principal component analysis, among others [Gér19, PMSJ22]. The proposed ap-
proach is general and independent on the particular choice made to identify the latent
representations of the internal coordinates.

Figure 7 shows the architecture for the data-driven identification of the internal vari-
ables and evolution equations. The architecture is composed of an autoencoder, the
free energy density network, and the evolution equation network. The identification
of the internal variables is driven by the minimization of the reconstruction loss,

Lrecon = ∥ξ − gθ (hθ (ξ))∥ , (22)

which ensures that the autoencoder can reconstruct the internal coordinates from the
latent representations. Note that, at the end of the training, these latent representations,
hθ (ξ), will coincide with the internal variables, i.e., z ≡ hθ (ξ). The identification of
the evolution equations follows depending on whether a discrete- or continuous-time
formulation is adopted, see [MS23].

It is worth noticing that, the training of the networks composing TANN can also be
performed individually. In this case, the autoencoder and the free energy density net-
work can be first trained together, by minimization of the weighted sum of the losses
Lrecon,Lψ,L∇ψ , and Lreg, then, the evolution equation network is trained by mini-
mization of the loss Lż .

3.2.2 Inference

After having trained TANN, they can be used at inference as classical constitutive
models that can further be deployed in displacement-based formulations, where load-
ing paths are expressed in terms of strain and temperature loads, i.e.

P (t) = TANNθ

(
T (t),F (t), z(t)

)
∀ t, (23)

9We implicitly assume the existence of such functions, but this might not be always the case (see differ-
ential inclusions.

10In their simplest form, autoencoders are unsupervised learning algorithms that map inputs to latent
representations of minimum dimensionality and then back to themselves. Given an input ξ ∈ Rn, we want
to learn a latent representation z ∈ Rl – where l ≪ n – which is mapped back into ξ̃ ∈ Rn by minimizing
∥ξ − ξ̃∥. This parametrization is implemented by two functions: an encoder that maps ξ into Rl and a
decoder that performs the opposite transformation.
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Figure 7: Evolution TANN for the data-driven identification of internal variables and
governing equations. All quantities refer at time t. The internal variables are identi-
fied as the latent representations of the encoder, i.e., z ≡ hθ (ξ). The internal vari-
ables rate can be computed either in terms of finite-difference or by means of the
automatic differentiation of the encoder with respect to the internal coordinates, i.e.
ż = ∂ξhθ(ξ) · ξ̇.

where the time evolution of the internal variables is computed by solving the following
initial value problem

ż(t) = fθ
(
T (t),F (t), z(t)

)
, z(t0) = z0. (24)

The latter equation can be solved using the artillery of well-known and studied numer-
ical integration methods. Additionally, an alternative path consists of directly learning
the integral form of the evolution equations [ME23].

It is also worth noticing that, in the case where one opts for a stress-based formulation,
the proposed approach and formalism of TANN can still be used, but selecting the
Gibbs free energy density instead of the Helmholtz free energy density.

For the case of a priori selected internal variables, only the evolution equation and
free energy networks are needed. Instead, in the case where the internal variables are
discovered, these are conclusively identified as the latent representations of the en-
coder, which is then removed completely from the architecture. However, the decoder
may be kept to map z back to the internal coordinates, i.e. ξ̃(t) = gθ (z(t)), if the
particular application at hands requires it.

In summary, TANN enable robust predictions of material responses, even for unseen
data and in the presence of noise, thanks to the hardwiring of thermodynamic princi-
ples. Extensive studies on the benefits of a thermodynamics-based approach against
a purely data-driven one can be found in [MSVMB21]. For the wide applicability
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of the framework, we refer to [MS23] where TANN are demonstrated to accurately
model a broad spectrum of complex material behaviors, from plasticity to damage and
viscosity (and combination of them).

3.3 Digital twins of granular materials: a pedagogic example
Let us investigate, in the form of an example, how the framework of thermodynamics-
based neural networks can be used to build high-fidelity thermodynamics-based digital
twins of a granular system. To this end, we rely on high-fidelity replicas of the latter
(i.e., a virtual twin) to generate virtual experiments that will be used in the learning
process.

3.3.1 Virtual twin

The reference granular material is modeled by infinitely rigid, spherical discrete parti-
cles, relying on the Discrete Element Method (DEM). The particles interact with each
others through inter-particle constitutive laws of friction and their motion is governed
by Newton second law of motion. The numerical analyses are conducted using the
open-source platform YADE-Open DEM [KD08, SAC+21] where the equations of
motion are integrated in time explicitly, using a central finite difference approxima-
tion algorithm.

Herein, we consider a purely frictional (cohesionless) granular medium, where the
grains interact with each other through normal and tangential forces. The grains
have a mean diameter d50 = 200 µm, drawn from a uniform distribution d50 U(1 −
0.0707, 1 + 0.0707), and are composed of an isotropic elastic material with density
ρ = 1800 kg/m3, Young modulus E = 300 MPa, and poisson ratio ν = 0.3. The
grains interact through Coulomb friction interfaces, with friction angle φ = 30◦.

The granular packing is first subjected to consolidation to match prescribed stress
conditions and then undergoes monotonous and cyclic drained triaxial compression.
Accordingly, we first generate a periodic specimen by randomly depositing spherical
particles. At the beginning, the material is prescribed with a frictional angle equal
to 0◦ in order to obtain an ultimate dense packing. We proceed with an isotropic
compaction of the packing to achieve a dense state and a consolidation to reach the
desired homogeneous volumetric stress level, p = 100 kPa, and zero deviatoric stress,
q = 0 kPa. The former is defined as p = 1

3σii, while the latter as the invariant of the
deviatoric stress tensor, σ′

ij = σij − p, namely q =
√
2σ′

ijσ
′
ij – with i, j = 1, 2, 3.

The final material properties are then assigned to the particles, along with their existing
interactions. At this point, the packing is subjected to isotropic extension to generate
states at different confining pressures, i.e., p ∈ (20, 40, 60, 80, 100) kPa.

Virtual experiments Using the consolidated granular packing obtained following
the aforementioned protocol, we perform virtual experimental tests to generate data
necessary for training, validation, and testing of TANN, and namely:
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• five monotonous drained triaxial compression tests with initial confining pres-
sures p ∈ (20, 40, 60, 80, 100) kPa up to a total axial deformation approximately
equal to 20%, with constant strain rate equal to 125 s-1;

• 10 cyclic drained triaxial compression tests with initial confining pressure equal
to 100 kPa, where the strain rates are assumed piecewise constant, in time, equal
to ±125 s-1 and of random direction.

To simulate these conditions, we implement the model by setting ε̇11 and determining,
through a servo-controller, ε̇v = ε̇ii at each timestep to satisfy ṗ = q̇/3, see Figure 8.
The inertia number I = γ̇d50

√
ρ/pc, with γ̇ the shearing rate, is approximatively

equal to 10−5 in all tests. Accordingly, the material is in a quasi-static regime, with
negligible strain-rate effects [MiD04, RD11].

Stochastic representation Granular systems are characterized by inherent spatial
heterogeneity of the material properties and of the microstructure topology. As a re-
sult, the determination of the size of a representative volume element is not trivial due
to the subsequent topological randomness, see [Ngu21, SAS04].
An alternative way consists of resorting to statistical ensemble approaches that lever-
age stochastic elementary volumes [OS06], containing a sufficient number of particles
to be representative and having characteristic size exceeding that of individual grains.
Following this framework, analyses based on the stochastic interpretation of multiple
small, periodic stochastic elementary volumes, of characteristic size l, lead, after av-
eraging, to the identification of the representative volume element, with characteristic
size L, see Figure 8 and [PSS23]. To determine the number of stochastic elementary
volumes necessary for an adequate description of the material response, Monte-Carlo
analyses must be performed, cf. [PSS23].

L

stochastic
elementary volumes

representative
elementary volume

l

22 = 033 = 0

n = 1

n = N

Figure 8: (re-adapted from [PSS23]) The material behavior of a granular system in
terms of the representative elementary volume of size L, approximated by a stochastic
ensemble of a series of N stochastic elementary volumes of size l, at the level of the
microstructure.
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Herein, we shall limit ourselves to only four different volumes, with size l ≈ 8d50,
composed of 210 particles – the number of particles is kept at minimum in order to
generate data in a short amount of time. The number of stochastic elementary volumes
is obviously not enough for having realist representations of the heterogeneous nature
of granular systems (as Monte-Carlo analyses would reveal). Yet, the statistical aver-
age of the four responses of the DEM models leads to a smooth material behavior, see
Figure 9, not dominated by local stick-slip motion [PSS23] and representative enough
of the response of a granular system within the limits of this pedagogic example.

d (µm)

stochastic elementary volumes(a)

(b)

(c)

200
160

100
240

300

Figure 9: Monotonous and cyclic drained triaxial compression response (a), (b) of
each individual stochastic elementary volume and averaged, where εs is the invariant
of the deviatoric strain tensor, ε′ij = εij − εv

3 , namely εs =
√

1
2ε

′
ijε

′
ij . (c) Spatial

distribution of the grains diameter in each stochastic volume (d50 = 0.2 mm).

3.3.2 Digital twin

Relying on the aforementioned generated virtual experiments, we proceed with the
training of a digital twin based on TANN, using a discrete-time formulation (cf.
[MS22]). In particular, we select as test set one monotonous (at initial confining pres-
sure p = 80 kPa) and one cyclic path, from those previously generated. The remaining
data are shuffled and split into training and validation set.

The internal coordinates are selected to be the three-dimensional displacement fields
of all grains composing the system (averaged over the stochastic elementary volumes).
The free energy density network consists of one hidden layer with GELU activations.
The evolution equation network has three hidden layers with GELU activations. While
the encoder and decoder networks are composed of two hidden layers and RELU ac-
tivations.
The learning process is split in two phases. First, the energy network and the autoen-
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coder are trained by minimizing the reconstruction error (22), the error on the stress
predictions, i.e., ∥σ − ∂εψ̂θ (ε,h(ξ))∥, and the dissipation inequality, rather than the
total loss function (19). Such a choice is made to mimic real case scenarios where
the energy and dissipation rate values might not be readily available. Second, after
having identified the internal variables, according to Eq. (17), we proceed by training
the evolution equation network.

It is worth mentioning that the number of internal variables necessary for an accurate
reconstruction of the internal coordinates – i.e., the microscopic displacement fields
– and the description of the evolution of the material stresses is not a priori known.
To this end, we set the number of hidden dimensions (output of the encoder) equal to
26 and use an activity regularization based on the ℓ1 norm to have an accurate low-
rank reconstruction ξ̃ with the smallest number of hidden variables. By doing so, we
find that the autoencoder can accurately reconstruct the internal coordinate fields with
only seven (non-zero) hidden variables – that is, compressing the information of the
three-dimensional displacement fields of 210 particles by a factor of approximately
440 (3210/7).
Despite such compression, we should note that not all the so-determined hidden vari-
ables may be needed for characterizing the material response. Thus, we introduce, in
parallel, a penalty based on the ℓ1 norm for the weights of input layer of the free energy
network (cf. Chapter 2). This allows to promote parsimony and identify only those
(internal) variables that are effectively needed for predicting the material response. In
doing so, we find that only four internal variables are necessary for the stress paths
probed in this example.

3.3.3 Results

We show in Figure 10 the evolution of the volume average behavior of the reference
granular material and the predictions, at inference, of TANN, for both the monotonous
and the cyclic unseen path. The digital twin is found to accurately describe the com-
plex material behavior, correctly accounting for the underlying inelastic phenomena
and yielding an accurate representation of the dissipative nature of the system, sub-
jected to multiple loading and unloading.

Particularly interesting is to observe the evolution of the discovered internal variables,
shown in Figure 11, for the same monotonous and cyclic test paths. There exist two
essentially different behaviors. The first two internal variables are mainly responsi-
ble for the description of the irreversible phenomena taking place before the stress
peak, see Figure 11(b,e). This is particularly evident for the monotonous path (b),
where the variables rapidly evolve until they reach an equilibrium state (post-peak).
A similar behavior is also found for the cyclic path (e), where the multiple unloading
and (re)loading repeatedly perturb the equilibrium state. The remaining two internal
variables, whose evolution is depicted in Figure 11(c,f), display a behavior essentially
different from that of the former as they continuously evolve, both in loading and
unloading, suggesting that they may represent a macroscopic measure of dissipation
mechanisms taking place at the frictional inter-particle contacts.
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Note that the physical nature of the discovered internal state variables can be examined
though feature extraction methods [LKS20].

Additionally, internal variables can be decoded to obtain the internal coordinates of
the microstructure – the displacement fields of the grains. To demonstrate the full ca-
pabilities of TANN, we show such reconstruction in Figure 12 for the monotonous test
set. The three-dimensional reconstruction of the granular packing in Figure 12(a) is
made by using the predicted particles displacements (and accounting for the diameter
distribution and initial grains position of one of the four stochastic elementary vol-
umes). Figure 12(b) additionally compares the reference and predicted time evolution
of the displacements of some of the grains. The framework allows to deliver accurate
descriptions of the material microstructure. Note, again, that the proposed approach
does not require to operate (on-the-fly) with the high-dimensional microscopic fields,
but only with the identified hidden variables.

(a) (c)

test
(d)(b)

monotonous DT

test

cyclic DT

test

test

Figure 10: Comparison of the predictions of TANN with respect to unseen, test re-
sponses obtained from the statistical average of four granular stochastic elementary
volumes: monotonous drained triaxial (DT, left) and cyclic (right). (a), (c) q − εs
response and (b), (d) p − q response. For the monotonous path, we show both the
training and validation sets (train), and test (test) set.

3.4 Speed-up multiscale simulations
We have seen so far how TANN can be deployed to construct reliable and accurate
digital twins of complex and intricate materials, thanks to the universal approximation
power provided by neural networks and the rigorous theoretical setting offered by
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(a)

(c)

(b)

(d)

(f)

(e)

monotonous DT cyclic DT

Figure 11: Evolution of the discovered internal variables for the test monotonous (left)
and cyclic (right) loading paths: (a,d) reference deviatoric stress path, and (b-c,e-f)
discovered internal state variables.

thermodynamics. In addition, the same framework can be used to speed-up, in a
reliable manner, fine-scale simulations, relying on a multiscale approach.

Multiscale approaches integrate a number of nested computational methods at various
scales, such as the Finite Element Method (FEM) and the Discrete Element Method
(DEM), to obtain iterative solutions to boundary value problems at the unit cell of
the microstructure (auxiliary problem) and, through upscaling, retrieve the effective
macroscopic response [Fey03, NCDD11, NCCD14].

To fix the ideas, let us consider a large scale, macroscopic structure, whose microstruc-
ture is made of spatially (quasi-)periodic distributions of a representative unit cell V .
We leverage scale separation, i.e., we assume the existence of two independent scales
x and y = x/ϵ, with ϵ≪ 1 being the dimension of the unit cell. The first scale, x, is
associated to the macroscale, while y refers to the scale of the material microstructure.
Under such considerations, we can resort to the rigorous mathematical framework of
asymptotic homogenization [BP12] for scales bridging and, in particular, by leverag-
ing its extension to nonlinear problems by means of an incremental formulation, see
[Mie02].
Note that whenever the assumption of scale separation does not hold, for in-
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Figure 12: Internal coordinates (particles displacements) from the DEM simulations
and as reconstructed from the set of discovered internal variables. (a) Reconstruction
for one of the stochastic volume of the granular packing from the knowledge of the
displacement fields, radii distribution, and initial position. (b) Comparison of the
time evolution of (some of) the grains displacements and the predictions obtained by
integrating in time the evolution equation, fθ( · ), and decoding the internal variables,
gθ( · ).

stance, in presence of strain localization phenomena, homogenization cannot be used.
However, a remedy consists of resorting to higher order continuum theories, see
[SSV10, GSS+17, Var18] among others.

According to asymptotic homogenization, TANN should be trained to identify the
volume average behavior of the unit cell – that is, predict the solution of the auxiliary
problem. At this point, we should note that the previous example already considers
training data sets related to the unit cell (of a granular material) with periodic boundary
conditions. Thus the network can be directly used at inference to perform multiscale
analyses. To do so, we rely on the FEM×TANN approach, as developed in [MS22]. In
FEM×TANN, we perform Finite Element analyses by a straightforward replacement
of classical constitutive models, at the Gauss points, with the digital twin provided by
the trained network (cf. asymptotic homogenization). The tangent matrix is computed,
at each Gauss integration point, by virtue of the automatic differentiation of TANN,
cf. Chapter 7. For a detailed discussion on the computational accelerations available
with the FEM×TANN approach, we refer to [MS22].
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3.4.1 FEM×TANN: an example

To fix the ideas, let us consider the problem of a panel, fixed on one end, and subjected,
quasi-statically, to a shearing load at the other end. Figure 13(a) depicts the initial
geometry and boundary conditions. Plane strain conditions are adopted.
Initially, a force equal to 12 N/mm (per unit cell in width) is applied linearly in time
until tload = 0.9 ms. The loading time is selected in order to have strain rates of
the order of 1 s−1, corresponding to those developed due to impact loading. The
force is then maintained over a prescribed time interval, up to tsteady, and, finally,
the structure is unloaded gradually within a time interval equal to that of the loading
phase, see Figure 13(e). To capture relaxation effects due to the viscous behavior of
the microstructure, the unloaded phase is maintained for an additional time interval,
up to trel.

Here, the microstructure is not that of a granular material, but rather the one of an
elasto-plastic lattice material whose microstructure is made of bars with an elasto-
viscoplastic behavior and isotropic hardening (with Perzyna-type viscosity), see Fig-
ure 13(b). The material has the following properties K = 167 GPa, G = 77 GPa,
c = 100 MPa, H = 10 MPa and µ = 25 s, where K and G are the bulk and the
shear modulus, c is the material strength in simple shear, H the hardening modulus,
and µ the viscosity parameter. The microstructural bars have a constant circular cross-
section equal to 1 mm2.
Following the procedure detailed in [MS23], the digital twin of the lattice cell is built
using TANN, trained over randomly generated strain-driven paths applied in the form
of periodic boundary conditions. In total, 33 internal variables are identified from the
microscopic total and inelastic deformation fields.

As it follows, we investigate and compare the solutions obtained from the (exact)
micromechanical model with those from the homogenized one, relying on TANN. For
the homogenized case, we consider a FE model consisting of 80 linear tetrahedral
elements in length and 8 in height (with crossed diagonals) – the number of elements
was determined by mesh convergence analyses.

First, we restrict the analysis exclusively to the loading phase and verify that the mi-
cromechanical solution converges to the homogenized one, for ϵ tending to zero, as
expected from asymptotic homogenization [Mie02]. To this end, we compare the re-
sults of the micromechanical model, with different sizes of the unit-cell ϵ, with those
obtained with the FEM×TANN approach. Figure 14(a,b) depicts the total energy and
dissipation rate in function of ϵ. For 1/ϵ ≥ 6, the maximum relative error is as low
as 1.7% (in energy) and 2.3% (in dissipation). The convergence of the response of the
homogenized model to the response of the micromechanical simulations is achieved
at ϵ = 0.1 (with an error approximately equal to 0.5%).

Then, we continue by considering the full time scale of the analysis and select the
microscopic model with ϵ = 0.1 as the reference solution. Figure 13(c,d) depicts the
deformed shapes of the micromechanical and homogenized models (magnified by a
factor of 10), at the end of the steady phase. Contours of the free energy density in the
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Figure 13: Multiscale problem: (a) homogenized and micromechanical model of a
panel, with length 10 mm and height 2 mm, under plan strain conditions, subjected to
a shearing load and (b) force-displacement response of the micromechanical (ϵ = 0.1)
and the FEM×TANN model.

homogenized model identify the areas where high stresses develop.
As far as it concerns the kinematics of the problem, we compare, in Figure 14(c),
the force-displacement response of the homogenized model with the micromechani-
cal reference solution. For the former, we consider the (zeroth-order) approximation
of the displacements, while for the latter, the microscopic displacements at the nodes
are considered as reference. A good agreement between the two models is observed.
During the steady phase, the material displays viscous effects that alter the displace-
ments and deformation fields. This is captured by the homogenized model with a
relative error in the displacement of 0.25%. In addition, the model correctly predicts
the residual (non-zero) vertical displacement, cf. Figure 14(c).

In parallel, TANN enable the characterization of microscopic fields, specifically the in-
ternal coordinates ξ, within the homogenized model, known as localization in asymp-
totic homogenization (not to be confused with strain localization). Unlike the classical
procedure [PdCOTD09], the proposed approach allows straightforward reconstruction
of microscopic fields by decoding the internal variables.
Figure 15 compares the microscopic deformations at the intrados of the panel in the
micromechanical model (ϵ = 0.1) with those obtained from the decoding of the in-
ternal variables. An excellent agreement is observed. The FEM×TANN approach
accurately captures deformation redistribution during the steady phase caused by vis-
cosity. Additionally, it provides not only overall agreement with the micromechanical
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Figure 14: Total energy (a) and dissipation rate (b) of the micromechanical (ref) and
homogenized (FEM×TANN) models (t = tload), at varying of the unit cell size, ϵ.

solution for microscopic inelastic deformations but also precise prediction of the plas-
tic region location.
Furthermore, the proposed method successfully captures complex micromechanical
mechanisms, such as the phenomenon of trapped, locked elastic energy. At the end of
the unloading phase, the inelastic deformation exceeds the total microscopic deforma-
tion (cf. Figure 15). Elastic deformations remain trapped within the plastified region
of the structure, from the clamped end to the end of the plastic region (x ∈ [−5, 1.625]
mm), persisting even without external force. Conversely, for x > 1.625 mm, total and
inelastic deformations are zero, and elastic deformations vanish during unloading.

It is worth noticing that predictions near the fixed end (x = −5 mm) of the panel ex-
hibit minor differences compared to the micromechanical solution due to high strain
gradients with wavelengths comparable to the unit cell size. Remedies for these
boundary layer effects exist (see e.g. [BP12]). Nonetheless, despite the limitations
of first-order asymptotic homogenization theory, the FEM×TANN approach yields
excellent results compared to the micromechanical problem and holds potential for
higher-order homogenization schemes.

4 Conclusions

Deep learning and, in general, data-intensive (or data-centric) approaches have the
potential of revolutionizing the way we perceive models in physics and in mechanics.
However, a purely data-centric vision is intrinsically hindered by poor generalization
and interpretability of the consequent discovered models.
Particularly inspiring, in recent years, has been the possibility of hardwiring (in soft
and hard ways) first principles into deep learning algorithms and learn interpretable,
robust, and high-fidelity models that respect the inherent physics [KKL+21, HBG+21,
MSVMB21, KFM+22, CC22].

In this chapter, we presented two emblematic methodologies, namely Physics-
Informed Neural Networks (PINN) and Thermodynamics-based Artificial Neural Net-
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Figure 15: Microscopic deformations (total and inelastic) at the intrados of the panel
at the end of the loading, steady, and unloading plus relaxation phase. In the mi-
cromechanical model (ϵ = 0.1), the microscopic deformations are computed from the
deformations of the bars with axis parallel to the intrados. In the homogenized model,
the microscopic deformations are obtained from the decoding of the identified internal
variables at the Gauss points (no interpolation).

works (TANN). The former enable accounting for physical laws in the solution and
discovery of partial different equations, from data. Physical knowledge is introduced
though ad-hoc learning biases that consists in the minimization of a loss function re-
lated to the residual of the underlying governing equations. The latter consist, instead,
of hardwiring the first and second laws of thermodynamics (i.e., energy and entropy
balance) within the architecture of neural networks, via inductive and learning biases,
to discover constitutive equations of complex materials, from data.

Relying on an hands-on example, we draw an interesting analogy between the inte-
gration of physics into deep learning algorithms and regularization techniques (based
on ℓ1 and ℓ2 norms) promoting parsimony and model simplicity (see paragraph 2.2).
Then, we demonstrated the possibility of identifying high-fidelity and inter-
pretable digital replicas of complex granular materials relying on the framework of
thermodynamics-based neural networks (paragraph 3.3). The latter not only capture
the average material behavior but also allow to uncover the (hidden) internal state vari-
ables and efficiently track the microstructure evolution at reduced computational cost.
Finally, the same approach can be deployed to accelerate computationally intensive
multiscale simulations, herein exemplified by means of an application to lattice struc-
tures (paragraph 3.4).
The aforementioned examples and applications demonstrate the underlying idea of
TANN in learning the constitutive behavior of intricate materials and achieving rapid
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predictions at inference, thus allowing for massive accelerations of multiscale simu-
lations. For instance, with reference to the example involving granular materials, it
was observed that the computational time required by TANN to forecast the material
response under a cyclic drained triaxial compression test was roughly three orders of
magnitude lower compared to the extensive fine-scale simulations carried out using
the discrete element method, specifically 1200/0.8 s/s.

In conclusion, the combination of physical principles with data-centric models offers
a pathway to tame and describe, with high-accuracy, the complex response of intri-
cate systems. Yet, some challenges remain to be addressed. Indeed, in mechanics,
we are most of the times faced, rather than with vast amounts of data (big data), with
very limited volumes of measurements (small data), characterized by an inherent het-
erogeneity and noise. Particular interesting is the development of physics-based deep
learning algorithms that can address such a problem and deliver robust predictive mod-
els able to operate with reduced/partial information.
In addition, machine learning approaches can be employed to automatically determine
meaningful variables of the system at hands and discover novel formulations, as we
have seen in the example involving granular media (cf. paragraph 3.3). The same ap-
proach, driving the discovery of hidden latent (internal) variables, could be extended
to address open challenges related to the choice of the descriptors of the state space of
complex materials or any other physical system.
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Reinforcement learning (RL) is a subfield of Machine Learning (ML) that focuses on
the development of software agents that are capable of making optimal decisions in
dynamic and uncertain environments. It is a powerful learning paradigm that enables
machines to learn from their own interactions with the environment, rather than re-
lying on explicit instructions or labeled datasets. In RL, an agent learns through a
trial-and-error process, where it takes actions in an environment, receives feedback in
the form of rewards or penalties, and adjusts its behaviour to maximize the cumulative
reward over time. In this chapter, we present the basic concepts of RL and introduce
model-based and model-free methods for deterministic and stochastic cases. Then, we
present two applications of Geomechanics: the spring-slider and a geothermal reser-
voir. On both systems, an RL algorithm is used to design a controller able to prevent
seismic events.

1 Introduction

In this chapter, we introduce Reinforcement Learning (RL), which is a family of Ma-
chine Learning (ML) algorithms that allow the learner (i.e. software agent) to de-
termine an optimal behaviour inside an environment1 that will provide the maximum
cumulative reward2 (see Figure 1).

RL is neither a Supervised Learning nor an Unsupervised Learning technique since
the agent does not require the existence of a labelled dataset to train on, nor it extracts
underlying patterns from already available data (see Figure 2). Instead, the agent

1The environment is the set of all states, actions and rewards the agent can take.
2A reward is feedback signal from the environment (real value number) reflecting how well the agent is

performing.
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Figure 1: Schematic representation of the key components of Reinforcement learn-
ing. The agent interacts with the environment through actions and receives feedback
through observations and rewards.

learns by performing actions3 inside the environment and getting a reward. The ob-
jective of the RL algorithms is to measure the value of the actions taken by the agent
and formulate a policy (i.e. an algorithm that chooses an action from an available set
of actions at each state) so that it maximises the cumulative reward.

Figure 2: Schematic diagram between the Supervised learning, Unsupervised learning
and Reinforcement learning techniques of Machine Learning. Deep learning with the
help of neural networks can be applied to all these techniques.

Initial advances in RL took place in the framework of Dynamic Programming (DP)
through the use of the Bellman equations and the Bellman optimality conditions [Bel54].
These methods allow us to construct powerful algorithms that given enough informa-
tion about the environment, are capable of planning a suitable winning strategy (i.e.
a policy) that will maximize the reward they receive [Sut99]. In essence, the prob-
lem or RL can be cast into a form of finding the optimal policy function, π(st)4 that
maximizes the expected accumulated reward.

This type of problem can be solved iteratively5 by applying the Bellman optimality
conditions and the fundamental algorithms of Value Iteration, Policy Iteration and

3Input from an agent to the environment.
4Equivalently a stochastic policy, π(αt|st), indicating the probability of the agent performing action

αt given the state st can be used.
5Such a method is called fixed point iteration.
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Generalized Policy Iteration [Sut99, BT95].

The challenge in these fundamental methods of DP (value iteration and policy itera-
tion) is their scalability to real-world applications. Although game examples such as
chess or backgammon have a relatively small number of discrete states the agent can
find itself in and possible actions it can perform, real world examples are much more
complex in the sense that their state and action space can be continuous, rendering the
classical techniques intractable.

A solution to this problem comes from the Function Approximation branch of ML.
These are techniques of supervised learning (unsupervised learning can also be used),
which estimate the state value and action value functions using vectors of interpolation
weights.

In recent years, the significant increase in computational power together with the ad-
vent of Deep Artificial Neural Networks (DANNs) and newer programming environ-
ments (see [C+15, ABC+16, PGM+19], among others), which allow for the con-
ceptually simpler implementation of such complicated nonlinear interpolation func-
tions, permitted the combination of DANNs with the classical DP techniques (see
[Gér22, VSS+19, Lap18]). This combination of modern computational power and
past wisdom allowed researchers to significantly advance in the field of RL by apply-
ing their advanced algorithm architectures to previously intractable problems. These
methods have been applied successfully to applications that involve:

• Control applications: These include a signal the agent observes from the envi-
ronment and/or a reward that informs the agent that an action needs to be taken.
This simple framework applies both to simple applications such as thermostat
or pressure switches controllers [Sut90, SBW92] and to fancier controllers, like
controlling the movement of robotic components [SSZ+22], or even the move-
ment of plasma in Tockamak fusion reactors! [DFB+22].

• Game applications: These include software agents that learn to play opti-
mally in games involving high dimensional state and action spaces such as Go
[SHS+17, Pic17] and Starcraft [VEB+17].

• Generative AI: These applications of RL include a software agent that learns
to create human interpretable content. This allows for the creation of AI art
[Euc23], customer service and all-around helper Chatbots, like ChatGPT [Ope23,
GBGM23].

Considering the use of RL in geomechanics, we focus on a recent control appli-
cation from fault mechanics based on earthquake control (see [Ste19, PS21, ST22,
GOTSP23, GOOSP23, GOSP22], among others). Roughly speaking, earthquakes are
dynamic instabilities caused by frictional weakening. Such instability leads to fast-
slip (earthquake-like behaviour) creating waves that travel through the earth’s crust
and become catastrophic events. The cited works study the influence of injected fluid
to avoid such behaviour, by designing strategies based on control theory. Here we
solve this problem using RL.
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The chapter is structured as follows. We first introduce the fundamental components
of RL and their relations to the Bellman equations presenting an example on pol-
icy evaluation: a miner trapped inside a trembling mine finding his way to the gold
(reward). Next, we present the fundamental model-based methods of DP: policy eval-
uation, state value iteration and policy iteration algorithms. For the stochastic frame,
we show the most known model-free methods, which are useful for more practical
applications when the states and actions are large and the probability distribution is
unknown. Then we extend the applicability of the above methods with the use of func-
tion approximation tools, introducing policy approximation methods and discussing
the application of policy gradient for finding an optimal policy. At last, we comment
on the actor-critic popular approach in RL, which is used for problems with continu-
ous state and action spaces, which is the case for the two geomechanics applications
that we present. Inspired by [PS21], two earthquake control applications using a Deep
Neural Network Actor-Critic (DNNAC) architecture are shown. The first application
is the so-called spring-slider system, whereas the second is a geothermal reservoir. In
both cases, the RL algorithm should have to adequate the gains of a linear controller,
adjusting the fluid pressure inside the earth’s crust. This will lead to an aseismic re-
sponse of both systems, i.e., the prevention of seismic events.

2 Reinforcement Learning: The basics

2.1 Basic Definitions: Deterministic case
Consider the game of a miner of Left Figure 3. The miner (shown as a black dot and
known as the agent) moves inside the mine (known as the environment) to find gold
(the reward) while avoiding the cliff (known as penalties). Each movement constitutes
a different action. For this example, the miner can perform four actions: go right (→),
go up (↑), go left (←) and go down (↓). Therefore, the movements will be discrete.
The environment is constituted of 16 cells defined as C1, C2, ..., C16 and known as
states. The state space of the environment is denoted as S = {C1,C2,...,C16}.
The game will finish when the miner reaches either the cliff (located at cell C1) or the
gold (located at cell C16). Due to their special nature, these two cells will be known
as terminal states. When the miner reaches a terminal state, it completes an episode.

We define as trajectory the set of states, st, actions, αt, and rewards, rt, taken on every
time step, t, of an episode (see Right Figure 3). A trajectory is then denoted as

Tr = {s0, α0, r1, s1, α1, ..., sT−1, αT−1, rT }, (1)

for an episode of time t = 0 to t = T . Note how time is also a discrete variable.
Furthermore, the first state, s0, does not provide any reward and the final state, sT ,
and final action, αT , are not written because it is when the game finishes.

As in every game, we would like to receive the biggest reward in each episode. For
that purpose, we will define the total accumulated reward, Gt, at the time t as the sum
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Figure 3: Left: The mine (environment) and the miner (agent, black dot). The miner
can move in the surrounding cells known as states. In order to move, the miner can
perform four actions: go right (→), go up (↑), go left (←) and go down (↓). Two
terminal states are present, C16, with a positive reward of +100 and C1 with a negative
reward of -20. Right: A trajectory, T , followed by the agent. The miner started at cell
C6 and followed a path to reach the gold, receiving a reward after taking an action.
For this episode, the trajectory is defined as Tr = {s0 = C6, α0 =→, r1 = 0, s1 =
C7, α1 =↑, r2 = 0, s2 = C11, α2 =↑, r3 = 0, s3 = C15, α3 =→, r4 = 100}.

of all the rewards from the reward rt+1 until the reward of the terminal state, rT , i.e.

Gt =

T−1∑

k=0

rt+k+1, (2)

where rt+k+1 = rt+k+1(st+k, αt+k) is the intermediate reward between the two ad-
jacent states st+k and st+k+1 in the trajectory. We note that T − 1 is the state before
reaching the end of the game. Moreover we follow the convention that rewards later
than the final reward rT at the terminal time T are set to zero (i.e they are ignored).
Between two states the total accumulated reward can also be written as

Gt = rt+1 +
T−2∑

k=0

rt+k+2 (3)

where rt+1 = rt+1(st, αt) is the intermediate reward between the current state st and
the next state st+1 in the trajectory.

2.1.1 Policy evaluation

In order to move inside the mine, the miner will follow a set of rules specifying which
action to perform at each cell (state) of the mine. This mapping between states and
actions is called a policy. In this example, we will consider deterministic policies (e.g.,
if the miner is in state st = C2 do action αt =↑) and they are denoted as αt = π(st).
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Based on the policy of the miner we can expect that different states exhibit different
cumulative rewards, i.e., starting from an initial state, the miner might either reach the
gold (C16) or fall in the cliff (C1). Moreover, depending on the given policy, there
could be two problematic cases. In the first case, the miner might get stuck in a loop
between two states and in the second case, the miner may hit the boundaries of the
mine and stay there indefinitely as well (see Figure 4).

Figure 4: Problematic cases of the environment. Left: The agent falls in a loop be-
tween two states. Right: The policy forces the agent to hit the boundaries.

In order to handle these cases, we will force the episode to finish if the time reaches a
time limit Tmax. This will ensure that every episode will terminate and it won’t stay
in an infinite loop. Moreover, we penalize the agent with a negative reward −10 if it
chooses to hit the boundaries of the mine.

We can evaluate the expected accumulated reward Gt during a trajectory where the
miner follows a given policy π(st), starting from the state st. This will be known as
the value of the state:

Definition 1 [SB18] The value of the state, Vπ(st), is written as

Vπ(st) =

T−1∑

k=0

rt+k+1(st+k, π(st+k)), or

Vπ(st) = rt+1(st, π(st)) +
T−2∑

k=0

rt+k+2(st+k+1, π(st+k+1)). (4)

From the definition, we note that the actions taken at each subsequent state st+k are
prescribed by the policy π(st+k). The same is also true for the rest of the future
actions π(st+k+1) where they are only dependent on the future state, st+k+1, and not
on the past states. We will see in the general stochastic setting of DP, that this is a
fundamental assumption known as the Markov property.
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Based on the definition of the value of the state in (4), we can replace the previous
sum over the future rewards with the value of the future state Vπ(st+1) as

Vπ(st) = rt+1(st, π(st)) + Vπ(st+1). (5)

Such equation is known as the Bellman equation for the value function Vπ(st).

Let’s consider now three deterministic policies, (πA(st), πB(st), πC(st)), the miner
can follow in the environment (see Figure 5). Policy πA(st) could be considered as
bad because there have three states (C2, C6, C10) that lead to the cliff. Policy πB(st)
and policy πC(st) seem to be good because all of the states will lead to the gold. One
may think, which is the best of the three?

(a) Policy πA(st) (b) Policy πB(st)

(c) Policy πC(st)

Figure 5: Example of three different policies.

We will define a rule to check which policy is better depending on the value of the
state as follows:
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Definition 2 A policy π′(st) is better than policy π(st) if for every state, st, the value
of the state under policy π′ is larger or equal to the value of the state under policy π,
i.e., Vπ′(st) ≥ Vπ(st) for every st.

With this definition, we can compare our three policies in order to check which may
be the best. We only need to evaluate the value of each state for each policy,
(VπA(st), VπB(st), VπC(st)), applying sequentially equation (5) for each state st ∈ S .
The results can be found in Table 1 in the columns below γ = 1 (whose definition will
be clarified a few lines later).

γ = 1 γ = 0.9
VπA(s0) VπB(s0) VπC(s0) VπB(s0) VπC(s0)

C1 -20.0 -20.0 -20.0 -20.0 -20.0
C2 -20.0 +100.0 +100.0 +65.0 +65.0
C3 -10.0 +1000. +100.0 +72.0 +72.0
C4 -10.0 +100.0 +100.0 +81.0 +81.0
C5 0.0 +100.0 +100.0 +65.0 +65.0
C6 -20.0 +100.0 +100.0 +59.0 +72.0
C7 +100.0 +100.0 +100.0 +81.0 +81.0
C8 +100.0 +100.0 +100.0 +90.0 +90.0
C9 0.0 +100.0 +100.0 +72.0 +72.0

C10 -20.0 +100.0 +100.0 +81.0 +81.0
C11 +100.0 +100.0 +100.0 +90.0 +90.0
C12 +100.0 +100.0 +100.0 +100.0 +100.0
C13 -10.0 +100.0 +100.0 +81.0 +81.0
C14 -10.0 +100.0 +100.0 +90.0 +90.0
C15 -10.0 +100.0 +100.0 +100.0 +100.0
C16 +100.0 +100.0 +100.0 +100.0 +100.0

Table 1: Comparison between the values of the state value function Vπ(s) for deter-
ministic policies (πA(st), πB(st), πC(st)). Without the discount parameter (γ = 1),
we can see that policy A is the worst but we cannot decide which is better between
policies B and C. Including the discount parameter (γ = 0.9), we can finally say that
policy C is the best of the three because it has a larger accumulated reward value for
state (s0 =C6), while for the rest of the states the values remain the same.

We can confirm that the worst policy is πA(st) because it presents lower values for all
states. However, we cannot decide between policies πB(st), πC(st) because they have
the same values at every state. Therefore, we need to include something that unties
the result in this kind of situation. For this purpose, we will consider also the number
of moves the miner needed for getting the reward. To do this we will apply a discount
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rate, γ, to the cumulative reward of each state as

Vπ(st) =
T−1∑

k=0

γkrt+k+1(st+k, π(st+k)),

= rt+1(st, π(st)) + γ

T−2∑

k=0

γkrt+k+2(st+k+1, π(st+k+1)),

= rt+1(st, π(st)) + γV (st+1). (6)

You can see that if γ ∈ (0, 1), the value of the state at every time step will decrease,
penalizing then the number of moves done by the miner before getting the reward.
Calculating again the value of the state for policy B and C (see results in Table 1
under γ = 0.9), we can see that policy C is better because it has at least one value of
the state bigger than policy B at the state C6, while all the others are the same.

The question that we face now is:

How can I know if the policy πC(st) is the best policy that I could find?

In other words:

Can I find an optimal policy π⋆ for which the cumulative reward at the end of the
episode becomes maximum?

This question will be answered in the following sections.

2.1.2 Action Value Function

We will introduce another value function called the action value function, which indi-
cates the value6 of a specific action, αt, given that the miner is at state st.

Definition 3 The action value function, Qπ(st, αt), at a state, st, corresponds to the
immediate reward, rt+1(st, αt), that will be obtained performing one of the available
actions, αt, at such state, plus the expected value of the state according to a given
policy starting from the state st+1, i.e.,

Qπ(st, αt) = rt+1(st, αt) + γ
T−2∑

k=0

γkrt+k+2(sk+t+1, π(sk+t+1)),

= rt+1(st, αt) + γVπ(st+1). (7)

From the definition of the value of the state, Vπ(st), in (6) and the action value func-
tion, Qπ(st, αt), in (7), we can see that both expressions are the same at st+1 and
when αt = π(st+1), i.e., Vπ(st+1) = Qπ(st+1, π(st+1)). Therefore, we can get a
recursive expression of the action value function as

Qπ(st, αt) = rt+1(st, αt) + γQπ(st+1, π(st+1)). (8)

6also known as the quality
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In the case of our miner, from the Policy B of Figure 5, we could calculate the action
value for the state st = C6 at every possible action αt = { →, ↑,←, ↓} (see Figure
6). We took again γ = 0.9 so we still get the same values of Vπ(st) shown in Table 1.
The action value functions are then calculated as

QπB(C6,→) = rt+1(C6,→) + 0.9VπB(C7) = 0 + 0.9(81) = 72,

QπB(C6, ↑) = rt+1(C6, ↑) + 0.9VπB(C10) = 0 + 0.9(81) = 72,

QπB(C6,←) = rt+1(C6,←) + 0.9VπB(C5) = 0 + 0.9(65) = 59,

QπB(C6, ↓) = rt+1(C6, ↓) + 0.9VπB(C2) = 0 + 0.9(65) = 59. (9)

We can see that there are at least two actions (↑,→) that give more cumulative reward
than what the current policy says (we will obtain 59 if we take the action← of Policy
B). In other words, there is room for improvement! This is called Policy Improvement:

Definition 4 [SB18] Any policy π for which Vπ(st) ≤ Qπ(st, αt), ∀st ∈ S , is a
policy that we can improve on. That is we can choose action αt at state st, formulating
a new policy π′ in the process, for which Vπ(st) ≤ Vπ′(st).

Figure 6: Evaluation of the action value function starting at state st = C6 with
γ = 0.9. For every possible action in state C6 (αt = { →, ↑,←, ↓} ), we evalu-
ate QπB(C6, αt) as the immediate reward for performing this action and then moving
according to policy πB(st).

The task now is to find a method to choose the right action at every state, st, obtaining
the maximum accumulated reward at the end of every episode.

2.1.3 Bellman’s Optimality conditions

As we saw before, from all the possible actions, αt, that we can take in a state, st, there
is one special action that maximises the immediate reward. Bellman showed that if
we recursively take the best action at every state of the episode, then the expected
accumulated reward for each state becomes maximum [Bel54]. In other words, the
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policy that maximizes the accumulated reward at each state7 is the optimal policy,
π⋆(st), that we were looking for, i.e., Vπ⋆(st) =

∑T
k=0 rt+k+1(st=K , π

⋆(st=k)) =∑T
k=0 rt+k=1 maxαt+k

r(st+k, αt+k). This means that the value of the state and the
action value function will have the same value if we follow the optimal policy, i.e.,

Vπ⋆(st) = max
αt

Qπ⋆(st, αt), (10)

which, according to equation (7), leads to

Vπ⋆(st) = max
αt

rt+1(st, αt) + γVπ⋆(st+1). (11)

On the other hand, if we take the optimal policy in equation (7), it turns into

Qπ⋆(st, αt) = rt+1(st, αt) + γVπ⋆(st+1), (12)

which together with equation (10) reads as

Qπ⋆(st, αt) = rt+1(st, αt) + γmax
αt+1

Qπ⋆(st+1, αt+1). (13)

Equations (11) and (13) are known as Bellman’s Optimality conditions and they can
be used iteratively to find the optimal state and action value functions. Moreover, the
max operator on the right-hand side of the equations prevails over any policy π that is
used for the evaluation of Vπ⋆(st), Qπ⋆(st, αt). As a result, the optimal values of the
state and action, V ⋆(st), Q⋆(st, αt) are independent of the optimal policy! In othger
words, there can be many policies π⋆ that lead to the optimal values of the state and
action value functions (Vπ⋆(st), Qπ⋆(st, αt)), but these values are unique and equal
to (V ⋆(st), Q

⋆(st, αt)). We will present the basic algorithms for finding such optimal
state and action value functions in the following.

2.1.4 Maximizing the reward: Model-based Methods

Based on the evaluation of the optimal policy and the Bellman optimality conditions
we can discern two types of algorithms for maximizing the reward. These are the
Policy iteration algorithms and the Value iteration algorithms (see Figure 7)

Both methods work excellently in deterministic or stochastic cases where the number
of available states and actions is small. However, these methods require complete
knowledge of the states, actions and rewards of the environment to work. This is why
they are called model-based methods8. For our miner example, we need to know all
possible states inside the mine and their corresponding rewards. The agent (miner)
must plans its actions before they are taken.

We will now explain in more detail how both algorithms work.
7i.e. the value of the state Vπ(st)
8We note that the notion of model in RL differs from that of supervised or unsupervised learning in the

sense that the RL model is used to provide states and rewards to the agent and not to perform a regression
task or find a pattern in the data (i.e., in RL we train the agent, not the model). To describe the term model
used in (supervised and unsupervised learning) the term function approximator is used instead (see [SB18]
and Section 2.3).
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Figure 7: The basic learning algorithms for finding the unique optimal value and action
functions, V ⋆(st), Q⋆(st, αt), and one optimal policy, π⋆, (of many): Policy Iteration
(blue)) and Value iteration (green). The difference between the two lies in the update
strategy. Policy iteration calculates a better policy for all states and then evaluates the
value functions according to this policy. Value iteration updates only one action at a
time based on the Bellman optimality condition.

Policy Iteration (PI) method

In this algorithm, we achieve the optimal action values and the respective optimal pol-
icy by modifying the policy π(st). In particular, starting from a random initialization
of π(st), we evaluate the value function over each state Vπ(st). Then we calculate the
action value function for each state-action pair Qπ(st, αt).

Next, we compare between the different Qπ(st, αt) and find the value of
maxαt

Qπ(st, αt). Then, we extract the action that maximises the action value func-
tion Qπ(st, αt), i.e., α′

t = argmaxαt
Qπ(st, αt). Finally, we replace the action at in

state st with the better action α′
t. This leads to a new policy π′(st).

Once the policy has been updated, we repeat the evaluation of the value functions
Vπ′(st), Qπ′(st). The next iterations for the next prediction of the optimal state and
action value V k+1

π⋆ (st), Q
k+1
π⋆ (st, αt) functions are given by

V k+1
π⋆ (st) = rt+1(st, π

′(st)) + γV kπ′(st), (14)

Qk+1
π⋆ (st, αt) = rt+1(st, αt) + γQkπ′(st+1, π

′(st+1)). (15)

When the policy π′(st) converges for all states, the PI algorithm has converged to an
optimal policy π⋆(st) = π′(st) and yields the optimal Vπ⋆(st), Qπ⋆(st, αt).

We emphasize that the optimal state value function, Vπ⋆(st), and the optimal action
value function, Qπ⋆(st, αt), are unique. However, the policies that yield the optimal
reward are not, i.e V ⋆(st) = Vπ⋆(st), Q

⋆(st, αt) = Qπ⋆(st, αt). Moreover, we
note that in this algorithm the evaluation of the future state-action value functions
(V kπ′(st+1), Q

k
π′(st+1, αt+1)) does not happen according to the initial policy π(st)
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(see also section 2.1.1) but the new updated policy π′(st) is used in each iteration (see
also Figure 7).

Application to the miner example

We can apply the above algorithm for finding the optimal state and action-value func-
tions, V ⋆(st), Q⋆(st, αt), in the example of the miner. In this case, we see in Figure 8,
that the policy iteration algorithm converges after four iterations to the optimal values
V ⋆(st) for each state st inside the mine (see Table 2).

(a) Initial random policy (b) First policy iteration

(c) Second policy iteration (d) Final optimal policy

Figure 8: Policy iteration example for the example of the miner. The algorithm eval-
uates according to the policy αt = πi(st) the accumulated reward starting from each
state separately Vπi(st) = Vπi(st, π

i(st)) and compares with the accumulated reward
for the different actions at each state Qπi(st, αt). Then the algorithm updates the ac-
tions in order to optimise Qπi

(st, αt).
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Vπ0(st) Vπ1(st) Vπ2(st) Vπ⋆(st)
C1 -20 -20 -20 -20
C2 +65 +65 +65 +65
C3 +72 +72 +72 +72
C4 +81 +81 +81 +81
C5 +65 +65 +65 +65
C6 +59 +72 +72 +72
C7 +81 +81 +81 +81
C8 +90 +90 +90 +90
C9 +72 +72 +72 +72

C10 +81 +81 +81 +81
C11 +90 +90 +90 +90
C12 +100 +100 +100 +100
C13 +81 +81 +81 +81
C14 +90 +90 +90 +90
C15 +100 +100 +100 +100
C16 +100 +100 +100 +100

Table 2: Values of the state value function for the different iterations of the policy
iteration algorithm for the example of the miner (the discount parameter was chosen
γ = 0.9). The optimal policy is reached after the first iteration. The final optimal
policy and the first iteration are both optimal policies because they lead to the optimal
values of the state. The change in the actions happens because of the way the algorithm
selects the maximum action value (the right action,→, is selected first).

Generalised Policy Iteration methods (GPI)

In the previous algorithm (PI) we evaluated the state values and action values of the
optimal policy Vπ′(st), Qπ′(st, αt) by iteratively changing the policy π′(st) which is
used for the evaluation of Vπ′(st+1), Qπ′(st+1, αt+1). We will now use Bellman’s
optimality condition to perform the updates on the values of the state value and action
value functions without performing a policy update. These learning algorithms are
called GPI methods.

These methods stem from the property of the optimal state value, V ⋆(st), and action
value, Q⋆(st, αt), to be independent of the optimal policy π⋆. This property extends
also to the updates of the GPI algorithm, therefore, we don’t need to explicitly guess
the optimal policy π⋆ in order to obtain the optimal V ⋆(st), Q⋆(st, αt). We can
instead apply the maximum operator at each state repeatedly, find the optimal values
V ⋆(st), Q⋆(st, αt) and then deduce the optimal policy π⋆. We present below the
methods of the Value iteration and Q-Value iteration.

• Value Iteration method

The simplest method to use in order to find the optimal V ⋆(st) and a corresponding
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optimal policy π⋆, is to randomly initialize the values of V 0(st) and then iterate over
each state, st, and update the value of the state value function V k+1(st) according to
the rule,

V k+1(st) = max
αt

[
rt+1(st, αt) + γV k(st+1)

]
, (16)

where V k+1(st), V
k(st+1) are the next update of the state value function at the current

state, st, and the current update of the state value function at the subsequent states,
st+1, respectively.

After sufficient iterations over each state choosing the best action αt at each state, the
values of the state value function will converge to the optimal values, i.e., V k+1(st)→
V ⋆(st).

At this point, the optimal policy, π⋆, can be found by choosing to move along the
path of optimal state values and therefore to higher cumulative reward, i.e., π⋆ =
argmaxαt

[
rt+1(st, αt) + γV kπ (st+1)

]
.

• Q-Value Iteration⧹Greedy-Policy Improvement algorithm

Due to the equivalence between the optimal state values and the optimal action val-
ues (V ⋆(st) = maxαt Q

⋆(st, αt)) the above state value iteration algorithm can be
converted to its action value form as

Qk+1(st, αt) = rt+1(st, αt) + γmax
αt+1

Qk(st+1, αt+1), (17)

where Qk(st+1, αt+1) is the current update k of the future action state values
(st+1, αt+1) and Qk+1(st, αt) is the new update k+1 of the action value function for
the present state action pair st, αt.

After sufficient iterations over each state-action pair (st, αt), choosing the best action
αt+1 for each next state st+1, the values of the action value function will converge to
the optimal values, i.e., Qk+1(st, αt)→ Q⋆(st, αt).

At this point, the optimal policy π⋆ can be found by choosing the actions that have the
highest action value and equal the higher cumulative reward, i.e.,
π⋆ = argmaxαt

Q⋆(st, αt).

2.2 Probabilistic environment and Stochastic policies

2.2.1 Motivation

In the deterministic example described above, there are two subtle assumptions. First,
we assumed that the environment does not influence directly the movement of the
miner (i.e., there are no extraneous actions9 and that at each state the miner is moving
exactly as the deterministic function of the policy π(st) dictates. Moreover, each

9By extraneous actions we refer to actions that are outside the control of the agent and depend on the
environment dynamics (see [SB18]).
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state-action pair (st, αt) leads to exactly one new state, st+1, and one corresponding
reward rt+1(st, αt).

However, this is not always the case. In most practical applications there are un-
certainties that influence both the environment dynamics extraneous actions and the
movement of the agent. This means that the movement of the agent does not lead
always to the intended new state and reward st+1, rt+1(st, αt).

For our miner example, we can take account of these uncertainties in the environment
and the policy of the miner. More specifically, we assume that the mine is trembling
(uncertainties in the dynamics of the environment) forcing the miner to miss a step
and that the lamp of the miner is not working at all times (it flickers) so that the miner
mixes its moves (see Figure 9).

Figure 9: In the stochastic framework the move of the miner is decided based on
the conditional probability of its current state. In this example the miner in state
st = C7 selects more frequently the ↑ action. The next tile the miner will transition
to (new state st+1), depends on the transition probabilities of the miner for its cur-
rent state st and selected action αt. In this example, we consider only two non-zero
transition probabilities based on the state-action pair (st, αt) = (C7, ↑), these are:
p(C13, 0|C7, ↑) and p(C11, 0|C7, ↑). In both cases, the intermediate reward for the
transition is zero (rt+1 = 0). We know that the environment favours the transition to
C13 more, i.e it is more probable that the agent’s next state will be st+1 =C13 with a
reward rt+1 = 0.

We implement these uncertainties in the policy of the agent and the dynamics of the
environment by considering:

• The conditional probability the miner will perform an action, αt, given the pre-
vious history of states and actions it performed in the past st, αt−1, st−1, ..., α0,
s0, i.e., the policy function becomes a probability function of all previous states
and actions, π(αt|st, αt−1, st−1, ..., α0, s0).

• The conditional probability the miner will visit a new state, st+1, and receive
the reward, rt+1, given the previous history of states actions and rewards
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st, αt, rt, αt−1, st−1, ..., r1, α0, s0. This is the next state and reward probability
function p(st+1, rt+1|st, αt, rt, αt−1, st−1, ..., r1, α0, s0).

The knowledge of the previous history significantly complicates the problem to be
solved, but as in the deterministic case, we will consider a special type of history-
independent process, called a Markov Decision Process [WIW89].

2.2.2 Markov Processes

A Markov process is a formal way to describe a problem that involves different states
that can be observed by the agent and change sequentially10. At the time t during the
process, the agent observes the features of a state, st, and then transitions to another
state, st+1, receiving an immediate reward, rt+1. The total reward the agent accumu-
lates is the sum of all immediate rewards. This is called a Markov Reward Process
(MRP).

The Dynamics of an MRP process are completely characterised by a Markov transition
matrix p(st+1, rt+1|st) that shows the probability of the agent observing the next state,
st+1, and receiving a reward, rt+1, given the agent’s current observation of state st.

In most applications when the agent lies in its current state st, it also chooses an
action αt that changes the probability of the agent’s next state st+1, rt+1. This is
called a Markov Decision Process. We note that if we assign the action, αt, inside
the state, st, observed by the agent, we obtain a state action pair. When we consider
transitions between the different state action pairs, we retrieve again an MRP. The
Markov Decision Process (MDP) is also described by a transition matrix between the
agent’s current state and action pair (st, αt) and the next state and reward (st+1, rt+1).

Considering that the process is history independent, the transition probability matrix
implies that the current state, st, and action, αt, contain all information needed for
the transition to the next state and the next reward (this is called the Markov property
[WIW89])11.

Using the Markov property, the previous history doesn’t matter and we can assert that

π(αt|st, αt−1, st−1, ..., α0, s0) = π(αt|st), (18)
p(st+1, rt+1|st, αt, rt, αt−1, st−1, ..., r1, α0, s0) = p(st+1, rt+1|st, αt). (19)

For the case of our miner, our analysis then simplifies significantly, because we need
to only specify two functions for the DP framework to work. These are:

• The conditional probability that the miner will perform an action, αt, given the
current state, st, it is in, i.e., the policy function becomes a probability function
π(αt|st).

10Sequentially means that the agent can only find itself in one state at each time. Moreover, only the past
states influence the next state i.e in a Markov Process the future does not influence the past.

11In the case where the processes are history dependent and don’t have the Markov property, we choose
to enhance the features of the state by appending available information from previous states to the current
state. The number of states will grow drastically but the Markov property will be restored.
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• The conditional probability the miner will visit a new state, st+1, and receive the
reward, rt+1, given that in the current state, st, the miner performed an action,
αt. This is the next state and reward probability function p(st+1, rt+1|st, αt).

We present a general example of an MDP with four states st ∈ {C1,C2,C3,C4} and
three actions αt ∈ {d1=←,d2=↑,d3=→} in Figure 10. The transition probability
matrix characterising this MDP is given in Table 3.

As we did in the deterministic case, we will focus on episodic processes. In order for
episodic cases to be possible, the Markov process should contain at least one terminal
state, in which the agent will remain with probability 1. In this case, the Markov
process is called absorbing.

Figure 10: Left: A Markov Decision Process. At each state transition, st → st+1, the
agent performs an action, αt, and receives a reward, r based on its final state st+1.
The dynamics of the environment, i.e., the rule that associates the rewards and the
next states according to the current state and actions might be known (deterministic
or stochastic) or unknown. We can also treat each state-action pair as a separate state.
This is useful in model-free methods when the environment dynamics are not known
a priori. In this case, we obtain A Markov Reward Process. For a specific trajectory
realization, the state-action-reward of the MDP is shown together with its correspond-
ing state action pair-reward MRP.

2.2.3 Value of the State and Action Value Function

In the general stochastic framework of DP, we seek to maximize the expected value of
the accumulated reward starting from a given state st, given by

Vπ(st) = Eπ[Gt|st]
= Eπ[rt+1|st] + γEπ[Gt+1|st]
=
∑

αt∈A
π(αt|st)

∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)rt+1 + γEπ[Gt+1|st], (20)
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p(st+1, rt+1|st, αt) C1 C2 C3 C4
C1 [0.5,1.0,0.0] [0.5,0.0,0.0] [0.0,0.0,0.0] [0.0,0.0,1.0]
C2 [1.0,0.0,0.0] [0.0,1.0,0.0] [0.0,0.0,1.0] [0.0,0.0,0.0]
C3 [0.6,0.3,0.0] [0.4,0.7,0.0] [0.0,0.0,0.0] [0.0,0.0,1.0]
C4 [0.0,0.0,0.0] [0.0,0.0,0.0] [0.0,0.0,0.0] [1.0,0.0,0.0]

Table 3: Markov Decision Process (MDP) Transition Matrix. This probabil-
ity matrix shows us the transition probabilities between the states in the MDP
p(st+1, rt+1|st, αt) of Figure 10, i.e the probabilities of reaching a new state st+1 ∈
{C1, C2, C3, C4} from the current state st ∈ {C1, C2, C3, C4} and receiving the
next reward rt+1 given that we perform action αt ∈ {←, ↑,→}. Note that in each
row summing over a specific action the total probability is 1.

where rt+1 = rt+1(st+1, αt, st), i.e the reward at next state st+1 given the current
state st and action αt and Eπ[·] is an operator signifying the mean of the expected
conditional probability given the policy π.

More precisely, the expected value of a discrete random variable X , E[X] is given by

E[X] =
∑

xi∈X
xip(X = xi). (21)

where xi are the values of the random variable and p(X = xi) are the corresponding
probability of the random variable X taking the value xi.

When the random variable is expressed in the form of conditional probabilities e.g.
p(X|st, αt), the average value is generalized to the expected conditional probability

g(st, αt) = E[X|st, αt] =
∑

xi∈X
xip(X = xi|st, αt) (22)

. We can expand the above relation using the general product rule of probability
theory to obtain

g(st) = E[X|st, αt] =
∑

xi∈X
xip(X = xi|st, αt)π(αt|st)p(st) (23)

. Because st can be any state in the state space S we get that p(st) = 1.

We can then derive the mean value of the expected conditional probability as

Eπ[X|st] = E[E[X|st, π(αt|st)]] =
∑

αt∈A

∑

xi∈X
xip(X = xi|st, αt)π(αt|st). (24)

In order to find a policy, π⋆(αt|st), that maximizes the agent’s expected cumulative
reward, π⋆ = argmaxπEπ[Gt|st], at the end of the episode, it is useful to evaluate the

Stathas, Gutiérrez-Oribio & Stefanou 401

ALERT Doctoral School 2023



value function of the state the agent finds itself in, Vπ(st), and the value function of
the available actions the agent can take, Qπ(st, αt), as we did for the deterministic
case.

For a given policy, π, and starting from the state, st, the value function of the state can
be evaluated using the Bellman equation [Bel54, BT95]

Vπ(st) =
∑

αt∈A
π(αt|st)

∑

st+1∈S,
rt+1∈R

p(st+1, rt+1|st, αt)rt+1 + γEπ

[
T−2∑

k=0

γkrt+k+2|st
]

=
∑

αt∈A
π(αt|st)

∑

st+1∈S,
rt+1∈R

p(st+1, rt+1|st, αt)rt+1

+ γ
∑

st+2,...sT∈S
αt+1,...,αT1

∈A,
rt+2,...,rT∈R

p(Tr, st+1, αt+1, st, αt)
T−2∑

k=0

γkrt+k+2, (25)

where p(Tr, st+1, αt+1, st, αt) = p(sT , rT ...st+2, rt+2, st+1, αt+1, st, αt) is the joint
probability of the specific trajectory realization. Using again the general product rule
from probability theory we get

p(Tr, st+1, αt+1, st, αt) = p(sT , rT ...st+2, rt+2|st+1, αt+1, st, αt)p(st+1|st, αt)π(αt|st)

Replacing and grouping the terms we obtain,

Vπ(st) =
∑

αt∈A
π(αt|st)

∑

st+1∈S,
rt+1∈R

p(st+1, rt+1|st, αt)

×



rt+1 + γ

∑

st+2,...sT∈S
αt+1,...,αT1

∈A,
rt+2,...,rT∈R

p(Tr|st+1, αt+1, st, αt)
T−2∑

k=0

γkrt+k+2



.

(26)
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Moreover, we note that

γkrt+k+2|st, αt, rt+1, st+1 =
∑

st+2,...sT∈S
αt+1,...,αT1

∈A,
rt+2,...,rT∈R

p(Tr|st+1, αt+1, st, αt)γ
krt+k+2

, which leads to

Vπ(st) =
∑

αt∈A
π(αt|st)

∑

st+1∈S,
rt+1∈R

p(st+1, rt+1|st, αt)

×
[
rt+1 + γ

T−2∑

k=0

γkrt+k+2|st, αt, rt+1, st+1

]
, (27)

However, since the process is an MDP, the last sum (which denotes the expectation
of the reward rt+2 for the next state) is only dependent on the next state st+1. This
yields

Vπ(st) =
∑

αt∈A
π(αt|st)

∑

st+1∈S
rt+1∈R

[
rt+1(st, αt, st+1) + γ

T−k−2∑

k=0

γkrt+k+2|, st+1

]

=
∑

αt∈A
π(αt|st)

∑

st+1∈S
rt+1∈R

[rt+1(st, αt, st+1) + γVπ(st+1)] . (28)

Similarly for the action value function Qπ(st, αt) we derive
Qπ(st, αt) = Eπ [Gt|st, αt]

=
∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)

×


rt+1 + γ

∑

αt+1∈A
π(αt+1|st+1)

T−k−2∑

k=0

γkrt+k+2|st, αt, rt+1, st+1, αt+1




=
∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)


rt+1 + γ

∑

αt+1∈A
π(αt+1|st+1)Qπ(st+1, αt+1)


 .

(29)

The relationship between Vπ(st), Qπ(st, αt) can be shown starting from equation 27
and replacing the initial definition of the action-value function 29, obtaining

Vπ(st) =
∑

αt∈A
π(αt|st)Qπ(st, αt). (30)

The above mathematical derivation for the stochastic Bellman equation can be sum-
marized in Figure 11.
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Figure 11: The schematic diagrams above indicate how the state value function,
Vπ(st), and the action value function, Qπ(st, αt), are evaluated. This is done through
the definition of the average value V (st) = Eπ[Gt|s = st], Q(st, αt) = Eπ[Gt|s =
st, α = αt], the dynamics of the environment p(st+1, rt+1|s = st, α = αt), and the
policy of the agent π(αt|st).

2.2.4 Bellman’s Optimality conditions

The logic we presented in the deterministic case is also valid for the stochastic case
considering the maximization of the expected value of the accumulated reward
maxπ Eπ[Gt]. More specifically the Bellman optimality conditions and the policy
improvement theorem also hold in the stochastic case [SB18]. The general formulae
for the optimal state value function, V ⋆(st), and action-value function, Q⋆(st, αt),
are given by

V ⋆(st) = max
αt

∑

st+1∈S
rt+1∈R

(st+1, rt+1|st, αt) [rt+1 + γVπ⋆(st+1)] , (31)

Q⋆(st, αt) =
∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)rt+1 + γmax
αt+1

Q(st+1, αt+1), (32)

where rt+1 = rt+1(st, αt, st+1).
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2.2.5 Policy Improvement Theorem

For the general stochastic case, the Policy Improvement Theorem [SB18] reads that
any policy π′ for which
Vπ(st) ≤

∑
αt∈A π(st, αt)Q(st, π

′(αt|st)) is a policy that we can improve on.

We note that in the above theorem the action value, Qπ(st, π′(αt|st)), belongs to the
set of action values evaluated with the initial policy, π, at each state, st ∈ S, but it is
selected based on policy π′αt, st. The above relation is equivalent to Vπ(st) ≤ V ′

π(st).

The Bellman equations applied to the framework of MDPs, lend themselves to a
straightforward application of Dynamic Programming, which provides basic algo-
rithms to maximize the state (Value iteration) and/or action values (Q-Value iteration)
of the environment and consequently find the optimal policy for maximizing the ex-
pected reward of the agent.

Moreover, the notions of MDPs and the Bellman Optimality conditions play a central
role in Reinforcement Learning (RL). In particular, they constitute the basis for many
learning methods that seek to maximize the agent’s expected reward.

Based on whether or not we have complete knowledge of the dynamics of the envi-
ronment, p(st+1, rt+1|st, αt), we separate these learning methods into two categories
namely model-based and model-free methods.

2.2.6 Model-based Methods

In the case of model-based methods we can find the optimal policy using a Policy
Iteration algorithm or a Generalised policy iteration algorithm (see Figure 7). These
methods are the equivalent of the deterministic model-based methods discussed in
section 2.1.4. Consequently, they work well in ideal cases where the number of
available states and actions are small and the MDP probability distribution function
p(st+1, rt+1|st, αt) is known a priori. In this case the agent plans its actions before
they are taken.

Policy Iteration (PI) method

Similar to what we explained in the deterministic case, In this algorithm, we achieve
the optimal action values and the respective optimal policy by modifying the policy π.

At first, we evaluate the policy π. This evaluation can be done by direct inverting the
Markov system. However, this takes a lot of time when the number of states increases.
We can evaluate the solution of the system faster by using an iterative solution strategy.

In particular, using a Fixed Point Iteration algorithm we are able starting from a ran-
dom initialization of V 0(st), Q

0(st, αt) (which does not respect necessarily the Bell-
man equations (28),(29)) and applying iteratively the state value definition of equation
(28), for a randomly generated policy π, to evaluate the values of the state value func-
tion V k+1

π (s) at each state of the environment.
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Once the values of the state value function Vπ(st) (respectively state value function,
Qπ(st, αt), based on policy π, have converged for each state st (and action αt), we
retrieve the action α′

t that is responsible for the maximum value of the action value
function i.e α′

t = argmaxαt
Q(st, αt).

In the case of deterministic policies, if this action α′
t is different than the action cal-

culated by the policy αt = π(αt), i.e., α′
t ̸= π(st), we update the action of policy

algorithm at the specific state st equal to α′
t.

Moreover, in the stochastic framework, we can also consider an ε − greedy policy.
This policy can be applied according to the following rule

πk+1(αt|st) =
{
1− ε− ε

|A| , αt = α⋆t
ε

|A| αt ̸= α⋆t ,

α⋆t = argmaxαt
Qk+1
π (st, αt), (33)

where ε is a small parameter and A is the action space of the system.

Essentially, this policy update rule indicates that the action that had the highest action
value will be sampled among all possible other actions with probability 1 − ε. In
contrast, the rest of the actions will be sampled with a probability of ϵ. This policy
may only partially exploits the best action according to a specific state in the MDP,
i.e., it is not a purely greedy policy.

However, it has been shown to converge towards the optimal value and as a result to
an optimal policy (see [SB18]). This stochastic policy is very useful in the case of
model-free learning, where the agent does not know the transition probabilities of the
MDP.

Once the policy π′ has been updated, we evaluate the new updates of the state value
and action-value functions V k+1

π′ (st), Q
k+1
π′ (st, αt) as

V k+1
π′ (st) =

∑

αt∈A
π′(αt|st)

∑

st+1∈S
rt+1∈R

[
rt+1 + γV kπ′(st+1)

]
(34)

Qk+1
π′ (st, α) =

∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)

×


rt+1 + γ

∑

αt+1∈A
π′(αt+1|st+1)Q

k
π′(st+1, αt+1)


 . (35)

When the values of the state-value function under policy π′(αt|st) have converged in
all states, we say that the PI algorithm has converged to an optimal policy π⋆(st, αt) =
π′(st, αt) and yields the optimal values V ⋆(st) = Vπ⋆(st), Q

⋆(st, αt) = Qπ⋆(st, αt).
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Figure 12: Stencil of the Policy iteration algorithm of Dynamic Programming, we
present the case where the algorithm evaluates the values of the state value function
V ⋆(st). The states and actions inside the rectangle are taken into account during the
update of the value of the state function.

We present in Figure 12 the stencil for the model-based dynamic programming algo-
rithm. We note that the updates involve only the current state-action pair, st, αt, and
the next state st+1.

We emphasize that the optimal state value function, V ⋆π (s), and the optimal action
value function, Q⋆π(s, α), values are unique. However, the policies that yield the op-
timal reward are not. In this algorithm, the evaluation of the future state-action value
functions (V kπ′(st+1), Q

k
π′(st+1, αt+1)) does not happen according to the initial policy

π, but the new updated policy π′(αt|st) is used directly (see also Figure 7).

Generalised Policy Iteration methods (GPI)

Similar to what we discussed in the deterministic case, we can also use directly Bell-
man’s optimality condition to perform the updates on the values of the state value and
action value functions without performing a policy update. These learning algorithms
are called GPI methods.

In these methods, we apply directly the nonlinear max operator for the Bellman op-
timality condition. As a result, the system that emerges is not linear and cannot be
solved by a direct inversion method. We are only left with the iterative approach.

• Value Iteration method

The simplest method to use in order to find the optimal V ⋆(st) and the corresponding
optimal policy π⋆, is to iterate over each state, st, using the maxαt

operator, and
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update the value of the state, V k(st), according to the rule

V k+1(st) = max
αt

∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)
[
rt+1 + γV k(st+1)

]
, (36)

where V k(st), V k(st+1) are the current and subsequent state values at iteration k and
V k+1(st) is the new state value for the next iteration. We emphasize that these values
are not evaluated based on a policy π(αt|st) but by direct application of the maximum
maxαt operator at each state. After sufficient iterations over each state choosing the
best action, αt, at each state, the values of the state value function will converge to the
optimal values, V ⋆(st). At this point, the optimal policy, π⋆, can be found by choosing
to move along the path of optimal state values and therefore to higher cumulative
reward, i.e., π⋆ = argmaxαt

∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt) [rt+1 + γV ⋆(st+1)].

• Q-Value Iteration⧹Greedy-Policy Improvement algorithm

Because of the equivalence between the optimal state values and the optimal action
values (V ⋆(st) = maxαQ

⋆(st, α)) the above state value iteration algorithm can be
converted to its action value form

Qk+1(st, αt) =
∑

st+1∈S
rt+1∈R

p(st+1, rt+1|st, αt)
(
rt+1 + γmax

αt+1

Qk(st+1, αt+1)

)
.

(37)

whereQk(st+1, αt+1) are the future action state values at iteration k andQk+1(st, αt)
is the new update of the state action value function. At this point, the optimal policy,
π⋆, can be found by choosing the actions that have the highest action value and equal
the higher cumulative reward, i.e., π⋆ = argmaxαt

Q⋆(st, αt).

2.2.7 Model-free methods

These methods are used when the MDP probability distribution function,
p(st+1, rt+1|st, αt), is not known. This is the case in most applications of practical
geomechanical interest, where the number of states and actions and thus the dimen-
sions of the Markov transition matrix can become prohibitively large for planning
strategies to be practical.

Therefore, model-free algorithms that learn action to return associations are more
useful. These methods can again be cast into the framework of value iteration methods
including Monte Carlo Control, Temporal differences learning (SARSA), Q-learning,
Deep Q Networks, Policy gradient methods, and Actor-Critic Networks, to name a
few (see [BT95, SB18, Dee22]). Especially in the case of Deep Learning, different
methods and networks can be combined together to yield better optimal policies and
higher cumulative rewards (see also [Gér22, Fu16]).
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The general idea of the model-free methods is that the agent does not know the prob-
ability function of the MDP, p(st+1, rt+1|st,αt

), that connects future states, st+1, and
rewards, rt+1, to current actions, αt, and states st. For this reason, the action value
of the state, st, according to the second Bellman equation (29) cannot be computed
directly. Instead, the action value Qπ(st, α) at state st for any action, α, selected
by the policy, π, will have to be evaluated through averaging the cumulative rewards
of multiple episodes for different states of the MDP. This stage of learning is called
prediction.

After a step of prediction, the new estimates of the state and action values, Qπ(st, α),
are available. Then the algorithm will adjust its policy to π′ in order to choose with
higher probability the actions with the highest action value at each state Qπ′(st, αt).

Monte Carlo method

Let us consider that the agent finds itself in an environment with a small space of avail-
able states, st ∈ S, and that the agent takes actions, Qπ(st, αt), based on some ran-
dom policy, π, The probability function of the MDP, p(st+1, rt+1|st,α), is unknown.
For this reason the value function of a state, st, and the action value function of a
state-action pair (i.e., (st, αt), Vπ(st), Qπ(st, αt)) cannot be computed directly.

In the Monte Carlo (MC) method we choose to estimate the action value, Qπ(st, αt),
at state st for any action, αt, selected by the policy, π(αt|st), by using equation (29),
i.e., by running multiple episodes of numerical experiments, generating a sufficient
number of trajectories and finally averaging over the expected reward for each state-
action pair12.

We do this procedure in batches and in each batch, m episodes are run. In order
to average the expected reward at each state-action pair, we take note of the agent’s
trajectory in each episode of the batch. Then for each state-action pair, (st, αt), in the
agent’s trajectory, we calculate the accumulated reward (see Figures 13 and 14).

Figure 13: Three realizations of the miner’s trajectory inside the mine

12This way we render the Markov Decision Process into a Markov Reward Process, where the agent visits
different state-action pairs during an episode and then, its receives a reward rt+1. Thus, each state-action
pair is treated as a separate state leading to a different reward.
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(a) First trajectory (b) Second trajectory

(c) Third trajectory

Figure 14: Accumulated reward counting in multi-pass Monte Carlo. We examine
the realization of the agent’s trajectory of Figure 13. In a Markov Reward Process
the states are the state-action pairs of the corresponding Markov Decision Process.
Every time the state st is visited, the reward after each state is summed. Here states
(C8, ↑) and (C9, ↑) were visited twice in the same episode during trajectories b, and c,
respectively. And state (C2,→), (C3, ↑), (C4,→) visited twice in different episodes.
The trajectories have a degree of randomness due to the stochastic policy π(αt|st)
and the environment dynamics. The points where the action selected by the agent was
not followed through are shown with a circle and the intended action is shown with a
dotted line.

For each state-action pair, we add the accumulated reward over the different episodes
of the batch and then we divide by the number of times the state-action pair was
present in the batch. The action value then is given by

Qk+1
π (st, αt) = Eπ[Gt|st, αt] =

1

C((st, αt))

M∑

m=1

Tm−1∑

t=0

I(s = st, αt)Gtm , (38)
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where Gtm is the accumulated reward at the end of the episode m starting counting at
state-action pair (st, αt), C((st, αt)) is the count of each state-action pair inside the
batch of trajectories M and I(s = st, αt) is the assignment matrix that selects only
the accumulated returns of the selected state-action pair (st, αt) (see Table 4).

G,Tr,a G,Tr,b G,Tr,c C((st, αt)) E[G]
(C2,→) +90 +100 0.0 2 +95
(C2, ↑) 0.0 0.0 -20 1 -20
(C3, ↑) +90 +100 0 2 +95
(C4,→) +90 +100 0 2 +95
(C4, ↑) +100 0.0 0.0 1 +100
(C4,←) +100 0.0 0.0 1 +100
(C5, ↓) 0.0 0.0 -20 1 -20
(C6, ↑) 0.0 0.0 -20 1 -20
(C7,→) 0.0 +100 0.0 1 +100
(C7, ↑) +100 0.0 0.0 1 +100
(C8, ↑) 0.0 +200 0.0 2 +100
(C8,←) +100 0.0 0.0 1 +100
(C9, ↓) 0.0 0.0 -40 2 -20
(C10, ↓) 0.0 0.0 -20 2 -20
(C12, ↑) +100 0.0 0.0 1 +100

Table 4: Value of a state-action pair (Q-values) for three different trajectory realiza-
tions (γ = 1.0). C((st, αt)) is the number of times (count) the specific action-value
pair was encountered in the batch of trajectories (in this example the batch size is
3). The expected value is given by summing the rewards following the specific state-
action pair over the count of the state-action pair in the batch of trajectories.

Instead of evaluating the new average after each batch of trajectories, we could eval-
uate the running average of Qπ(st, α) after the agent realizes one trajectory. This
reduces significantly the memory storage requirements of the algorithm. The above
relation (38) can then be written as

Qm+1
π (st, αt) = Qmπ (st, αt) +

1

C((st, αt))
(Gtm −Qmπ (st, α)) . (39)

The update parameter 1
C((st,αt))

that based on the number of counts of the pair (st, αt)
on the batch samples, can be also replaced by a constant step-size learning hyperpa-
rameter a13 and we obtain

Qm+1
π (st, αt) = Qmπ (st, αt) + a (Gmt −Qmπ (st, αt)) . (40)

We show in Figure 15 the stencil of the Monte-Carlo algorithm, during the policy
evaluation.

13The action evaluation (prediction) method then is called “constant-a MC”.
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Figure 15: Stencil of the Monte-Carlo Learning algorithm. The black rectangles indi-
cate terminal states. We note that a whole episode needs to be computed before any
update can take place.

We note that the effect of the step-size parameter, a, in the convergence towards the
optimal maxαt Qπ(st, αt) is similar to the effect of the gradient update parameter in
the stochastic batch gradient descend algorithm used in supervised learning tasks. In
essence, for large values of the hyperparameter a, the optimal action values oscillate
without really converging to a value. i.e., quick but noisy learning. On the contrary,
smaller values of awill converge at the optimal value slowly but in an accurate manner
(see Figure 16).

In order to perform the control task in RL, i.e., reach the optimal values of the action
value function Q⋆(st, αt) at each state-action pair, we can use a default greedy policy
that immediately selects the best action based on the updated values of the action value
function.

Notice that the use of such greedy policy implies that another policy π has been used
during the prediction of the action value function in each state-action pair (st, αt).
This type of learning where another policy generates the data and makes predictions
and another policy controls the maximization of the action value function towards the
optimal action values, Q⋆(st, αt), is called Off-policy learning and requires the use of
statistical techniques, like the so-called Importance sampling, in order to remove any
bias from the learned data.

This second problem comes from the fact that after the first values of Qπ(st, αt) have
been evaluated, the greedy policy will always exploit the same actions that yield the
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Figure 16: Representation of the convergence error estimate between updates of the
optimal action value function Q⋆(st, αt) − Qm+1

π⋆ (st, αt) for all state-action pairs
(st, αt). Red curve: higher values of the step hyperparameter a1 make faster the
convergence but higher the variance. Blue curve: lower values of the learning hyper-
parameter a2 lead to slower convergence but less variance.

highestQπ(st, αt) at each st in order to maximise the expected accumulated reward14.
Because Qπ(st, αt) is not known for all state-action pairs, the greedy policy runs the
risk of getting trapped in a local maximum of the expected reward and not reaching
the global maximum. This problem is also known as the Exploration vs Exploitation
tradeoff.

Alternatively, the agent can use an ε-greedy policy as in the case of the Q-value model-
based method for the prediction and the action value function and the optimization of
the reward (see equation (33)).

In particular, this policy considers that all possible actions are included during the
action selection stage, i.e., π(α|s) > 0,∀s ∈ S, ∀α ∈ A(∫)15. Therefore, given
enough tries by the agent, it is guaranteed to visit all possible states of the problem,
spending more time on the interesting parts of the problem where higher expected
cumulative rewards are present.

Thus, the Monte Carlo algorithm learns to associate actions to expected accumulated
rewards achieving a balance between exploration and exploitation of the problem state
space.

We note that for a larger number of states, the Monte Carlo Control method becomes
impractical. This is because the action values are updated at the end of each episode
which can take a long time to complete.

14Considering the example of the mine, a greedy miner won’t explore the mine and will head straight
for the exit, where the principal reward is, without ever searching for any hidden or secondary rewards that
would increase the final cumulative reward.

15In this case the policy is characterized as soft.
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On policy vs Off policy methods

In RL we make a distinction between the policy the agent uses in order to generate the
data (behaviour policy b(st|αt)) and the policy we improve/evaluate in order to find
the optimal policy (target policy π(st|αt))) and maximize the expected cumulative re-
ward. When we use the target policy to also generate the data in subsequent episodes,
the RL method is called an On policy method, else, the method is called Off policy.

The need for Off policy methods becomes clear when we don’t want to compromise
the exploratory capabilities of the agent and more importantly when we want to ex-
pand our dataset with trajectory samples from third parties. This is common because
RL applications take quite a lot to run and produce an adequate number of new trajec-
tories for statistics applications. Therefore, the use of already available data is always
welcome.

We can convert the action values of the initial dataset produced under the policy
b(αt|st), to action values obtained through the new policy π(αt|st), by using Im-
portance sampling provided that in each policy the available actions over each state
are common, i.e., if π(s|α) > 0 then b(s|α) > 0. The action values under policy π
can be found using the formula

Qπ(st, αt) = Eb[ρGt|st, αt], (41)

where:

ρ = ΠT−1
τ=t+1

b(ατ |sτ )
π(ατ |sτ )

. (42)

Temporal Difference learning: SARSA

When Monte Carlo is used, the update to the new action values happens only after
the agent has completed one episode. When the number of states becomes large, an
episode may take a long time to complete and therefore, convergence to the maximum
action values, Qπ⋆(st, αt), and optimal policy, π⋆(st, αt), becomes slow. Temporal
Difference algorithm (TD) or State-Action-Reward-State-Action algorithm (SARSA),
solves the update problem of the Monte Carlo control algorithm by updating the action
values during the episode. The update happens every n-steps inside the episode m
using the estimate of the expected accumulated reward. This is done assuming the
agent acts optimally after a future state that is n-steps in front of the current state stm .
We consider as an optimal policy the ε-greedy policy (see equation (33)). We call this
estimate a target value Gtm(n)16. Inside an episode m, the update of the action value
Qk+1
π (stm , αtm) is given by

Qk+1
π (stm , αtm) = Qkπ(stm , αtm) + a

(
Gtm(n)−Qkπ(stm , αtm)

)
, (43)

16A technique that uses estimates of state and/or action values in order to evaluate some target values is
called Bootstraping.
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Figure 17: Stencil of the Temporal Difference Learning algorithm for 1 number of
steps into the future (SARSA). The black rectangles indicate terminal states. The
algorithm needs only the next state in order to perform the update of the current action
value.

where:

Gtm(n) = rtm+1 + γrtm+2 + ...γn−1rtm+n + γnQπ(stm+n, αtm+n). (44)

We show in Figure 17 the stencil of the SARSA algorithm, for policy evaluation and
policy iteration tasks.

We note that in equation (44) the update of the action value, Qk+1
π (stm , αtm), does

not coincide with the next episode m + 1. The update happens every n steps inside
the episode depending on the n-step evaluation of the target value Gtm(n). We also
note two special cases in the TD method depending on the hyper-parameter n:

• n = 1: In this case, the action values are updated after the new state is reached.
This allows for maximum learning during an episode.

• n→∞: In this case, the action values are updated only after the episode ends.
This defaults to the usual Monte Carlo learning method of the previous section.

In the TD method, learning is affected by the pair of hyperparameters n and a (see
Figure 18). In particular, we note that a low parameter n (e.g., n = 1) yields faster
learning rates when the higher values of the step size parameter a are considered.
Moreover, with respect to the MC method, the convergence results are less noisy.
This indicates a fundamental difference between the MC and TD learning methods.
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Figure 18: Comparison of the temporal difference algorithm for different values of the
hyperparameter n based on their convergence estimates between updates of the action
value function Q⋆(st, αt) − Qm+1(st, αt) for all st, αt. Red curve n1 = 100: The
algorithm is equivalent to a Monte Carlo method. Blue curve n2 = 1: The algorithm
reaches a lower minimum for the convergence error. The two methods do not converge
to the same optimal point because of the different estimates for the expected reward
E[Gt].

Let us consider that we train the MC and TD algorithms on a batch of m episodes
until convergence to the optimal state, V ⋆(st), and action values, Q⋆(st, αt), for this
batch. This way we eliminate the influence of the step size a. According to [SB18],
the two methods will converge to different estimates of Q⋆(st, αt)! In particular,
the MC method will converge towards values of the state Vπ′MC(s) that minimize
the mean square error between the values of the state and the limit, while the TD
method will tend towards the estimate that maximizes the likelihood of high expected
reward. Therefore, TD is a better method for approximating the maximum expected
accumulated reward maxE[Gt] when the assumptions of an MDP hold.

Q-learning

In the TD case, we used the estimate of a ε − greedy policy for the accumulated
reward, at step n inside the episode m. Another approach is to update the accumu-
lated reward estimate using the maximum action value function of the n-step action
value pair (st+n, αt+n). This leads to the following algorithm for learning the optimal
action value function

Qk+1
π (stm , αtm) = Qkπ(stm , αtm) + a

(
Gtm(n)−Qk(stm , αtm)

)
, (45)

where:

Gtm(n) = rtm+1 + γrtm+2 + ...γn−1rtm+n + γn max
αtm+n

Qk(stm+n, αtm+n). (46)
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We note that Q-learning is an off-policy method because the maxαt
Q(st, αt) is not

known a priori but deduced from the evaluation of the Qπ(st, αt) values after n-steps
in the trajectory.

Expected SARSA

Another variant of the Q-learning method can be made using the expected value of the
action under policy π(αt|st), i.e.,

Qk+1
π (stm , αtm) = Qkπ(stm , αtm) + a

(
Gtm(n)−Qkπ(stm , αtm)

)
, (47)

where:

Gtm(n) = rtm+1 + γrtm+2 + ...γn−1rtm+n

+ γn
∑

αtm+n∈A
π(α|stm+n)Q

k(stm+n, αtm+n). (48)

We note that this can be an on-policy method because the action value Qkπ(st, αt) is
evaluated the same way as its update Qk+1

π (st, αt).

2.3 Function approximation
When the state space is large (e.g., a continuous system with infinite states) it is not
practical -let alone feasible- to perform iterations over each state to find the optimal
state and action values. We can move around this difficulty considering that the opti-
mal state value function, Vπ⋆(st), and the optimal action value function, Qπ⋆(st, αt),
can be approximated by other functions v̂(st,w) = wx and q̂(st, αt,w) = wψ, re-
spectively. Such functions are a linear combination of the vector of weight parameters,
w, and the vectors of data features x,ψ. By data features, we mean the data itself or
patterns from the data that can arise from any classification method (see Chapter 4:
Classification Techniques in Machine Learning for more details). Any number of
weights and data features can be implemented and the task of state evaluation now
is to minimize, V E (respectively QE), which can be the square error (or the Huber
norm) between the target function Vπ⋆(st) and its approximation v̂(st,w) (respec-
tively, Qπ⋆(st, αt) and its approximation q̂(st, αt,w)) as

V E =
∑

s∈S
µ(s) [Vπ⋆(s)− v̂π(s,w)]

2
, (49)

QE =
∑

s∈S,α∈A
µ(s, α) [Qπ⋆(st, αt)− q̂π(st, αt,w)]

2
, (50)

where µ(s), µ(s, α) are measures of the frequency a state or state-action pair is visited
by the agent.

Once the mean (square) error, V E, (QE), has been calculated we apply an optimi-
sation algorithm (e.g., batch gradient descent, stochastic gradient descent Adam or
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Nesterov, see Chapter 7 - Artificial Neural Networks: layer architectures, opti-
mizers and automatic differentiation for more details) to calculate the gradient of
the error and update the weights.

In the framework of Gradient descent, an update rule for the weights can be given by

wk+1 ← wk + a
(
Ut − v̂(st,wk)

)
∇wv̂(st,w

k), (51)

wk+1 ← wk + a
(
Ut − q̂(st, αt,wk)

)
∇w q̂(st, αt,w

k), (52)

where the quantity Ut is called the target. The target Ut is an estimation of Vπ⋆(s), (or
Qπ⋆(st, αt)). Typically, we can use as a target the accumulated reward at the end of
the episode, Gt. We note that as long as the expected target value is equal to the state
or action value17, the update wk+1 leads to a local minimum of V E,QE.

In practice, since Gt is not known a priori, we use an estimate of the future rewards
after the current state, st, by bootstrapping Gt as

Gt = rt+1 + γv̂(st+1,w), (53)
Gt = rt+1 + γq̂(st+1, αt+1,w), (54)

respectively. The weight updates can then be given by

wk+1 ← wk + a
(
rt+1 + γv̂(st+1,w)− v̂(st,wk)

)
∇wv̂(st,w

k), (55)

wk+1 ← wk + a
(
rt+1 + γq̂(st+1, αt+1,w)− q̂(st, αt,wk)

)
∇w q̂(st, αt,w

k),
(56)

respectively. We note that these estimates are not unbiased because they contain the
influence of v̂(st,w), q̂(st, αt,w), i.e., they are dependent on w. Therefore, there is
no guarantee that the update with this estimate will help convergence towards a local
minimum. However, in the case of a 1-step approximation of the target, the point that
the algorithm converges is close to the local minimum [SB18].

Of course, this is a regression task that can be solved by many different supervised
learning algorithms of ML (see Chapter 2: Introduction to regression methods
for more details). Such a regression can be performed with the help of deep neu-
ral networks (DNNs). In the model-free approaches where the action values optimal
Qπ⋆(st, αt) are approximated, we call the DNN a Deep Q-Network (DQN).

Once the target action value function Qπ⋆(st, αt) (respectively state value function
V ⋆π (st)) have been successfully approximated using q̂k(st, αt,w) (respectively action
value v̂k(st,w)) we can apply any of the previously described learning methods to
obtain an estimate of the new target optimal action valueQk+1

π⋆ (st, αt) and or the state
value V k+1

π⋆ (s). Usually, the Q-learning method for n = 1 is used to update the target
values as

Qk+1
π⋆ (stm , αtm) = rtm+1 + γmax

αt+1

q̂k(st+1, αt+1,w). (57)

17Under this assumption the target is unbiased.
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When a DQN is used for the function approximation of the action value Qk(s, α) that
will later be used by the RL learning algorithm (e.g., Q-learning) for updating the
target Qk+1(s, α), is called Deep Q-Learning.

2.3.1 Policy gradients

Until now, we focused on learning the optimal action values, Q(st, αt), that maximise
the expected accumulated reward, maxαt

E[Gt]. We then established that the optimal
policy, π⋆(αt|αt), simply selects among the actions with the highest action value
α⋆t = argmaxαt

Q(st, αt). However, we have also seen cases where the policy can also
be tuned to get higher rewards more frequently (e.g., Monte Carlo control). Now, we
advance one step further and introduce a special class of policy gradient algorithms,
in which we assume that the optimal policy function can itself be approximated by
a linear combination of features θi, which constitute a vector θ. Therefore, this is a
method that uses function approximation, i.e., π(αt|st) ≈ π̂(αt|st,θ).
We will describe the policy gradient algorithm (which is called REINFORCE algo-
rithm, see [Wil92]), which provided a conceptually simple rule for updating the vector
of policy parameters θ. This rule aims at improving the expected cumulative reward
at each time step of the trajectory by modifying the parameter vector θ of the policy
π̂(αt|st,θ).
More specifically, during a trajectory, the cumulative reward for each state-action pair
st−αt is given byGt(st, αt) =

∑T−1
k=0 γ

krt+k−1(st+k, αt+k). For a stochastic policy
π(αt+k|st+k) together with stochastic dynamics of the environment p(st+k, αt+k, st+k+1)
the expected cumulative reward is equal to

Eπ [Gt|st, αt] =
T−1∑

k=0

p(st+k+1, ..., s0)γ
krt+k+1(st+k, αt+k, st+k+1) (58)

where p(st+k+1, αt+k, st+k, ..., s0) is the joint probability of a specific trajectory re-
alization up to state action pair st+k, αt+k.

We note that since the above process is a Markov process of independent events, the
above joint probability of reaching the future state st+1 following the trajectory
Tr = {s0, α0, r1, s1, α1, ..., rt+1, st+1} can be written as

p(st+1, rt+1,αt, st, ..., α0, s0) =

p(s0)π(α0|s0)p(s1, r1|s0, α0)π(α1|s1)p(s2, r2|s1, α1)

...π(αt−1|st−1)p(st, rt|st−1, αt−1)π(αt|st)p(st+1, rt+1|st, αt).

This means that the joint probability of a trajectory reaching future state st+1 and re-
ceiving reward rt+1 is the same as the product of conditional probabilities between
the sequential states, (st, st+1), following the policy of the agent π(αt|st) and the dy-
namics of the environment, p(st+1, rt+1|st, αt) i.e. finding state st+1 after performing
action αt in state st. Inserting equation 59 into equation 58 we obtain
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Eπ [Gt|st, αt] =
T−1∑

k=0

γkrt+k+1(st+k, αt+k, st+k+1)p(s1, r1|s0, α0)...

× π(αt+k|st+k)p(st+k+1, rt+k+1|st, αt)
(59)

Normally because of the environment dynamics, this information is known only for
model-based methods. We choose to approximate the agent’s policy with a set of pa-
rameters θ, i.e., π(αt|st) ≈ πθ(αt|st,θ), therefore equation (59) can be approximated
as

Eπθ
[Gt|st, αt] =

T−1∑

k=0

γkrt+k+1(st+k, αt+k, st+k+1)p(st+k+1, rt+k+1|αt+k, st+k)πθ(αt+k|st+k,θ)...

× p(s1, r1|α0, s0)πθ(α0|s0θ)p(s0).
(60)

In order to update the parameters vector, θ, towards the policy that maximises the
expected total accumulated reward at the end of the episode, we will consider the
gradient of the approximated expected accumulated value of a trajectory with respect
to this vector as

∇θEπθ
[Gt|st, αt] ≈

T−1∑

k=0

γkrt+k+1(st+k, αt+k, st+k+1)...

×∇θ [p(st+k+1, rt+k+1|αt+k, st+k)πθ(αt+k|st+k,θ)...p(s1, r1|α0, s0)πθ(α0|s0,θ)p(s0)] .
(61)

Using the logarithmic property ∇θ (log(f(θ))) = ∇θf(θ)
f(θ) for a given function f(θ),

the last expression becomes

∇θEπθ [Gt|st, αt] ≈
T−1∑

k=0

γkrt+k+1(st+k, αt+k, st+k+1)

× [p(st+k+1, rt+k+1|αt+k, st+k)πθ(αt+k|st+k,θ)...p(s1, r1|α0, s0)πθ(α0|s0θ)p(s0)]
×∇θ log [p(st+k+1, rt+k+1|αt+k, st+k)πθ(αt+k|st+k,θ)...p(s1, r1|α0, s0)πθ(α0|s0,θ)p(s0)] ,
= Eπθ [Gt∇θ (log πθ(αt+k|st+k,θ) + ...+ log πθ(α0|s0,θ))] ,

= Eπθ

[
Gt∇θ

T−1∑

k=0

log πθ(αt+k|st+k,θ)

]
. (62)

We note that in this form the gradient update does not require any knowledge of the
extraneous environment dynamics, i.e., p(st+1, rt+1|αt, st, ..., α0, s0) is not needed
to evaluate the gradient of the expected accumulated return.
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In practice, we cannot compute the expectation directly and therefore we estimate the
mean by summing over different trajectories. Thus we obtain

∇θEπθ
[Gt|st, αt] ≈

1

M

M∑

m=1

Tm∑

tm=0

γtmr(stm , αtm , stm+1)∇θ log [πθ(αtm |stm ,θ)]

(63)

Now, we can update the values of the parameter vector θ towards increasing the ex-
pected return θ = maxπθ

Eπθ
[Gt] as

θk+1 ← θk + a
M∑

m=1

Tm∑

tm=0

γtmr(stm , αtm , stm+1)∇θlog [πθ(αtm+1|stm+1,θ)],

(64)

where a is a hyperparamater (see MC method), tm is the current time at episode m,
Tm is the final time at episode m, and M is the batch size.

2.3.2 Baseline correction and Advantage function

The main problem with the REINFORCE algorithm presented above is the fact that the
estimate of the gradient update contains a lot of variance due to the limited number
of samples the method averages over. Moreover, the method inherently presents a
problem when it averages over states that lead to high rewards because of vanishing
gradients18.

We can further increase the convergence rate of the policy gradient by reducing the
variance of the gradient without changing its expected value. This can be done by
adding a baseline function b(St) into the function of the cumulative reward G. Since
this function is not a function of the policy parameters θi, it does not influence the
gradient. The addition of the baseline allows us to better differentiate between good
and very good actions. A good baseline function is the use of the state value function
V (st). This function is independent of the actions αt and consequently from the
policy parameters θi.

Using the Policy Gradient Theorem and the state value function V (st) we can replace
the cumulative reward γtr(s, α) with the Advantage function,

Aπθ
(st, αt) = Qπθ

(st, αt)− Vπθ
(st). (65)

The values of the parameter vector θ can then be updated using

θk+1 ← θk + a
M∑

m=1

Tm∑

tm=0

(Qπθ
(stm , αtm)− Vπθ

(stm))∇θlog [πθ(αtm+1|stm+1,θ)].

(66)

18In a region of the state-action space where all accumulated rewards are high, the gradient of the cumu-
lative reward estimate between the different states vanishes.
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Replacing the action value function Qπθ
(st, αt) we obtain,

θk+1 ←θk + a

M∑

m=1

Tm∑

tm=0

(r(stm , αtm , stm+1) + γVπθ
(stm+1)− Vπθ

(stm))

∇θlog [πθ(αtm |stm ,θ)], (67)

and when the action value function is used, we obtain,

θk+1 ←θk + a

M∑

m=1

Tm∑

tm=0

δ(stm , αtm , r, stm+1, αtm+1)∇θlog [πθ(αtm |stm ,θ)],

(68)

where

δ(stm , αtm , r, stm+1, αtm+1) = r(stm , αtm , stm+1) + γQπθ
(stm , αtm+1)

−Qπθ
(stm , αtm).

We note that the quantity δ(stm , αtm , r, stm+1, αtm+1) is the TD-error of the 1 step
TD learning (SARSA) algorithm (see Section 2.2.7).

2.4 Summing up
In the configuration of section 2.3.1 all the tasks, i.e., policy iteration (calculation of
the gradients) and policy evaluation (prediction, calculation of the action values) are
performed by the same algorithm. This is similar to the policy iteration scheme we
visited in the classic DP approaches (see Section 2.1.4).

The difference between these approaches and the policy gradient method is that in
order for the system to learn a policy of continuous actions we approximated the policy
π(αt|st) ≈ πθ(αt|st,θ) with a set of policy interpolation weights θ.

The biggest problem in the above approach lies in calculating the values of the action
value and state value functions (Qπθ

(αt, st), Vπθ
(st)), respectively. These functions

are not known for the whole state-action space, and performing the steps of policy
evaluation and value iteration is inefficient.

Instead of calculating the exact Qπθ
we can use an approximation - yet again - of the

action/state value function Qπθ
(st, αt) ≈ q̂(st, αt,w), (Vπθ

(st) ≈ v̂(st,w)) (see
Section 2.3). In this way, the maximum value of the action value function approxi-
mation maxαt

Qπθ(st, αt) ≈ maxαt
q̂(st, αt,w) can be used for the estimates of the

model-free algorithms (e.g., Q-learning algorithm).

Notice that the above procedure introduces three problematic elements in comparison
to the original methods of DP 19. These are:

19These are also called The deadly Triad, see [SB18].
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• Bootstrapping

• Off policy learning (e.g. due to the application of the max operator)

• Function approximations for the policy and value functions

Under these conditions, convergence is not assured and the algorithm might show
signs of oscillations in the accumulated reward and even diverge. This general diffi-
culty in RL applications leads to the need for large data sets and large training times.
Moreover, specific regression architectures need to be put in place for the combination
of the policy πθ(αt|st,θ) and action function value q̂(st, αt,w).

2.5 Actor-Critic Network (AC)
This is the most common method for handling Policy iteration and Value approx-
imation performed by the DNN. This involves an actor network that takes actions
and based on those actions accumulates rewards. In essence the actor network ini-
tializes with a random policy θ, πθ(αt|st,θ) and runs a set of trajectories inside the
state-action space (st, αt) of the problem, accumulating rewards, rt+1, and visiting
different future state-action pairs (st+1, αt+1).

As we discussed in the policy gradients and in the summary sections (see Sections
2.3.1 and 2.4), the approximation of the predicted action values
Qπθ

(st, αt) ≈ q̂(st, αt,w) needs to be used. This is done thanks to the separate DQN
which is called the critic.

The DQN is also initialized with random weightsw and uses the next states, st+1, ac-
tions, αt+1, and rewards, rt+1, obtained by the actor network20, to find the maximum
action value estimates q̂k(st+1, αt+1,w).

The DQN network then calculates the maximum target action values q̂k+1(st, αt,w)
based on one of the algorithms of RL (Control, e.g Q-Value iteration, MC-control,
SARSA and Q-learning)21. The DQN uses and applies the loss function between the
target values and the actual predicted values of the action value function
L
(
q̂k+1
w (st, αt)− q̂kw(st+1, αt+1)

)
, where L = ∥ · ∥p is a norm. Then it calculates

the gradient of the loss to train the weights (see also Chapter 7 - Artificial Neu-
ral Networks: layer architectures, optimizers and automatic differentiation and
Chapter 8 - Artificial Neural Networks: advanced topics for more details).

The converged values of the critic are then used to predict the values of action value
function for the current state of the actor q̂kw(st, αt) in the policy gradient estimation.
The procedure repeats until the maximum reward is reached.

There are different variants of the AC network. For instance, instead of calculating
the loss function of the actor with respect to the action value approximation, we can
use the advantage function (see Section 2.3.2). The change between the actor-critic

20We emphasize that the actor uses the policy πθ(αt|st,θ) to get st+1, αt+1, rt+1.
21We emphasize that the policy used by the DQN is an ε-greedy policy when Q-Value iteration, MC-

control or SARSA are used and a plain greedy policy when Q-learning is used.
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(AC) and the Advantage actor-critic A2C is minimal if someone uses the SARSA
algorithm in the critic network (see Section 2.2.7) and monitors the updates between
q̂k+1
w (st, αt) − q̂kw(st+1, αt+1). In the advantage actor-critic (A2C) the updates of

the policy gradients are done using the error δ of the SARSA algorithm in the policy
gradient. We will use this network in the next Section for controlling two different
applications in Geomechanics.

3 Applications to Geomechanics

In this Section, we will present two interesting applications of earthquake prevention.
In the first, a reduced model of earthquakes (the so-called spring-slider model) will be
presented for avoiding a fast-slip behaviour. In the second, a geothermal reservoir is
introduced to prevent seismicity rate while keeping energy production. In both exam-
ples, an RL method will be used to design a linear control and prevent earthquake-like
behaviour. But first, we will start by giving a short introduction to Control Theory.

3.1 Control Theory: The basics
Control theory, a discipline within control engineering and applied mathematics, fo-
cuses on managing dynamical systems in engineered processes and machines. The
primary goal of control theory is to establish models or algorithms that govern the ap-
plication of system inputs, enabling the system to achieve a desired state or behaviour.

In this chapter, we will only talk about closed-loop control22. Such kind of control
requires measuring an output from the system, calculating an error with respect to a
desired reference, and then taking actions with an input depending on such signal,
taking the states to a desired reference. The algorithm that gets the output as a feed-
back from the system and generates the signal for the input of the system is called a
controller. This explains the name of closed-loop control (see Fig. 19). Therefore, in
real applications, a control process requires elements to measure signals (sensors) and
actuators to be the input of the system (e.g., motors and valves).

Ktesibios of Alexandria is recognized as the inventor of float valves during the 3rd cen-
tury BC. These valves were designed to regulate the water level of water clocks, mark-
ing a significant milestone as the earliest recorded instance of a controlled process in
human history. In such an example, the water clock is the system to-be-controlled, the
output is the position of the float valves, the reference is the desired water level, and
the valve is the actuator.

Control theory can be classified depending on the system (linear and nonlinear), the
number of inputs and outputs (Single-Input-Single-Output, Multiple-Input-Multiple-
Output and its combinations), the design (classical using transfer functions or modern
using state-space representation), or if there exist perturbations in the model (robust
and non-robust), to name a few (see [Oga10, Kha02, SEFL14] for more details). We

22Open-loop control, in contrast, is the one that does not depend on the output of the system.
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Figure 19: A typical control system diagram.

will only introduce the most known controller: the Proportional-Integral-Derivative
(PID) control.

Consider the next (very simple) second-order linear system

ẋ1 = x2,

ẋ2 = u,

y = [x1, x2]
T

(69)

where y is the output and u is the input of the system. Such a system can be seen
as a mechanical system, where x1 represents a mass position, x2 its velocity and u
represents an acceleration that we can control. The objective is to take the displace-
ment to a constant reference, r, by designing correctly the control input u. A classical
approach is to take the system to its error dynamics by introducing the next change of
coordinates: e1 = x1 − r, e2 = x2 − ṙ = x2, obtaining the next system

ė1 = e2,

ė2 = u.
(70)

System (69) and (70) seem to be exactly the same, but there is a fundamental differ-
ence: if we can design u in system (70) to take the states, e1, e2, to zero, we will
solve the main goal of taking the original states, x1, x2, in system (69) to the desired
reference r. This is due to the introduced change of coordinates. For that purpose, let
us present the PID control as

u = −k1e1 − k2e2 − k3ζ,
ζ̇ = e1,

(71)

where k1, k2, k3 are control gains to be designed. Note how the PID takes the output
y = [x1, x2]

T in its design. This linear control takes the present (the proportional part
e1), the past (the integral part ζ) and the future (the derivative part e2) of the error to
drive it to zero. The question is, how can I design the three gains? Let us obtain the
closed-loop system by substituting the PID control (71) in system (70) as

ė1 = e2,

ė2 = −k1e1 − k2e2 − k3ζ,
ζ̇ = e1.

(72)
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The first thing that we notice is that the PID added another state to the system due to the
integral part. Using simple linear algebra, we can obtain the characteristic equation of
the system as λ3+λ2k2+λk1+k3 = 0, where λ represents the characteristics values
of the system. In order to have exponential stability, i.e., the three states e1, e2, ζ will
tend to zero exponentially, the characteristic values must have a negative real part.
This can be solved, e.g. by the Routh-Hurwitz criterion [Oga10], obtaining the next
design rules for the gains

k1 > 0, k2 > 0, k3 < k1k2. (73)

Note how the selection of the gains to have exponential stability is very general and
the final choice can be done by adding more requests for the stabilization, like choos-
ing the exact characteristic values of the system by selecting desired time response
(how fast we want to reach the origin) and the overshoot (maximum peak value of the
response curve measured from the desired reference), to name a few.

In more realistic applications, the gain selection is not as easy to perform due to many
factors, like nonlinearities, perturbations, unmodelled dynamics or noise. In the fol-
lowing, we will apply the PID control for two different applications of Geomechanics.
Due to the challenging nature of such systems, we will use an RL algorithm to select
the best gains for each application.

3.2 Reduced Model for Earthquakes: The spring-slider
The dynamics of earthquakes can be represented, in average/energetical sense, with
the spring-slider analogue system (see [Ste19, Ste20, Sch02, KB04, TBS21, GOTSP23])
depicted in Fig. 20.

average pressure 

over a seismic fault 

done to overburden

mobilized mass of rocks 

during an earthquake

effective

contact area
frictional

stress

apparent elasticity

of the host rock

apparent viscosity

of the host rock

far-field motion

of the tectonic plates

slip and

slip-rate

fault

injection

of fluid

Figure 20: Reduced mechanical model for reproducing earthquake-like instabilities.
Figure extracted from [GOTSP23].

This mechanical system consists of a mass, m, which slides on a frictional interface
(equivalent to a seismic fault). The mass is connected to a Kelvin-Voigt configuration
composed of a spring with stiffness k (equivalent to the apparent elasticity of the host
rock) and a dashpot with damping coefficient η (equivalent to the apparent viscosity
of the host rock). At the other extremity of the Kelvin-Voigt configuration a constant
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velocity, ν∞, is applied (equivalent to the far-field motion of the tectonic plates). It is
assumed Coulomb friction with a friction coefficient µ(δ, δ̇) that depends on the slip δ
(block’s displacement) and the slip-rate δ̇ (block’s velocity). According to Terzaghi’s
principle, the frictional stress τ takes the following form: τ = µ(δ, δ̇) (σ ′

n − p), where
σ ′

n is the constant/reference average effective stress (e.g., the overburden due to the
weight of the rocks and the interstitial fluid pressure) and p the fluid pressure devel-
oped due to injecting fluid. p is the input to the system for which the controllers will
be designed and tested.

According to [Sch02] and [KB04], approximately a rock mass of volume L3
ac is mobi-

lized during an earthquake event, where Lac is equal to the length of the seismic fault.
Therefore, the mobilized mass during an earthquake event is m ≈ ρL3

ac, where ρ is
the density of the surrounding seismic fault rocks. The fault length can be calculated
as Lac = G/k̄, where G is the shear-modulus of the host rock and k̄ = k/L2

ac, its appar-
ent normalized elastic stiffness. The damping coefficient η is given by η = 2ζmωn,
where ζ is the damping ratio and ωn =

√
k/m, the natural frequency of the reduced

system.

The system in Fig. 20 can be represented in a state representation by the following
mathematical model [Ste19, Ste20, TBS21, GOTSP23]

ẋ1 = x2,

ẋ2 = −[µ(x1, x2)− µ∗]N̂σ′
n + µ(x1, x2)N̂p− k̂x1 − η̂x2,

(74)

where x1 = δ and x2 = δ̇ are the state variables, N̂ = A/m, k̂ = k/m, η̂ = η/m, and
A ≈ L2

ac is the effective contact area (fault rupture area). The term µ∗ represents an
initial shifting in the frictional term which results in the system being on the verge of
slip (it will start moving) if µ∗ = maxµ(x1, x2).

In this work, the friction coefficient µ(x1, x2) is defined as

µ(x1) = µres −∆µ · e−x1/dc , (75)

with ∆µ < 0. Such function is defined as a slip-weakening friction law [KB04]
and it evolves from an initial value µmax = µres − ∆µ (static friction coefficient),
to a residual one µres (kinetic friction coefficient) in a characteristic slip dc. This
will define our term µ∗ as µ∗ = µmax = µres − ∆µ. Notice that such a choice of
friction coefficient was made for this academic example. Indeed, the exact frictional
rheology is not known in real applications, which creates the need for the design of
robust controllers23. All the parameters of the reduced model for earthquakes (see eq.
(74)) are given in Table 5.

Note that system (74) has an equilibrium point24 at the origin x∗1 = x∗2 = 0, when
p = 0. According to the nominal studies of [Ste19, Sch02, Die79, GOTSP23], a

23A controller that copes with some uncertainties, i.e., unknown system parameters, or disturbances, i.e.,
an external dynamics affecting the system, is called a robust controller.

24We call as equilibrium point to the point, x, in the state space where the derivatives are zero, i.e., ẋ = 0.
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Table 5: Mechanical and frictional properties adopted for the simulations

Parameter Description Value
ρ density 2500 [kg/m3]
G shear modulus 30 [GPa]
η damping coefficient 5× 1014 [kg/s]
Lac activated fault length 5 [km]
σ′
n effective normal stress 50 [MPa]

µres residual friction 0.2353
∆µ friction drop -0.1
dc characteristic slip distance 276.35 [mm]
dmax maximum displacement 785 [mm]
top operation time 600 [s]
Ts sampling time 0.5 [s]
M0 seismic moment 6.25× 1017 [Nm]
Mw seismic magnitude 5.8

dynamic instability (a fast-slip behaviour) will take place when the elastic unloading
of the springs or the apparent viscosity of the host rock cannot be counterbalanced
by friction. This is exactly what happens for system (74), (75), when there is no
control (p = 0) and when the system parameters are chosen as in Table 5. Fig. 21
shows the fast-slip (earthquake-like) behaviour of such a system, corresponding to an
earthquake of magnitude Mw = 5.8. The slip, x1, evolves from an initial state to
a maximum displacement, dmax, due to the high value of the slip rate (x2 ≈ 0.075
[m/s]). The simulation was performed in 3Python with an implicit solver (BDF) and
saving values every Ts = 0.5 [s]. The prevention of such fast slips is the main goal in
the following.
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Figure 21: Earthquake-like behaviour in the spring-slider model. The elastic stored
energy is released abruptly in the form of kinetic energy, creating a fast slip. Note that
such behaviour lasts only a couple of seconds.
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3.2.1 Control Objective

As shown in system (74) and Fig. 20, the fluid pressure p is the only input acting
on the dynamics of the mechanical system. In a real-scale scenario, fluid injections
in the earth’s crust change the fluid pore pressure over seismic faults [CSC+19]. As
shown in [TBS21, GOTSP23], among others, this can destabilize the fault system
and induce/trigger larger earthquakes. To prevent this, one could adequately adjust
the fluid pressure (input p) by employing control techniques in order to stabilize the
system (74) origin and/or track a reference input signal, releasing the stored elastic
energy smoothly (x1 evolving slowly), and not abruptly.

Therefore, the objective in the following is to design a control law p driving x1 and
x2 in system (74) to follow some desired predefined references of slow slip rate,
r(t), ṙ(t), resulting in a slow-aseismic response, without the knowledge of the sys-
tem parameters or its dynamics. The designed control will reduce the natural re-
sponse time of the system slowing its energy dissipation and eliminating bursts of
kinetic energy (earthquake phenomenon).

The desired reference for the output y = x1 is a smooth function reading as

r(t) = dmaxs
3(10− 15s+ 6s2), ṙ(t) = 3dmax

s2

top
(10− 20s+ 10s2), (76)

where s = t/top, dmax the target displacement and top the operational time of the
tracking strategy. The constant dmax is the distance the fault slides dynamically in
order to reach the next stable equilibrium point. Notice that the parameter top is free
to be decided depending on the earthquake control scenario that one wants to apply.
Nevertheless, top has to be sufficiently high with respect to the characteristic time
of the earthquake phenomenon, but low enough to achieve aseismic slip with higher
velocity than the far-field velocity (v∞ in Fig. 20), for the control scenario to make
sense. The chosen parameters of the reference can be seen in Table 5.

The choice of the reference output y = x1 is motivated by the need to control the
average slip over the fault. This average slip is directly connected with the magnitude
of an earthquake through the seismic moment [KB04]. Therefore, by controlling the
rate of the average slip, the system is forced to release its energy in a quasi-static way,
i.e., aseismically. See [Ste19, ST22, GOTSP23] for more details.

3.2.2 Control Design

As we did before, and following [GOTSP23], we will define the tracking error vari-
ables as

e1 = x1 − r, e2 = x2 − ṙ. (77)

Note that if we design the input p in (74) such that e1, e2 tend to zero, we will do
exactly what we want it, to force the slip and slip-rate to follow a reference that allows
the slow dissipation of energy.
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Let us study the error dynamics to see how the control p affects the new states e1, e2.
Such dynamic is written as

ė1 = e2,

ė2 = −[µ(e1 + r)− µ∗]N̂σ′
n + µ(e1 + r)N̂p− k̂(e1 + r)− η̂(e2 + ṙ)− r̈,

(78)

which is practically the same as (74) except for the new terms due to the reference and
its derivatives.

If the exact knowledge of the system parameters and the system dynamics would be
available, all the known dynamics in ė2 could be fought with the input

p =
u+ [µ(e1 + r)− µ∗]N̂σ′

n + k̂(e1 + r) + η̂(e2 + ṙ) + r̈

µ(e1 + r)N̂
, (79)

to get the same (very simple) error system as in (70). For that case, we know that if
we design the control input u as in (71), the errors would tend to zero by selecting
the gains as in (73). This is obviously not the case in real applications where we
can not know exactly the system parameters or its dynamics, making it impossible to
implement the control (71),(79).

In [GOTSP23], a feedback control was designed with the knowledge of some nominal
values of the system parameters and with some knowledge of the dynamics. However,
the objective here is to design a controller, p, without any information on the system.

We will define our control, p, as the PID of equation (71), i.e.,

p = −k1e1 − k2e2 − k3ζ,
ζ̇ = e1.

(80)

As discussed before, such linear control has three parts in order to drive the errors to
zero, if the reference signal to be followed is constant. This is clearly not our case
since the reference was chosen as (76). Nevertheless, as we will show later, such
control will be enough to keep the states, x1, x2, close to the references, r, ṙ, avoiding
the earthquake-like behaviour.

Due to the fact that we do not know anything about the error dynamics (78), we can
not design the gains of the control (80) in a conventional way (e.g., pole location,
Lyapunov-based or frequency-based [Oga10, Kha02]), For that purpose, we will use
an RL approach in order to select the best possible gains to maximize a reward based
on the error variables, dissipating slowly the stored energy of an earthquake. We will
start by creating our environment, the Spring-Slider.

This application can be seen as the continuation of [PS21], where an RL approach
was also used to avoid earthquake-like behaviour in the spring-slider, but without
designing a control algorithm a priori, like the PID in (80).
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3.2.3 Spring-Slider as environment

In order to train and implement our RL algorithm, an OpenAI Gym-based environ-
ment of the Spring-Slider will be constructed (see https://www.gymlibrary.dev/
content/environment_creation/ for more details on creating a custom environ-
ment).

For the spring-slider system (74) and the control input (80), we define as observations
the states x1, x2 and the integral action ζ. The actions will be defined as the control
gains k1, k2, k3. Therefore, the first step is to define the space of the observations and
actions.

1 #Action space will be the minimum and maximum values of the gains k1, k2 and k3

2 springslider_action_space = gym.spaces.Box(low=np.array([0, 0, 0]),

3 high=np.array([1e8, 1e8, 1e7]), dtype=np.float64)

4

5 #Observation space will be the minimum and maximum values of the states x1 (slip),

6 #x2 (slip-rate) and the integral action

7 springslider_obs_space = gym.spaces.Box(low=np.array([0, -1e-1, -1e2]),

8 high=np.array([800e-3, 1e-1, 1e2]), dtype=np.float64)

Note how we chose high values for the gains to try to compensate for all the unknown
dynamics. Next, we define a function for the dynamics of the system, where we have
used all the system parameters shown in Table 5:

1 def rhs(t,y,p):

2 #System parameters

3 rho = 2500 #[kg/m^3]

4 G = 30e9 #[Pa]

5 eta = 5e14 #[kg/s]

6 Lac = 5e3 #[m]

7 sigma = 50e6 #[Pa]

8 mu_res = 0.2353 #[-]

9 delta_mu = -0.1

10 dc = 276.35e-3 #[m]

11 A = Lac**2 #[m^2]

12 m = rho*Lac**3 #[kg]

13 k = Lac*G #[N/m]

14

15 #Reference signal

16 s = t/top

17 ref = dmax*s**3*(10-15*s+6*s**2)

18

19 #Spring-Slider states

20 x1 = y[0]

21 x2 = y[1]

22

23 #Tracking error

24 e1 = x1-ref

25

26 #Friction coefficient

27 mu = mu_res-delta_mu*np.exp(-np.abs(x1)/dc)

28
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29 #Spring-Slider dynamics

30 x1d = x2

31 x2d = -(mu-(mu_res-delta_mu))*A*sigma/m +mu*A*p/m - k*x1/m - eta*x2/m

32

33 #Integral extension

34 integrald = e1

35

36 return np.hstack((x1d,x2d,integrald))

Then, we can define our class (environment) “SpringSlider” as

1 class SpringSlider(gym.Env):

2 def __init__(self):

3 self.action_space = springslider_action_space

4 self.observation_space = springslider_obs_space

5

6 self.dmax = dmax #[m]

7 self.tau = tau #[s]

8 self.top = top #[s]

9

10 def observation(self):

11 return np.array([self.state[o] for o in self.observations])

12

13 def reset(self):

14 self.state = np.array([np.random.uniform(0,5e-4),np.random.uniform(0,1e-4),0])

15 self.t = 0

16 return self.state

17

18 def step(self, action):

19 #States and gains

20 x1, x2, integral = self.state

21 k1, k2, k3 = action

22

23 #Reference signals and errors

24 s = self.t/self.top

25 ref = self.dmax*s**3*(10-15*s+6*s**2)

26 refd = 3*self.dmax*s**2*(10-20*s+10*s**2)/self.top

27

28 #Tracking errors

29 e1 = x1-ref

30 e2 = x2-refd

31

32 #PID control

33 p = -k1*e1 - k2*e2 -k3*integral

34

35 #Solution of the system dynamics at every step tau

36 sol = solve_ivp(rhs, y0=np.hstack((x1,x2,integral)),

37 t_span=[self.t, self.t+self.tau], args=[p], method="BDF", t_eval=[self.t+self.tau])

38 x1,x2,integral=sol.y[:,-1]

39 self.t += self.tau

40 self.state = (x1, x2, integral)

41

42 #Norm of the errors and its condition for the reward

43 Gamma = np.sqrt(e1**2+e2**2)
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44 reward1 = np.exp(-Gamma)

45

46 #Norm of the gains and its condition for the reward

47 Gamma_k = np.sqrt(k1**2+k2**2+k3**2)

48 max_k = np.sqrt(env.action_space.high[0]**2+env.action_space.high[1]**2

49 +env.action_space.high[2]**2)

50 reward2 = 1-Gamma_k/(max_k)

51

52 #Total reward

53 alpha = 0.5

54 reward = (1-alpha)*reward1+alpha*reward2

55

56 #Conditions to stop the simulation

57 done = (self.t >= self.top or np.abs(x2)>3e-3)

58

59 return np.squeeze(self.state), reward, done, {}

60

61 def close(self):

62 self.isopen = False

We defined the observation and the reset functions, where we choose random numbers
for the slip and slip-rate, and zero for the integral action, as initial conditions. The
solution of the spring-slider and the integral extension dynamics will be obtained at
every step using an implicit solver (“BDF”). The reference and its derivative have
been designed as (76) and the control p has been designed as (80). Finally, the reward
system has been selected depending on the norm of the errors

Γ(t) =
√
e21 + e22, (81)

and the norm of the control gains

Γk(t) =
√
k21 + k22 + k23, (82)

as

reward = (1− α)e−Γ(t) + α

(
1− Γk(t)

maxΓk

)
, α ∈ [0, 1]. (83)

The first term gives rewards depending on how close the states are to the references,
while the second gives rewards for using less control magnitude (smaller control
gains). Furthermore, the conditions to finish the episode (the variable called ”done”)
are when the time is equal to the operational time, top, or the velocity is bigger than
a certain value. This last condition will force the ML algorithm to learn to avoid the
fast-slip behaviour.

One can perform a simulation for the environment without control with the next code
lines:

1 #Define the environment as the Spring Slider and check the initial state

2 env = SpringSlider()

3 obs = env.reset()
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4

5 #Define the case without control, i.e., with the gains equal to zero

6 action=np.array([0,0,0])

7 nsteps=int(top/tau)

8

9 #Store the states and the time in a variable

10 x1sc = np.zeros(nsteps+1); x1sc[0] = obs[0]

11 x2sc = np.zeros(nsteps+1); x2sc[0] = obs[1]

12 integralsc = np.zeros(nsteps+1); integralsc[0] = obs[2]

13 tsc = np.arange(nsteps+1)*tau

14

15 #Simulation from t=0 to t=t_{op}

16 for step in range(nsteps):

17 obs, reward, done, info = env.step(action)

18 x1sc[step+1]=obs[0]

19 x2sc[step+1]=obs[1]

20 integralsc[step+1]=obs[2]

In this case, the states and the time are stored in the variables x1sc, x2sc, tsc, where
plots can be obtained to check the earthquake-like behaviour of the system (Fig. 21
has been obtained with this procedure).

3.2.4 Deep Deterministic Policy Gradient algorithm

The DDPG [LHP+19] was chosen as RL to select the best control gain, k1, k2, k3 in
(80) to maximize the reward system described previously. Such algorithms present an
Actor-Critic network in order to train a continuous action. This is our case because
the PID gains must be chosen according to (73). As explained in Section 2.5, the
NN that parametrizes the Q-function is called “the critic”, but it exists also the NN of
the policy, which is called “the actor”. The policy is basically the agent behaviour, a
mapping from state to action (in the case of deterministic policy) or a distribution of
actions (in the case of stochastic policy).

The parameters of the policy network have to be updated in order to maximize the
expected accumulated reward E[Gt] defined in the policy gradient theorem, while
the parameters of the critic network are updated in order to minimize the temporal
difference loss (see Section 2.2.7 for more details on TD).

The actor takes the state as input to give an action as output, while the critic takes both
state and action as input to give as output the value of the Q function. The critic uses
gradient temporal-difference learning while the actor parameters are learned following
the policy gradient theorem. The main idea behind this architecture is that the policy
network acts producing an action and the Q-network criticizes that action.

The DDPG has been trained for 200 episodes and implemented in the constructed
environment. These simulations were made in 3Python using a sampling time of
Ts = 0.5 [s]. The results are shown in Figs. 22-23. The slip and slip-rate are close
to the reference and its derivative, maintaining the norm of the errors below a certain
value. The slip-rate has been made slower (one order of magnitude smaller!) than the
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earthquake-like behaviour shown in Fig. 21, obtaining a slow aseismic behaviour. The
control signal generated is shown in Fig. 23 and it is the result of the RL algorithm.
Although the states always present an error in the tracking (see norm of the error in
Fig. 23), these results fulfilled the task of avoiding the fast slip of the original system,
by designing a control without the knowledge of any of the system parameters or its
nonlinear dynamics.

0 100 200 300 400 500 600
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sl
ip

 [m
]

x1(t)

r(t)

0 100 200 300 400 500 600
Time [s]

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Sl
ip

-ra
te

 [m
/s

]

x2(t)

ṙ(t)

Figure 22: Output tracking of a slow reference due to the linear control and the re-
inforcement learning approach. Note how the slip and slip-rate follow the desired
reference releasing the stored energy one order of magnitude slower than the fast slip
behaviour of Fig. 21.
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Figure 23: Norm of the tracking error, Γ(t) and control signal generated by the PID
controller. The control signal was generated by the selection of gains performed by
the DDPG algorithm, keeping the norm of the tracking error very close to zero.

3.3 Controlling induced seismicity in a Geothermal Reservoir
In the context of an Enhanced Geothermal System (EGS) [Cor19], one of the objec-
tives is to enhance the permeability between two wells by creating a network of small
cracks. These cracks facilitate the circulation of fluids between the wells, promoting
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efficient energy extraction. However, the creation of these cracks is often accompanied
by localized microseismic activity in the vicinity of the wells. This microseismicity is
considered desirable as long as it does not significantly impact the overall seismicity
rate over the larger region of the reservoir.

Let’s consider an underground reservoir situated approximately 4 [km] below the
Earth’s surface, as illustrated in Figure 24. This reservoir consists of a porous rock for-
mation that allows the flow of fluids through its pores and fractures. In our example,
the reservoir has a thickness of approximately 100 meters and extends horizontally
across a square surface with dimensions of approximately 5 [km] by 5 [km]. Within
the reservoir, there are various injection points where wells are used to inject and/or
extract fluids, such as water, as depicted in Figure 24. For the sake of simplicity, the
term ”injection of fluids” will encompass both the injection and extraction of fluids
from the reservoir.

Geothermal reservoir

Injection points

Well

Dz=0.1 [km]

D=5 [km]

Earth's surface

x2
x1

x33-4 [km]

Figure 24: A diagram illustrating an underground reservoir with a thickness of ap-
proximately 100 meters and covering a square surface of dimensions approximately 5
[km] by 5 [km]. There are injection points marked within the reservoir where fluids
are being injected and/or extracted using wells.

When fluids are pumped deep into the reservoir, it induces the circulation of fluids
within the reservoir, resulting in the deformation of the surrounding porous rock. The
hydro-mechanical behaviour of the reservoir, caused by the injection of fluids at depth,
can be effectively described by Biot’s theory [Bio41]. According to this theory, the
diffusion of fluid and the deformation of the porous rock are dynamically coupled
processes. However, under certain conditions, if the injection rates are sufficiently
slow compared to the characteristic times of the system, considering the effects of
inertia, and if the volumetric strain rate of the porous rock is negligible, the diffusion
of fluid in the host rock due to fluid injections can be accurately approximated using a
three-dimensional (3D) diffusion equation [ZCB80].

It is nowadays well established that injecting fluids into the Earth’s crust can lead to
the creation of new seismic faults and the reactivation of existing ones, resulting in
significant earthquakes (refer to [RM15], [KSAC13], and [Zas19] for further infor-
mation). The underlying physical mechanism behind these induced seismic events is
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Table 6: Diffusion and Seismicity rate system parameters

Parameter Description Value and Units
chy Hydraulic diffusivity 3.6× 10−4 [km2/hr]
D Reservoir length 5 [km]
Dz Reservoir depth 0.1 [km]
Qs1 Static flux 0.32 [m3/hr]
β Mixture compressibility 1.2× 10−4 [1/MPa]
Vw Volume of the well 0.1 [km3]
µ Friction coefficient 0.5 [-]
τ̇0 Background stressing rate 1× 10−6 [MPa/hr]
ta Characteristic decay time 500100 [hr]

closely related to changes in stress within the surrounding rock caused by the fluid
injections. These changes can either increase the loading on existing faults or reduce
the friction along these faults or newly formed discontinuities. In other words, fluid
injections contribute to an elevated seismicity rate in a particular region, referring to
the increased number of earthquakes occurring within a given time frame (for more
detailed information on seismicity rate, refer to [SL15] and [Die94]).

To illustrate this mechanism, let us consider an injection of Qs1 = 0.32 [m3/hr]25

through a single injection well as shown in Figure 25. In this numerical example, we
consider the parameters of Table 6. We then calculate the seismicity rate,R1, R2, over
two distinct regions, one over the whole reservoir and one close to the injection point
(see regions V1, V2, respectively, in Figure 25, bottom).

In Figure 25 (top) we plot the seismicity rate in both regions as a function of time.
We observe that the maximum seismicity rate over V1 is equal to R1 = 45.91, which
means that 45.91 more earthquakes of a given magnitude are expected over region V1.
The seismicity is even higher (but finite) close to the injection well.

3.3.1 Control Design

In this application, the control problem focuses on achieving a specific control objec-
tive: to deliberately increase the seismicity rate in a small region surrounding certain
wells while maintaining a constant seismicity rate over the broader area of the reser-
voir. The aim is to actively manage and control the localized seismic activity, ensuring
that it remains within acceptable limits while optimizing the circulation of fluids and
energy production in the EGS.

Consider two new control wells, Qc1 , Qc2 , that will be the input of the system (see
Fig. 26 for the localization of such control wells in the reservoir). We then perform
a similar procedure as in the Spring-Slider application to tune two PID control (one

25We use the notation Qs for a static or fixed flux input and Qc for a controlled pressure flux input. Do
not confuse them with the action value function Q(st, αt).
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Figure 25: Seismicity rate in both regions, V1, V2 (left). Pressure’s reservoir after 3
[years] (right). Both results were obtained with a constant injection rate, Qs1 .

for each control input) with the DDPG algorithm to regulate the two seismicity rates
of the previously detailed regions V1, V2 in two constant values r1 = 5, r2 = 1.
The results are shown in Figs. 26–27. We achieve the goal of maintaining a constant
seismicity rate of 5 in the small region V1 while avoiding induced seismic events in the
surrounding region V2. These results are obtained much faster than the case without
control, where the steady state is achieved in 3 [years] (36 [months]) and in this case,
it is achieved in 30 [months] (see Fig. 25 for comparison). Therefore, our strategy is
able to change the response time of the system! The control signals generated are the
result of the DDPG as before, and the norm of the tracking errors is not zero but is
maintained very close to the origin.
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Figure 26: Seismicity rate in both regions, V1, V2 (left). Pressure’s reservoir after 30
[months] (right). Both results were obtained by adding two control wells.
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This work is a preliminary result. All the details of the calculations and more interest-
ing case studies of the geothermal reservoir are presented in [GOS23].

4 Conclusions

In this chapter, we have introduced the basic concepts of Reinforcement Learning
(RL). Starting from the framework of Dynamic programming, we presented the Bell-
man Equations, the Policy Improvement Theorem and the Bellman optimality condi-
tions. Finally, we presented the model-based methods of policy iteration and value
iteration for finding the optimal state, action values and the determination of the opti-
mal policy.

We expanded the presentation of Dynamic programming to the stochastic case and
we introduced the framework of Markov Decision processes which generalises the
notions of dynamic programming to the stochastic case.

When we don’t have complete knowledge of the dynamics of the environment the
model based methods of dynamic programming cannot be used. For this reason, we
presented a second class of model free algorithms that can optimise the state and ac-
tion value functions of the Dynamic Programming problem. Here we presented the
algorithms of Monte-Carlo, Temporal differences and Q-learning.

When the number of states and actions in the problem at hand becomes large, the op-
timization of the values of the state and action value functions of the problem by the
above model-free methods becomes intractable. For this reason, function approxima-
tion techniques are used to predict the values of the state and action value functions.
These values are then used together with the model-free algorithms to improve the
estimates of the state and action value functions.

Finally, based on the function approximation of the policy we presented the method
of policy gradients that aims to improve the policy in order to maximize the expected
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state and action values. The methods of direct function approximation of the optimal
value functions and the policy gradient algorithm can be used together to provide a
powerful actor-critic algorithm suitable for problems with continuous state and action
spaces.

Based on an actor-critic network algorithm, we have presented two applications of
geomechanics for preventing seismic events without the knowledge of the system dy-
namics or its parameters. In the first one, a reduced-order model for earthquakes is
introduced and the designed control is able to release the stored energy in a slow man-
ner, preventing the fast slip of an earthquake. In the second application, a geothermal
reservoir is studied and controlled for preserving energy production, while preventing
seismic events in the surrounding area.

The present chapter opens the possibility of more applications in the earthquake pre-
vention field (presence of delays, noise in the sensors, uncertainties in the system
parameters, to name a few), thanks to the ability to handle complex and unstructured
environments of the RL algorithms.
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[Gér22] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow. ” O’Reilly Media, Inc.”, 2022.

[GOOSP23] Diego Gutiérrez-Oribio, Yury Orlov, Ioannis Stefanou, and Franck
Plestan. Robust boundary tracking control of wave PDE: Insight on forc-
ing slow-aseismic response. Systems & Control Letters, 178:105571,
2023.

[GOS23] Diego Gutiérrez-Oribio and Ioannis Stefanou. Robust Tracking for a 3D
Diffusion Equation: Controlling Seismicity Rate in Geothermal Reser-
voirs. Control Engineering Practice (submitted), 2023.

Stathas, Gutiérrez-Oribio & Stefanou 441

ALERT Doctoral School 2023



[GOSP22] D. Gutiérrez-Oribio, I. Stefanou, and F. Plestan. Passivity-based control
of underactuated mechanical systems with Coulomb friction: Applica-
tion to earthquake prevention. arXiv:2207.07181, 2022.

[GOTSP23] Diego Gutiérrez-Oribio, Georgios Tzortzopoulos, Ioannis Stefanou, and
Franck Plestan. Earthquake control: An emerging application for robust
control. theory and experimental tests. IEEE Transactions on Control
Systems Technology, 31(4):1747–1761, 2023.

[KB04] H. Kanamori and E. E. Brodsky. The physics of earthquakes. Reports
on Progress in Physics, 67(8):1429–1496, 2004.

[Kha02] H. Khalil. Nonlinear Systems. Prentice Hall, New Jersey, U.S.A., 2002.

[KSAC13] K. M. Keranen, H. M. Savage, G. A. Abers, and E. S. Cochran. Poten-
tially induced earthquakes in Oklahoma, USA: Links between wastew-
ater injection7 and the 2011 Mw 5.7 earthquake sequence. Geology,
41(6):1060–1067, 2013.

[Lap18] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern
RL methods, with deep Q-networks, value iteration, policy gradients,
TRPO, AlphaGo Zero and more. Packt Publishing Ltd, 2018.

[LHP+19] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv:1509.02971, 2019.

[Oga10] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, New
Jersey, USA, 2010.

[Ope23] OpenAI. Gpt-4 technical report. arXiv:2303.08774, 2023.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[Pic17] Moxie Pictures. AlphaGo - The Movie. https://www.youtube.com/
watch?v=WXuK6gekU1Y, 2017.

[PS21] Efthymios Papachristos and Ioannis Stefanou. Controlling earthquake-
like instabilities using artificial intelligence. arXiv:2104.13180, 2021.

[RM15] J. L. Rubinstein and A. B. Mahani. Myths and facts on wastewater injec-
tion, hydraulic fracturing, enhanced oil recovery, and induced seismicity.
Seismological Research Letters, 86(4):1060–1067, 2015.

442 Machine Learning (ML) in Geomechanics

ALERT Doctoral School 2023



[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[SBW92] R.S. Sutton, A.G. Barto, and R.J. Williams. Reinforcement learning
is direct adaptive optimal control. IEEE Control Systems Magazine,
12(2):19–22, 1992.

[Sch02] C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge
University Press, USA, 2002.

[SEFL14] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant. Sliding Mode
Control and Observation. Intuitive theory of sliding mode control.
Birkhauser, New York, USA, 2014.

[SHS+17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. arXiv:1712.01815, 2017.

[SL15] Paul Segall and S Lu. Injection-induced seismicity: Poroelastic and
earthquake nucleation effects. Journal of Geophysical Research: Solid
Earth, 120(7):5082–5103, July 2015.

[SSZ+22] Md Tanzil Shahria, Md Samiul Haque Sunny, Md Ishrak Islam Zarif,
Jawhar Ghommam, Sheikh Iqbal Ahamed, and Mohammad H Rah-
man. A comprehensive review of vision-based robotic applications:
Current state, components, approaches, barriers, and potential solutions.
Robotics, 11(6):139, 2022.

[ST22] Ioannis Stefanou and Georgios Tzortzopoulos. Preventing instabili-
ties and inducing controlled, slow-slip in frictionally unstable systems.
Journal of Geophysical Research: Solid Earth, 127(7):e2021JB023410,
2022.

[Ste19] I. Stefanou. Controlling anthropogenic and natural seismicity: Insights
from active stabilization of the spring-slider model. Journal of Geophys-
ical Research: Solid Earth, 124(8):8786–8802, 2019.

[Ste20] I. Stefanou. Control instabilities and incite slow-slip in generalized
Burridge-Knopoff models. arXiv:2008.03755, 2020.

[Sut90] Richard S Sutton. Integrated modeling and control based on reinforce-
ment learning and dynamic programming. In R.P. Lippmann, J. Moody,
and D. Touretzky, editors, Advances in Neural Information Processing
Systems, volume 3. Morgan-Kaufmann, 1990.

[Sut99] Richard S Sutton. Reinforcement learning: Past, present and future.
In Simulated Evolution and Learning: Second Asia-Pacific Conference
on Simulated Evolution and Learning, SEAL’98 Canberra, Australia,

Stathas, Gutiérrez-Oribio & Stefanou 443

ALERT Doctoral School 2023



November 24–27, 1998 Selected Papers 2, pages 195–197. Springer,
1999.

[TBS21] G. Tzortzopoulos, P. Braun, and I. Stefanou. Absorbent porous paper
reveals how earthquakes could be mitigated. Geophysical Research Let-
ters, 48(3):e2020GL090792, 2021.

[VEB+17] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexan-
der Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich
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