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Preface

The ALERT Doctoral School 2021 on “Constitutive Modeling in Geomaterials” will
take place in Aussois, from 30th September to 2nd October, 2021. The School has
been organized by Prof. Claudio Tamagnini (University of Perugia) and Prof. David
Masin (Charles University). I sincerely thank the organizers and all the contributors
to this book for their effort!

The subject of the school has its roots in the fundamental objectives of our network:
developing a European School of Thinking in the field of the Mechanics of Geomate-
rials. This was the topic of our first ALERT doctoral school in Aussois in 1994 and
many following doctoral school tackled some aspects of this broad field! The ALERT
Board of Director has thus decided that it was the time to organize the school on this
topic, in order to contribute to the formation of all our PhD students and researchers.
I am therefore convinced that this school will be beneficial to the ALERT community.

The school will run over 3 days with the first day dedicated to the Basic concepts
related to Constitutive modeling. The second day will focus on specific features of
geomaterials’ behavior. The half-day will go towards applications and the participants
will use calibration software in order to identify the parameters of some constitutive
models.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials (http://alertgeomaterials.eu/publications/) after the school.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2021!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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Constitutive Modelling in Geomaterials —
Foreword

Claudio Tamagnini® and David Masin @

(1) University of Perugia, Italy
(2) Charles University, Prague, Czech Republic

Irrespectively of fast development of approaches for the analysis and design in geo-
mechanics based on the methods for discontinuum (such as discrete element method),
analysis of continua based on mesh or fast developing particle-based meshless meth-
ods still represents major means of numerical analysis in geomechanics. At the very
core of such an analysis is a constitutive model: mathematical relationship converting
the peculiar behaviour of particulate material, governed by the interactions between
individual particles, into the behaviour of continua. As such, a properly selected and
calibrated constitutive model has a critical effect on the outcomes of geotechnical
simulations.

This school aims to introduce the students into the broad field of constitutive model-
ling of particulate materials with special emphasis on the behaviour of soils: after the
introduction consisting of summary of basic features of soil behaviour, they will be
introduced into fundamentals of constitutive modelling, followed by more detailed de-
scription of various modelling approaches - from the basic elastic and elasto-plastic
models to more advanced frameworks of hardening plasticity, bounding surface plas-
ticity, generalised plasticity and hypoplasticity. The second day will be focused on
various specific more-advanced topics, such as simulation of small strain stiffness and
cyclic loading, modelling of unsaturated soils, meta-stable structure, breakage, ther-
mal effects, chemical effects and time and rate dependence, including formulation of
finite-deformation plasticity and macroelement modelling. The last day is devoted to
steps needed for adoption of models in numerical analysis tools, namely to their im-
plementation in finite element codes. Finally, in practical hands-on sessions, students
will train calibration using real experimental data themselves, using both manual and
automatic freely-available calibration tools.

Claudio Tamagnini
David Masin
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Fundamentals of constitutive modelling for
soils

Ivo Herle

Technische Universitdt Dresden, Germany

The constitutive modelling of soils is based on several basic principles enhanced with
numerous advanced issues. Some basic principles can be understood even in 1D,
like irreversibility of deformation or non-linearity of the stress-strain response. The
standard features — soil stiffness, limit stress condition, critical state, dilatancy — are
common to all modern constitutive models. Advanced features can take into account
some additional effects. In spite of the progress in the field, the present state of the art
of the constitutive modelling for soils is still far away from perfection.

1 Introduction

Models are simplifications of reality. They need to capture essential features of the
modelling objects and neglect those of less importance. The distinction between im-
portant and negligible issues is problem- and purpose-dependent. A physical model
of a house for an architecture exhibition will be different from a model house for a
children playground, even if both houses are of the same scale.

Constitutive models should mathematically describe the material behaviour. An ex-
traordinary abstraction level is required. Moreover, the model can focus on the micro-
, meso- or macroscale, respectively. The material behaviour is not restricted to the
stress-strain response only. In many applications the transport phenomena for liquid,
gas or heat are of major interest. In other cases, chemical processes within the material
need to be considered.

The constitutive modelling of soils can simulate single grains and their interactions
using the framework of the discrete element method (DEM). Although impressive
advances have been achieved in this field, the discrete modelling is not suitable for
routine engineering applications yet. The latter remain in the domain of the continuum
mechanics which profits from manifold and well-established theoretical principles.

Within constitutive models for soil as a continuum matter, single grains are smeared
into an idealized material (Fig. 1). This material has, for the aspects of interest, the
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4 Fundamentals of constitutive modelling for soils

Figure 1: Single grains are not represented in constitutive models for continuum. The
particulate nature of soil is smeared.

same response as a soil element. A suitable size of a representative elementary volume
(REV) is being implicitly considered, although this size is not obvious. Which amount
and fabric of soil grains are necessary for the REV in order to define stress and strain
tensors from contact forces and mutual displacements of the grains? An objective
answer is not possible since the REV is also inevitably influenced by the natural het-
erogeneity of soils as geological materials. What is the scale for such a heterogeneity?
Where does the scatter of local quantities end and the natural heterogeneity start?

Common constitutive models for soils do not smear only the solid grains but also the
liquid and gas phases between the grains. The principle of effective stresses serves
as a link between those phases. Multiphase models can consider constitutive models
for the phases separately. In this case, however, interaction relationships between the
phases must be additionally specified. These interactions are, again, smeared over the
REV and do not necessarily reflect the micromechanical response in a straightforward
way.

Stress-strain relationships are typical products of constitutive models. Thus, stress-
strain curves, like in Fig. 2, are related to the behaviour of a REV which, on the other
hand, represents only a point in the continuum. In order to develop, calibrate and val-
idate the constitutive models, the stress-strain curves of a REV must be accessible in
experiments, at least for a few well controlled test conditions. The standard laboratory
tests involve soil specimens which are definitely much larger than a corresponding
REV of the tested material. Still, we interpret the specimen behaviour as identical
with the one of the REV and base our constitutive models on this assumption.

Constitutive models are equations and, thus, they are composed of two different sets
of quantities — constants and (state) variables. The material parameters are constants
in constitutive equations and should not change their values throughout the modelled
process. This requires that the material properties with respect to those parameters
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Figure 2: Soil element in situ as a REV and its representation in a laboratory test.

remain constant too. Although this requirement may seem self-evident, it is often
violated in the practice of constitutive modelling.

The model variables characterize the actual soil state and, thus, can (and should)
change during the modelled process. Equations for the evolution of state variables
must be specified. A constitutive model for a stress-strain relationship is an example
for an evolution equation for the stress as a state variable. If more (internal) variables
are included in a constitutive model, evolution equations for all of them are required.
Note that the strain tensor should not be considered as a state variable since soils do
not possess a unique reference configuration in which strain corresponds to zero.

A determination (calibration) of the material parameters is crucial for a successful ap-
plication of any constitutive model. The calibration can be seen as a fitting procedure
attempting to achieve a good coincidence between the measured (observed) and cal-
culated behaviour. Equally important is the determination of the initial values of state
variables. This task can be much more difficult than the calibration of the model pa-
rameters (constants), especially for advanced constitutive models which use internal
variables not accessible to measurements.

2 Basic features

Let us focus first on stress-strain relationships in one-dimensional representation. The
equation
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6 Fundamentals of constitutive modelling for soils

o= Ee ey

describes a proportionality between the stress o and the strain € (Fig. 3 left). Stress
should be the effective stress which controls the mechanical behaviour of soils. The
constant in Eq. (1) is the material parameter E. It represents the stiffness of the mate-
rial and in the model of elasticity it would be called Young’s modulus.

2.1 Irreversibility

One of the most obvious soil properties is the irreversibility of deformation. With
exception of extremely small deformations (e. g., during the passage of weak seismic
waves through the soil), the soil skeleton does not recover its original configuration
after a load reversal. Eq. (1) suggests a fully reversible behaviour with a unique rela-
tionship between stress and strain (Fig 3 left). However, for an irreversible response
the stiffness must be different for loading and unloading, respectively (Fig 3 middle).
Thus, a unique relationship between stress and strain does not exist (Fig 3 right).

g g o

/ /) /|

Figure 3: Reversible (elastic) and irreversible (inelastic) behaviour. Red dashed lines
in the right diagram demonstrate two different strains for one stress and vice versa.
Consequently, there is no unique relationship between stress and strain if the behaviour
is irreversible.

Since change of the loading direction can take place in any admissible stress state, the
constitutive models for soils must be formulated as incremental stress-strain relation-
ships

= E¢ 2

where the superimposed dots denote rates (time derivatives) of the quantities. A stress
increment can be obtained by integration, e. g.,

tit1
Aa:/ddt:d-At. 3)

t;
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Obviously, E in Eq. (2) is not a material constant any more since it depends on the
loading direction. This condition requires that (¢) # &(—¢). The corresponding
constitutive equation may be written as

6 =Fi¢ foré >0 4)
0 =Fy fore <0 (5)

It is possible to avoid the switch condition in the equations above if the absolute value
|€] is considered:

. Ei+Ey . FE;—E . : .

=" 24 2 2 ¢| = E,é+ By || (6)
2 2

The latter approach is fundamental for the hypoplastic constitutive models. In elasto-

plastic constitutive models, the reversible part of the deformation is usually considered

elastic.

2.2 Nonlinearity

The incremental stiffness
o
E=- )
€
does not depend only on loading direction but also on the stress state. It may increase
with stress if we consider a compression loading (Fig. 4), or decrease if the stress
approaches the limit state.

Figure 4: Nonlinear stress-strain behaviour due to stress-dependent stiffness.

In order to reproduce the nonlinear behaviour in (Fig. 4), the stiffness E can be written
as a function of stress
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8 Fundamentals of constitutive modelling for soils

& = E(0)é. ®)

The most simple is a linear dependence, i. e.,

E(o)=Co, )

where C' is a new soil parameter. The stiffness £/ becomes an auxiliary variable and is
not a soil constant any more.

2.3 Rate-independence

The stress increment according to Eq. (3) depends on the time increment At. Often,
however, the effects of real time on the soil behaviour are to be neglected and ¢ should
represent an integration parameter only. This requires that the constitutive equation is
homogeneous of the first degree with respect to €, i. e.,

c=f(o,k-¢)=k- f(0,€) withk >0 . (10)

The constitutive models (6) and (8) fulfil Eq. (10).

On the contrary, if time effects like creep, relaxation or dependence on the deformation
velocity (rate-dependence, see Fig. 5) should be reproduced, the model must not obey
Eq. (10).

€/Ey
100

Figure 5: Rate-dependence of the stress-strain behaviour. €,. denotes a reference strain
rate.

3 Standard features

Only a few basic features of constitutive models can be outlined in an one-dimensional
representation. A generalisation for at least two dimensions is necessary to capture
some further standard features of the soil models. Finally, all constitutive models need
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a tensorial formulation in 3D, in order to be able to implement the models into general-
purpose finite elements codes. The model formulations must be independent on the
reference frame and should not predict any deformation for a rigid body rotation.

In more than one spatial dimension, the understanding of stress (and strain) paths is
crucial for constitutive modelling. The evolution of the stress tensor can be captured
in various coordinates. The stress invariants p (mean stress) and ¢ (stress deviator)
are the most common ones. Nevertheless, some effects, like the rotation of principal
stress axes, cannot be observed in the p — ¢ representation.

3.1 Stiffness

The incremental modulus defined in Eq. (8) obscures the spatial character of the stiff-
ness. Its magnitude should depend on the direction of deformation at a particular soil
state, i. €.,

gi

Eij(0:) = — (11)

€j
(here, the state variable is the principal effective stress ;). This feature can be well
represented by response envelopes shown in Fig. 6.

g1, 014

€1

V2é,

V262,V 209

Figure 6: The concept of response envelopes. Each direction of the strain rate |¢| = 1
(left) is mapped to the corresponding stress rate ¢ (right) which represents a state- and
direction-dependent stiffness.

Consider a cylindrical specimen at radially symmetric (triaxial) conditions loaded in
three different strain rates of the same magnitude but of different directions (Fig. 6
left): the blue arrow represents isotropic compression, the green one isotropic exten-
sion and the red one the undrained (constant volume) compression. The corresponding
strain rates, as predicted by a constitutive model, are shown in Fig. 6 right. The par-
ticular stress states are marked by the big black dots. The stress ratio for isotropic
extension (unloading) is higher than for isotropic loading. For the stress state with a
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10 Fundamentals of constitutive modelling for soils

higher ratio of principal stresses, i. e., closer to the limit stress condition, the stiffness
in shear (undrained compression) is much lower than for the stress state close to the
isotropic one.

If the constitutive model is rate-independent, the magnitude of the strain rate can be
considered as one, |¢| = /£1 + 2¢5 = 1, and thus the magnitude of the stress rate
|o| = /&1 + 254 corresponds to the state- and direction-dependent stiffness & /.
Connecting stress rates calculated for all strain rates at one particular state, so-called
stress response envelopes (Fig. 6 right) are obtained [Gud79].

3.2 Limit stress condition

The effective stresses are bounded in the stress space. However, it is not possible
to consider a unique limit stress condition for a soil. The magnitude of the limit
stress depends on the amount of deformation and the soil state (Fig. 7 left). The
state-dependence of the limit stress state results in a non-linear stress envelope (Fig. 7
middle). Moreover, various proposals can be found for the shape of the limit stress
surface in the deviatoric plane (Fig. 7 right).

Bl

Drucker-Prager

_ Matsuoka-Nakai
Mohr-Coulomb
Lade

O3

Figure 7: Various aspects of the limit stress condition: state- and strain-dependence of
shear strength (left), non-linearity with respect to normal (mean) stress (middle) and
cross-section in the deviatoric plane (right).

The limit stress state is characterised by vanishing stiffness, i. e., 6; = 0. Thus,
for a particular soil state, it should be possible to calculate the limit stress from the
constitutive equation analytically.

3.3 Void ratio and critical states

Void ratio e plays a crucial role for the state-dependent description of the soil be-
haviour. It has been established as a state variable practically in all advanced consti-
tutive models. The evolution equation

é=(1+e), (12)

relates the change of e to the change of volumetric strain €,, and, thus, implies incom-
pressibility of soil grains.
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The critical state as a steady state during constant volume deformation is a fundamen-
tal concept of the modern soil mechanics [Mui90]. It is common to assume a unique
relationship between mean stress and void ratio in the critical state, although some ex-
perimental results question it [MFV98, FRO3]. The critical state as an attractor during
shear deformation is necessary for a robust performance of any constitutive model for
soils.

3.4 Dilatancy

Dilatancy D expresses the maximum rate of the volume increase during shearing,
which can be formulated, e. g., in triaxial (axially symmetric) conditions as

‘i”: €1 + 2&2 (13)

D= - —
Eg  2(¢1—¢€2)

By increasing relative soil density, the maximum shear strength and also dilatancy
rise. Thus, a unique relationship between dilatancy D (for plastic strain rates in case
of elasto-plastic models) and the maximum ratio of principal stresses R = o1 /03 is
included in many constitutive equations (Fig. 8 left).

cA

CSL

contraction

expansion

expansion contraction

0

>
/
p

Sy

Figure 8: Dilatancy D as a function of the maximum stress ratio R (left), pressure-
dependent volumetric response (right).

However, the soil state changes during deformation and is, in fact, pressure-dependent.
This means that a ”dense” soil at a low mean pressure can behave as a loose soil at a
high mean pressure (Fig. 8 right). In (water-saturated) fine grained soils, analogous
effects can be observed for water content related to consistency limits. Consequently,
the relationship in Fig. 8 (left) is pressure-dependent [Bol86, LD00].

The distance between the soil state and the critical state line CSL at one particular
mean pressure p’ is often denoted as state parameter 1) = e — e, [BJ85]. An analogous
role plays a so-called pressure-dependent relative density in hypoplastic models for

ALERT Doctoral School 2021



12 Fundamentals of constitutive modelling for soils

sand [Gud96]. For fine grained soils, the horizontal distance between the soil state
and the critical state line, similar to the Hvorslev’s equivalent pressure (e.g., [Mui90]),
can be used.

3.5 Constant volume deformation

The undrained conditions are being produced in laboratory testing of fully saturated
soils when the drainage is completely prohibited. Under assumption of incompress-
ibility of water and soil grains, constant volume of the specimen, i. e. £, = 0, is
preserved during the test.

The undrained response is an important benchmark for the constitutive models. The
shape of the stress path is linked to the evolution of the pore water pressure and, thus,
to the dilatancy effect. The maximum stress difference ¢ = 01 — o5 is essential, e. g.,
for analyses of liquefaction or short term slope stability. The predicted undrained
shear strength should be state-dependent and should reflect the soil loading history
like overconsolidation.

4 Advanced features

Recent constitutive models can take into account a number of additional features of
the soil behaviour. Obviously, by adding further ingredients, the complexity of the
models increases. The increased complexity results not only in more equations but
also in more material parameters which may be mutually dependent. In many cases,
additional state variables are introduced which, in turn, need their evolution equations.

The following list of effects, which can be implemented in advanced constitutive mod-
els (stress-strain relationships), brings only a few typical examples and does not rep-
resent a comprehensive state of the art.

* Stress and deformation history

Memory of soil preserves its stress and deformation history in a manifold way.
A typical scalar memory variable is the overconsolidation ratio OCR. In elasto-
plastic models, the latter is usually related to the size of the yield surface. The
OCR can be also linked to the equivalent pressure or another similar quantity.

Recent deformation history related to the so-called small-strain stiffness [ARS90]
is often taken into account by the kinematic nature of yield surfaces [ATMW&9].
Another option may be the so-called intergranular strain concept [NH97].

* Anisotropy

Properties of anisotropic materials depend on the orientation with reference
to the coordinate system. An essential induced anisotropy evolves with non-
isotropic stress tensor since in most models stiffness depends on stress. A
fabric-related anisotropy (e. g., the distribution of the grain contact normals
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Figure 9: Kinematic yield surface of the "Bubble” model [Mui04].

in space) is reflecting the deformation history. It may be modelled by a struc-
ture tensor linked to the kinematic hardening of the yield surface(s) [WNKLO3,
TDOS].

Cementation

In natural soils, brittle bonds at grain contacts can evolve with time due to var-
ious physical and chemical processes. Such a cementation may result in an
increased apparent preconsolidation pressure. Elastoplastic constitutive mod-
els consider this effect by increasing the yield stress and thus expanding the
(quasi) elastic stress range, followed by a fast structure degradation (collapse)
[LN95]. The limit stress condition and further soil features can be affected by
cementation as well [LT14].

Chemical and weathering effects

The modelling methodology for the degradation of bonding (cementation) can
be also applied to weathering and chemical degradation [NCT03, Bus12, CdP16],
sometimes in coupling with effects of partial saturation [PAV07]. Purely chem-
ical processes can impact the mechanical properties of soils as well [HHH16].

Thermal effects

Soil behaviour is also sensitive to temperature. Constitutive models usually dis-
tinguish the effects of high temperatures (e.g., in clay barriers for the radioactive
waste) [MK12, HPTC13] and freezing phenomena [NW19] separately. With
respect to energy geostructures, the constitutive modelling of temperature oscil-
lations may be of special interest, too [DL15].

Grain crushing

Usually, the soil parameters are constant for one particular soil which is char-
acterized, among others, by its grain size distribution curve. Consequently, the
grains of such a soil are considered to be permanent. However, especially coarse
grains undergo degradation during soil deformation. This degradation starts
with an abrasion of asperities at the grain surface at lower stresses and contin-
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14 Fundamentals of constitutive modelling for soils

ues with grain breakage at higher stresses. The modelling of grain crushing and
the resulting change of the grain size distribution may be linked to the consumed
energy [Ein07]. The modification of the grading can be related to the classical
elastoplastic concepts [KMR10].

e Partial saturation

If the soil is not fully saturated, it must be considered as a three-phase material.
The definition of the effective stress becomes less obvious. An additional stress
variable, mostly the suction as a difference between air and water pressure, is
needed in order to model the observed phenomena [GGSVO03]. A short overview
of the modelling concepts can be found, e. g., in [GSS06, SGFS08, NZC20].

5 Evaluation and validation

Even if there exists a perfect constitutive model for the soil behaviour, it is of no
value until its parameters (constants) are known. Thus, the calibration of the material
parameters is crucial for a successful application of constitutive models.

However, the constitutive models for soils are by far not perfect. They represent a
compromise with respect to numerous effects which can be observed in experiments.
There is a number of publications comparing the performance of advanced constitu-
tive models, e. g., [RM10, WFT19]. They confirm the necessity for further (sometimes
substantial) improvements. A unified approach for the software routines of constitu-
tive models [GAG™07] is helpful for such comparisons.

It must be also taken into account that practically all soil mechanics tests treat the
soil specimens as idealized elements and attribute only unique values of the mea-
sured quantities to the whole specimen. E. g., vertical stresses and strains in a triaxial
specimen are calculated from the measurements of a single force and displacement at
the specimen boundary, assuming a homogeneous deformation. Thus, the scatter of
the soil state (and, eventually, of the soil parameters) over the high number of REVs
within the specimen is not taken into account.

The development, evaluation and validation of the constitutive models is, thus, af-
fected by many uncertainties. A perfect coincidence between the measured and cal-
culated curves is not necessarily admirable. Exaggerated requirements on the agree-
ment between experimental and numerical results in element tests are not meaningful.
General trends are usually much more important. During the model calibration and
evaluation, a decision linked to the later application must be often made, see, e. g.,
Fig. 10.

6 Final remarks

The constitutive modelling of soils is a challenging discipline. Its fundamentals re-
quire a firm knowledge of soil testing and behaviour, paired with advanced mathemat-
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Figure 10: Which model (or parameter set) is better?

ics and a high level of abstraction. Although numerous advanced constitutive models
are available for soils, their performance is not fully satisfactory under general condi-
tions. A further research is needed.
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The theory of plasticity in constitutive
modeling of rate—independent soils

Claudio Tamagnini®, Kateryna Oliynyk®’
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This chapter presents a review of the applications of the theory of plasticity to the
modeling of rate—independent geomaterials, starting from classical approaches and
covering some of the advanced versions of the theory designed to improve its ca-
pabilities in cyclic/dynamic loading conditions as well as to model “environmental”
loading effects. In the discussion of the different approaches, particular attention is
given to the incremental nature of the constitutive equations, emerging from the need
of reproducing the essential features of the history—dependent behavior of soils. The
relative merits and limitations of each class of models discussed are outlined with
emphasis on those inherent features of their mathematical structure which might be
of help in the assessment of their predictive capabilities when applied to practical
geotechnical problems.

1 Introduction

In the application of continuum theories to the analysis of any solid mechanics prob-
lem, a fundamental role is played by the constitutive equations, which are expected to
describe in precise mathematical terms the actual mechanical behavior of the material.
Constitutive equations do not represent universal laws of nature. Rather, they can be
considered definitions of ideal materials, i.e., what is usually referred to as constitu-
tive models. Constitutive models may possess the properties of the actual materials
they are intended to model only to a limited extent. However, this do not lessen their
worth, which is to produce a mathematical tool to predict the behavior of the physical
system under any possible circumstance, starting from the limited knowledge gathered
in a few experimental observations.

The quality of the predictions depends on the ability to define a suitable idealization
for the real material which is capable to capture, from a quantitative point of view, the
experimentally observed features which are thought to be of relevance for the practi-
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cal problem at hand. This is particularly true in computational geomechanics, where
the materials under consideration — i.e., soil layers or rock masses — are usually char-
acterized by a complex multi—phase structure and by a highly non—linear, irreversible
and history—dependent response to the applied mechanical or “environmental” loading
conditions.

The main objective of this chapter is to provide an outline of the different classes of
constitutive equations for soils developed within the general framework of the theory
of plasticity — from the early, pioneering works in perfect plasticity, to more recent
developments in bounding surface and generalized plasticity, as well as in plasticity
with generalized hardening laws to capture the effects of “environmental” loading
conditions.

The topics covered in the following are not intended to provide a comprehensive re-
view of the enormous amount of work which has been done in the applications of
the theory of plasticity to soil mechanics over many decades. For this, the reader
is referred, for example, to the following monographs [DS84, DS02, Woo04, Yu06,
Borl3, Has17]. Rather, the presentation will be limited to those aspects of the general
framework of the theory of which reflect the authors’ own experience and interests. In
particular, the discussion will be mostly focused — with the only exception of Sect. 9
— on constitutive equations for rate—independent, saturated soils in isothermal condi-
tions, obeying the principle of effective stress as stated by Terzaghi [Ter48]. Details
on how the constitutive models for saturated soils should be extended to account for
partially saturated conditions can be found in the chapter by Jommi [Jom21] in this
book. In the presentation of the different classes of models, we will focus on the
infinitesimal theory of plasticity, suitable for small deformations and rotations. The
extension of the theory to finite deformations is discussed in the chapter by Oliynyk
and Tamagnini [OT21] in this book. The constitutive equations for brittle materials
— e.g., rocks or concrete — developed in the framework of damage mechanics are de-
liberately left out of this exposition. Finally, only constitutive equations for simple
materials, according to Truesdell & Noll [TN65], will be considered in the following.
Although non-local or weakly non—local theories for materials with microstructure —
such as polar, second gradient or micromorphic materials — have been the subject of
a considerable amount of research in geomechanics, mainly in relation to the study of
strain localization into shear bands, they are outside the scope of the present work. For
this interesting subject, the reader is referred to the books by Vardoulakis and Sulem
[VS95, Var19], and references therein.

2 Notation

In the following, boldface lower— and upper—case letters are used to represent vector
and tensor quantities. The symbols 1 and I'°® are used for the second—order and fourth—
order identity tensors, with components:

, 1
(1)ij = i (I)ijut = 5 (Girdji + diadjn) 1)
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The symmetric and skew—symmetric parts of a second—order tensor X are denoted as:
sym X = (X +X7T)/2and skw X := (X — XT)/2, respectively. The dot product
is defined as follows: v - w := v;w; for any two vectors v and w; X - Y = X,V
for any two second—order tensors X and Y. The dyadic product is defined as follows:
[v ® w];; := v;w; for any two vectors v and w; [X ® Y;jn := X;;Yyy for any
two second-order tensors X and Y. The quantity || X| := v/ X - X denotes the
Euclidean norm of X. The usual sign convention of soil mechanics (compression
positive) is adopted throughout. In line with Terzaghi’s principle of effective stress, all
stresses are effective stresses, unless otherwise stated. In the representation of stress
and strain states, use will sometimes be made of the invariant quantities: p (mean
stress), g (deviator stress), and 6 (Lode angle), defined as:

L o B i v (8901
p=5o1); q.—\/;|s||, sin(30) i= Vo 73 )

and: ¢, (volumetric strain), €, (deviatoric strain), ¢, (volumetric strain rate), and €,
(deviatoric strain rate), defined as:

N I (e’)-1
cimets e ylels o= Ve Ol

T £ T S O kb
épi=€-1; é .—\/;EH Oc '_\/6[((32).1]3/2

3

In egs. (2) and (3), s := o — p1 is the deviatoric part of the stress tensor; e :=
€ —(1/3)e, 1 and é := € — (1/3)é, 1 are the deviatoric parts of the strain and the
strain rate tensors, respectively, while s2 and s are the square and the cube of the
deviatoric stress tensor, with components (s2);; := S5k, and (8%);; := sipspsi;. It
is worth noting that in egs. (3)5 and (3)g, with a slight abuse of notation, the symbols
¢, and 6, have been employed to denote the second and third invariants of the strain
rate tensor, which generally do not coincide with the time rates of €5 and 6., as defined
in in egs. (3)2 and (3)s.

3 History—dependent materials modeling and the need
for constitutive equations in rate—form

According to the principles of determinism and local action [TN65], the most general
expression for the constitutive equation of a simple material is given by:

o@t) = G [FO(x.7) @

where G is a functional of the history up to time t of the deformation gradient asso-
ciated with the motion @ = (X, t) carrying the material point X in the reference
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configuration to its position « in the current configuration at time ¢, defined as:

0
FO(X,s)=F(X,t—s)  F(X,1):= 8—§(X,t) (s>0) (5
Eq. (4) essentially states that the (effective) stress tensor o is a function of the entire
deformation history, i.e., that the knowledge of the state of strain at a given time ¢ is
in general not sufficient to determine the stress state. This is an essential feature of
inelastic, history—dependent materials such as soils.

A third fundamental principle, the principle of material frame indifference, implies the
following restriction to the functional G: for every orthogonal tensor function Q(7)
and every history F!)(X, ), the relation:

Q6 [FOX.1|Qf = ¢ [QFYX.7]  Q=Q0) ®
must hold. Conversely, any such functional G satisfying eq. (6) can be considered as
defining the constitutive equation of a particular material.

The fundamental properties of the functional G should be defined according to our
knowledge of the main characteristic of the mechanical behavior of the materials we
intend to model. As far as geomaterials — and soils in particular — are concerned, a
long standing experimental evidence indicates that the mechanical response of such
materials is strongly non-linear and dependent on such factors as current state, pre-
vious loading history, load increment size and loading direction. Even the simplest
and most common laboratory tests, such as a one—dimensional compression test or a
axisymmetric (triaxial) drained compression test, can highlight such features in both
fine and coarse—grained soils.

A main consequence of this observation is that the constitutive functional G must be
non—linear and non—differentiable, see [OW69]. However, working with non—linear,
non—differentiable functionals poses formidable mathematical problems, even in the
simplest cases. An alternative strategy, which overcomes this difficulty and is com-
monly adopted in nonlinear solid mechanics, is to avoid formulating the constitutive
equation in global terms, as in eq. (4), and rather adopt an incremental (or rate—type)
formulation, in which the (objective) stress rate is given as a function of the rate of
deformation d := sym Vv (v := dg/dt o ¢ being the spatial velocity) and of the
current state of the material:

o= G (o,q,d) @)

In eq. (7), o denotes a suitable objective stress rate, such as the Jaumann—Zaremba
stress rate, defined as:

g’::d'—&—aw—um' )

where w := skw Vv is the spin tensor. In eq. (7), g represents a set of internal
state variables, which are introduced to account for the effects of the previous loading
history. An additional set of rate equations is then required to define the evolution of
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the internal variables in time. In classical elastoplasticity, these evolution equations
are referred to as hardening laws.

Restricting our discussion to the infinitesimal theory, the objective stress rate o can
be replaced by the standard objective time rate &, and the rate of deformation d with
the (linearized) strain rate tensor €. Thus, eq. (7) can be rewritten as:

o =G(o,q,¢€) ©))

Rate—indepence means that a change in the time scale does not affect the material
response, e.g., doubling the strain rate doubles the stress rate. More generally:

G (0,9,)é) = \G (0,q,€) VA>0 (10)

A direct consequence of the above equation is that the function G is positively ho-
mogeneous of degree one in €. This latter property yields the following alternative
expression for the constitutive equation (9):

&=D(o,qm)é (11)

where D is the (fourth—order) tangent stiffness tensor at the current state, which de-
pends on the strain rate only through its direction, defined by the unit tensor 1 :=
€/ ||€]|. Eq. (11) provides a general representation for rate—independent constitutive
equations which encompasses as particular cases all the constitutive equations derived
within the general framework of the theory of plasticity.

4 Non-linearity and incremental non-linearity

Let (09, q,) be the initial state of the material at time ¢ = 0. For a given strain path £
from € to €(t), the state of stress at time ¢, o (t), is obtained by integrating eq. (11):

o(t) = & (o0.00.8) =7+ [ Di(eam) G ds (12)
From the above equation, it is immediately apparent that the dependence of the tan-
gent stiffness D on the current state (o, q) renders the function & non-linear, e.g.,
doubling the strain increment does not result in doubling the stress increment. This
is the notion of non-linearity to be invoked when describing a material response for
which the observed stress—strain curve (e.g., in a triaxial compression path) is not a
straight line.

An independent concept of non-linearity can be defined by considering the functional
relation between stress rate and strain rate, as first suggested by Darve [Dar78]. If
the constitutive function G is linear in €, then the material is said to be incrementally
linear. In this case, the tangent stiffness tensor D does not depend on the strain rate
direction 7, and eq. (11) reduces to:

6=D(o,q)¢ (13)
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While a linear behavior implies incremental linearity, the opposite is not true. That is,
incremental linearity does not imply linearity of the stress—strain response over a finite
load increment. On the other hand, when G is a non—linear function of the strain rate,
i.e., for any €; and é; and a,b € R:

G(anvaél +b€2) 7& aG (U7qaé1) +bG (U7qaé2) (14)

the material behavior is said to be incrementally non—linear. In this case, the tangent
stiffness .D explicitly depends on the strain rate direction, see eq. (11).

From eq. (14) it follows that:
G(O’,q,é) 7é -G (G,q,—é) (15)
which, in turn, implies:

Equation (16) expresses a fundamental feature of incrementally non—linear models:
for any strain rate direction, the reversal of the loading path is always associated with
a change in the tangent stiffness D. Indeed, such a feature is necessary in order
to correctly describe irreversible behavior. In fact, although eq. (13) is in general
non—integrable, the response of an incrementally linear material remains completely
reversible in any closed loading—unloading program following the same path in two
opposite directions.

When discussing the dependence of D on 7, it is useful to introduce the concept of
tensorial zone, as defined by Darve [Dar78, Dar90]. A tensorial zone Z is a portion of
the strain rate space in which G is a linear function of €. Accordingly, in a particular
tensorial zone the tangent stiffness is independent of n:

D(o.q,m) = D?(0,q) Vnez (17)

As G is positively homogeneous of degree one in €, Z is a cone in the strain rate space
with the vertex at the origin (i.e., all strain rates Aé with A > 0 belong to the same
tensorial zone as €).

Following Darve [Dar90], incrementally non-linear, rate—independent constitutive
equations can be classified according to the number of associated tensorial zones.
When the number of tensorial zones of G is finite, the constitutive equation is incre-
mentally multi-linear (bi-linear in the particular case of only two zones). In incre-
mentally multi-linear materials, an important issue is represented by the continuity of
the response at the boundary between any two tensorial zones [Gud79]. Let 0Z4p
be such a boundary between the tensorial zones Z4 and Zg. If € € 0Z4p, then,
continuity of the response requires that:

& = D% = D7 - (DZA - DZB) & =0 (18)
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Equation (18) represents a generalization of the continuity condition established by
Green [Gre56] for hypoelastic materials. In the following, we will focus on models
with one or two tensorial zones, leaving aside the theories of plasticity with multi-
ple plastic mechanisms and more than two tensorial zones (multi—surface plasticity).
Interested readers may refer to Ch. 5 of the book by Simo and Hughes [SH97] for a
general treatment of this subject.

As opposed to multi-linearity, a strictly incrementally non—linear behavior is provided
by constitutive models for which a continuous dependence of D on 7 is assumed.
This is the case of rate—type constitutive models developed within the framework of
the theory of hypoplasticity [Kol91, TVCO0]. This subject is presented in the chapter
by Masin [Mas21] in this book.

5 Linear elasticity, hyperelasticity and hypoelasticity

In the early application of continuum mechanics to geotechnical engineering, the enor-
mous analytical difficulties posed by the design of even simple geotechnical structures
led to the traditional distinction between “deformation” and “failure” problems, for
which different, very simple constitutive equations could be used, see e.g., [TP48].
The rationale behind this approach is that only some very specific features of soil be-
havior are of interest for the particular problem at hand, while the others could be
neglected without affecting the quality of the prediction in a substantial way. In par-
ticular, the only possible constitutive framework for which (analytical) solutions to
deformation problems could be obtained at that time — in lack of suitable numerical
methods and powerful computer platforms — was provided by the theory of linear elas-
ticity. Its successful application then relied on the “proper” selection of the relevant
soil constants (in essence, the Young’s modulus), which had to be assumed to depend
on such primary factors as current stress state, previous stress history, and nature of
the applied stress path — in terms of magnitude and, possibly, direction.

Nowadays, the theory of elasticity still plays an important role, as it can be considered
a cornerstone of any plasticity theory. For this reason, the main features of elasticity
models adopted in the description of soil behavior are briefly recalled in this Section.

5.1 Linear elasticity

The simplest linear elastic model is provided by the Hooke’s law for isotropic materi-
als:

1
o = Dé D:K1®1+2G<IS—31®1> (19)

where €° is the elastic strain rate — coinciding with the total strain rate if there are no
irreversible deformations — while K and G are the (constant) bulk and shear moduli
of the material. The two elastic constants can be replaced by other, frequently used
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pairs of alternative elastic properties, such as the Young’s modulus and Poisson’s ratio
(E,v) related to K and G by the relations:
E E

K=30"% G:2(1+u)

or the Lame’s constants (A, 44), linked to E and v by the relations:

A= L = L e

1+v)(1—-2v) 2(1+v)
Linear isotropic elasticity is still widely used in a number of important geotechnical
applications. However, it fails to capture an essential feature of the reversible response
of granular material, i.e., global non—linearity, due to the dependence of the stiffness
constants on the current stress state. This feature of soils’ elastic response originates
from the nature of the reversible grain to grain interactions at the microscopic level
[CJIR13].

5.2 Hypoelasticity

Early attempts to incorporate global non—linearity in the elastic response of the soil
can be traced back to the works of Kondner & Zelasko [KZ63] and Duncan & Chang
[DC70]. In essence, it consists in adopting an isotropic elastic constitutive equation in
the form of eq. (19), where the elastic stiffness coefficients are not constants but rather
functions of the strain level and/or of the stress state. Generally speaking, all models
of this kind are defined as hypoelastic, since the quantity:

de® = Cdo C:=D! (20)

is not an exact differential, i.e., it is not possible to define a one—to—one correspon-
dence between the stress and strain tensors, and a closed stress cycle might result in
the development of residual deformations.

The early hypoelastic formulations adopted an elastic tangent stiffness tensor D of
the form:

D (o,€e) = K; (p,e,) 1 ®1+2G (p, €5) (Is—;)l@l) (1)

In constitutive models of this class, the dependence of the tangent bulk and shear
moduli, K (p, €,), and G (p, €5 ), on the strain invariants is obtained by curve—fitting
the observed stress—strain response in standard loading paths, such as drained (or
undrained) triaxial compression, and isotropic compression, see for example [JPFB86,
JP88, JPSJHO1]. For this reason, these constitutive equations are also referred to as
variable—moduli models.

A main drawback of variable—-moduli models is the fact that, in this case, the strain
invariants cannot be considered as true state variables, since the reference configu-
ration from which the strains are defined is arbitrary. In this respect, a more sound
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approach is provided by those hypoelastic models in which the stiffness coefficients
depend only on the current stress state, typically through the mean stress p:

Ki(p) = K ( P )“ Gi(p) = Guwo < P )ﬁ (22)

Patm atm

where py, 1s the atmospheric pressure, used as a scaling factor for the mean stress, and
Ko, Gy, a and 3 are model constants, determined by empirically fitting stress—strain
curves from conventional laboratory test results. The phenomenological nature of the
relations (22) implies that the resulting elastic constitutive equation is hypoelastic and
cannot be derived from a potential function. Zytynski et al. [ZRNW78] have discussed
the necessary conditions for the stiffness coefficient to make de® in eq. (20) an exact
differential. In particular, they observe that if both K; and G; depend only on p,
as in eq. (22), then the resulting elastic constitutive equation in rate form cannot be
integrated and is therefore hypoelastic.

Hypoelastic constitutive equations have been and still are widely used in the formu-
lation of both classical and advanced plasticity theories for soils. However, their use
should remain limited to monotonic loading conditions or to situations where the soil
undergoes only a small number of cycles, as pointed out in [BTA97].

5.3 Hyperelasticity

A material is said to be hyperelastic (or Green elastic [Ogd97]) when there exists an
elastic potential function (e®) such that:
0

= 20 (e) 23)
Eq. (23) defines a hyperelastic constitutive equation, which implies the existence of
a direct functional relation between the stress tensor o and the elastic strain tensor
€®. This relation can be recast in rate form by differentiating both sides of eq. (23),
obtaining:

o

0% .
= de woe ) @9
where the elastic tangent stiffness is obtained as the second derivative of 1) with respect
of its argument. This time, ¢ is an exact differential, and no permanent stress changes
may occur in any closed elastic strain cycle.

6 = D(€%)€° D(e°):

The dual formulation of the hyperelastic constitutive equation (23) is obtained by pos-
tulating the existence of a complementary energy function g(o), such that:
9g
== 25
do (o) 25)
By differentiating eq. (25) we obtain the following complementary hyperelastic con-
stitutive equation in rate—form:

€

0%g

(o) (26)
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where C' = D~ is the material tangent compliance tensor. The two potentials ¢» and
g are related one another as g can be considered the Legendre transform of v, see,
e.g., [HPO7]. As a consequence of the principle of material frame indifference, ¢ and
¢ must depend on their tensorial arguments only through their invariants [SH97], i.e.:

(€)= (€5, €5, 0c) = (e, €5, ¢5) 27)
g(O’) :g(paqve) :§(017U2>U3) (28)

The hyperelastic constitutive equations (23) and (25) allow to describe a non-linear
elastic behavior, whenever the two elastic potentials are not quadratic functions of
their arguments. However, it is worth noting that hyperelasticity (which includes linear
elasticity as a special case) as well as hypoelasticity are both incrementally linear
theories, with only one tensorial zone. Examples of hyperelastic formulations for
isotropic granular materials are provided in the works of [Hou85, BTA97, HPO7].

6 Thermodynamics—based approach: the theory of hy-
perplasticity

The most important case of constitutive equations with two tensorial zones is pro-
vided by the classical theory of plasticity with a single plastic mechanism, and its
various generalizations to describe, for example, induced anisotropy and cyclic be-
havior. The general framework of the theory of plasticity is now well established and
a thorough treatment of this subject can be found in many excellent textbooks, e.g.,
[Lub90, SH97, JB02]. As for plasticity in soil mechanics, good references are pro-
vided, e.g., by [DS84, DS02, Yu06, Bor13, Has17]. As compared to those references,
in the presentation of the basic principles of the theory we have adopted a slightly dif-
ferent point of view, starting from the basic principles of the thermodynamics of con-
tinuous media and following the approach of the so—called theory of hyperplasticity,
as defined by Houlsby and Puzrin [HPO7]. Then, the classical approach is presented
as a generalization of the basic concepts of hyperplasticity.

The attempts to derive the evolution equations of the infinitesimal rate—independent
plasticity from basic thermodynamics principles can be traced back to the early works
of the French school [Mor70, HN75, GNS83]. Important contributions to the under-
standing of the thermo—mechanics of solid materials have been provided, e.g., in the
works of [Zie83, ZW87, Mau92, RM93, HR99]. The advantages of ensuring thermo-
dynamic consistency when dealing with the inelastic behavior of geomaterials have
been emphasized by Houlsby [Hou81] and Collins and Houlsby [CH97], in view of
the potential drawbacks associated with purely phenomenological modeling of materi-
als featuring stress—dependent stiffness, non—associative behavior and dilatant plastic
flow. Significant contributions to the development of infinitesimal elastoplastic mod-
els for soils within the framework of continuum thermo—mechanics have been given,
for example, by [MLA94, HP0O, PHO1, CK02, CH02, CM03, EP04, DT05, EHNO7,
OT20].
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6.1 Free energy and dissipation functions

In the framework of infinitesimal elastoplasticity, we assume the customary additive
decomposition of the total strain tensor into an elastic, reversible part and an inelastic
part:

e=¢€°+¢€° eE=€¢"+ € (29)

By limiting the set of state variables S to the elastic strain tensor € and to a pseudo—
vector of strain—like internal variables ¢ (the components of which could be scalars or
second—order tensors), we postulate the existence of a Helmholtz free energy function
per unit volume of the form:

P(e o) = ¢(e) + 9P (a) (30)

This assumption is equivalent to consider the contributions to the free energy function
of elastic strains and plastic internal variables as fully uncoupled. This could represent
a somewhat restrictive assumption, but it can be considered sufficiently general for the
scope of this work.

For isothermal processes, the second principle of thermodynamics requires that the
dissipation function D, defined as:

Di=c-é—1)>0 (31)

is non-negative. Taking into account the definition of the free energy function given
in eq. (30), and introducing the set of generalized stresses K = {X, X, }, defined by:

_ oy - oYP

= e — 2
X~ e Xa iJe" (32)

we have:

_ ope .. OYP

D=o e{8€e~e+a }

— o E-X (£ &)+ X, G

=(c—-X) €+x-€+Xx, >0 (33)

For this inequality to hold for any possible non—dissipative processes, for which € =
0 and & = 0, we must have:
_ o

T=X= 5 (34)

Eq. (34) is the hyperelastic constitutive equation of the material, establishing a func-
tional relation between the stress tensor o and the elastic strain tensor €°. Substituting
this last result into eq. (33), we obtain the following reduced dissipation inequality:

D=0c-"+Xx, - >0 (35)
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Egs. (32) and (35) suggest the following functional dependence for the dissipation
function D on both the set S of the state variables and the set of dissipative flows
F:={& a}:

D(S,F)=D(e, a,€" ) (36)
To describe the behavior of a rate—independent material, we postulate that the dissipa-
tion function D is homogeneous of degree one in the elements of F. Euler’s theorem
for homogeneous functions then requires that:

oD, 9D |

By introducing the set of generalized dissipative stresses K := {x, X}, defined as:

oD oD

X = 5er = 9a (38)

o Xa
eq. (37) can be rewritten as:
D=x-"+x, & (39)

Comparing eqs. (37) and (39) we observe that generalized stresses and generalized
dissipative stresses must fulfill the following relation:

(X —=X) €+ (Xa —Xa) =0 (40)

This equality is trivially satisfied if Ziegler’s orthogonality conditions — see [HPO7] —
are assumed:

X=X Xa = Xa (41)

Eq. (41) is a sufficient condition for eq. (40) to hold, but not a necessary one. There-
fore, Ziegler’s orthogonality condition must be considered as a (weak) restrictive con-
stitutive assumption, yet compatible with realistic descriptions of many classes of
granular materials characterized by frictional dissipation, see e.g., [CH97, HPO7].

6.2 Yield function and evolution equations

The homogeneity of degree one of D in the dissipative flows implies that the (degen-
erate) partial Legendre transformation of D with respect to the arguments in F is a
scalar function f, called yield function, such that:

Y(SEK)=x-€+Xxq a=D=0 (42)

for dissipative processes, i.e., when the elements of F are non—zero. In the LHS of
eq. (42), the scalar 4 > 0 is the so—called plastic multiplier. The set:

E:.= {(667a>X7xo¢) eESxXK | f(€e>a7X7Xa) < O} (43)
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is the elastic domain of the material, where the plastic multiplier is zero and all the
processes are non dissipative (¢ = 0, & = 0). The boundary of E:

OE := {(€€7a7XaXa) eSxK | f(ee7a7Xaon) = O} (44)

is the yield surface, on which v may be positive and irreversible processes may occur.

It is worth noting that, due to the orthogonality conditions (41) and the constitutive
equations (32), the yield function f can be considered as a function of €° and a:

f(eeaaaXaXa) = f*(€e7a) =0 (45)

i.e., of the elastic strain and the strain—like internal variables. Therefore, the elastic do-
main and the yield function provided by eqs. (43) and (44) are defined in strain space.
The stress—space counterparts of [E and f is recovered by noting that the stress tensor
o and the stress-like internal variables ', are given functions of (€¢, o) through the
constitutive equations (32). The yield function in stress space then reads:

fla,Xa) = 7 {€(0),a(Xa)} = 0 (46)

From the properties of the Legendre transform of eq. (42) the following associative
flow rules for the elements of F can be obtained:

L, . Of . Of

p_ _
€ =7 ox v oo (472)
«@ of _. 9f (47b)

“Tox. T ox.

Eq. (47a) is the standard associative flow rule for the plastic strain rate, while eq. (47b)
provides the associative hardening law for the internal variable . It is worth noting
that the associativity of the flow rule (47a) holds in the generalized dissipative stress
space. Thus, this result does not prevent the possibility of modeling non—associative
plastic flow in standard Cauchy stress space for free energy functions different from
the one adopted in eq. (30), see [CH97, HPO7].

6.3 Consistency conditions and constitutive equations in rate—form

The yield function and the plastic multiplier are subjected to the Kuhn—Tucker com-
plementarity conditions:

720 f(o.Xa) <0 V(0. Xa) =0 (48)

stating that plastic flow may occur only for stress states on the yield surface (yield
state). However, these conditions do not allow to distinguish which deformation pro-
cesses taking place from a yield state are actually plastic, i.e., cause the development
of plastic deformations. Moreover, no information is yet provided on how the plastic
multiplier depends on the current state and the imposed deformation rate.
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These issues are addressed by the so—called Prager’s consistency condition, stating
that for a plastic process taking place from a state on the yield surface the value of f
must remain zero, i.e.:

. (9f of - .
f= 50‘ +8T Xo =0 (49)

From eqgs. (32) and (47) we can derive the following expressions for o and ia:

2,/e
6 =D°(é—¢é) = D¢ (é —4 af) D = a7¢(ee) (50a)

i dec ® e
Ry ) _ oy
Xo = -B0="185" = 9a®da (00)

which, inserted in eq. (49) provide the following expression for the plastic multiplier:

1 /0

v= i (5 pre) 51)
oo

where the McCauley brackets (x) := (z + |z|)/2 are used to denote the positive part

of their argument (as by definition the plastic multiplier cannot be negative) and the

positive scalar K, is given by:

OF pef% L g~ H,:= 88% -E;;f

K, = (52)

do Jo
in which H), is known as the plastic modulus. A positive value of H,, denotes harden-
ing, a negative value indicates softening, while H, = 0 characterize the special case
of perfect plasticity. As thoroughly discussed in, e.g., [SH97, JB02], the constitutive
assumption that K, > 0 is crucial in the establishment of the correct formulation of
the loading/unloading conditions in presence of softening. Its effect is essentially to
place a restriction on the amount of allowable softening.

Substituting the expression (51) for the plastic multiplier in eqs. (50a) and (50b), we
obtain the following constitutive equations and hardening laws in rate form:

o = D%¢ X, = H?é (53)
where:
ep ,__ e ( ) e a.f f
7 (Da>®<aa ) (542)
p._ H() (: 8f> (81“ )
H? .= %, \Zox. | 55 (54b)

where H(z) denotes the Heaviside step function, equal to one if z > 0 and zero
otherwise.
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The constitutive equations in rate—form given by eqs. (53) are incrementally bi-linear.
In fact, according to the expression (51) for the plastic multiplier, the tangent stiffness
D assumes two possible values depending on the direction of €:

D if (0f/0o) - D€ >0 (plastic loading conditions)
D={D° if (0f/0c)-D€=0 (neutral loading conditions)  (55)
D¢ if (0f/00) - D€ < 0 (elastic unloading conditions)

The continuity at the boundary between the two tensorial zones (the neutral loading
conditions) is guaranteed by the fact that ¥ — 0 as the neutral loading condition is
approached from the plastic loading zone.

7 Non-associative phenomenological plasticity

The evolution equations of the theory of hyperplasticity — eqgs. (53) — are developed
from the knowledge of the two scalar functions v (free energy function) and D (dissi-
pation function), in such a way to guarantee the consistency with the second principle
of thermodynamics. In this respect, the name hyperplasticity is adopted to distinguish
it from classical phenomenological plasticity in the same way as hyperelasticity is
distinguished from hypoelasticity based on the existence of a potential function.

Historically, however, the classical theory of rate—independent plasticity has been de-
veloped following a different strategy, in which the various elements of the theory are
chosen ad—hoc, based on the available experimental evidence. This phenomenological
approach has led to the most successful applications of plasticity to the modeling of
the inelastic and history—dependent behavior of soils, and it is, by far, still the most
widely used in soil mechanics.

The main assumption of the classical phenomenological theory of plasticity will be
presented in the following, pointing out the main differences with hyperplasticity.

7.1 Basic assumptions and general formulation

Starting from the additive split of the strain rate into an elastic and a plasic part,
eq. (29), the elastic strain rate is linked to the stress rate by assuming a hypoelastic
constitutive equation:

6 =D ()& = D (o) (é — &) (56)

in which the elastic tangent stiffness tensor D° generally depends on the current stress
state.

Irreversibility is introduced by requiring that the state of the material (o, ¢) belongs
to the convex set:

E:={(0.q) | f(o.q) <0} 57
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defined in terms of a phenomenologically derived yield function f, depending on the
current stress and on a set of internal variables g which account for the effects of the
previous loading history.

The plastic strain rate is prescribed, as in hyperplasticity, by a suitable flow rule:

. .0
e =7 a—cgr(a', q) (58)

in which g(o, q) is a prescribed plastic potential function, chosen in order to match
available experimental observations — e.g., stress—dilatancy relations. In general, the
plastic potential function is independent of the yield function f. When g and f do
not coincide, the flow rule is said to be non—associative. Associative plastic flow is
recovered when g = f, as in eq. (47a).

The evolution of the internal variables is provided by assigning a suitable hardening
law:

q="h(o,q) (59)

where h(o, q) is a prescribed hardening function. Although the structure of the hard-
ening law (59) is similar to the hardening law of hyperplasticity — eq. (47b) — and
allows changes in the internal variables to take place only during plastic loading pro-
cesses (for which v > 0), eq. (59) is non—associative, in the sense that the hardening
function h is not derived from 9 f/0q.

Again, the yield function and the plastic multiplier are subjected to the Kuhn-Tucker
complementarity conditions of eq. (48), stating that plastic deformations may occur
only for states on the yield surface. The consistency condition for plastic loading
processes (f = 0) allows to derive the following expression for the plastic multiplier:

1 /of .
y=—( == - D¢ 60
1%, <aa 6> (60)
formally identical to eq. (51) but in which:

__of _.0g _of
Ky = 2= D o=+ H, > 0 H,:=—Z"-h 61)

Substituting eq. (60) in eqgs. (56) and (59), we obtain:

o = D¢ q= HP¢ (62)
where:
H(Y) dg of

ep . e e e

D .= D —Kp (D 80’) & <80 D ) (63a)
H(Y) of

p = — €

HP? : K, h®<8aD) (63b)
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where K, is provided by eq. (61).

For the developments of Sect. 8, it is useful to recast the evolution equations (58) and
(62) in terms of the unit tensors:

Haf - 8f Hag - ag

(64)

providing the loading direction and the plastic flow direction, respectively. The flow
rule, hardening law, plastic multiplier and elastoplastic tangent stiffness then assume
the following alternative expressions:

& =An, q=A\h (65)

: 1 . dg
A= — D) = ||=2|| 4 66
i e =] 25 (66

e e H().\) e e
KP
where:

K,:=mn;-D°n,+ H, (H H H H) (68)

are the corresponding plastic moduli.

7.2 Perfect plasticity

The particular case in which the set of state variables contains the Cauchy stress only
(i.e., g = 0) is known as perfect plasticity. In perfect plasticity the yield function and
the plastic potential are given functions of the stress tensor o only. The constitutive
equations for perfect plasticity are recovered from egs. (62); and (63a), setting H,, = 0
in eq. (61). Due to this specific feature, in perfect plasticity yielding along a predefined
stress path occurs at constant stress and constant plastic strain rate:

=0 e€=0 €P = const.

i.e., yield states are also failure states.

The early applications of perfect plasticity to soil mechanics can be traced back to
the various solutions of failure problems for foundations, retaining walls, or slopes
obtained through the method of characteristics (slip line theory) [Sok65], or the appli-
cation of the upper and lower bound theorems of limit analysis [Che76]. In both these
approaches, the soil is modelled as a rigid—perfectly plastic medium, with a failure
condition provided, e.g., by the so—called Mohr—Coulomb yield function:

flo)= (o1 —03) —2ccosp — (o1 + 03)sin =0 (69)
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where o1 and o3 are the maximum and minimum principal stresses, and ¢ and ¢
are two material constants defining the cohesion and the friction angle of the soil,
respectively.

In these applications, the emphasis was placed in the determination of the stress field
in limit conditions, in order to evaluate the stability of the system with respect to a par-
ticular collapse mechanism. The success of this simple and elegant approach to failure
problems is witnessed by the fact that most of the design methods currently in use for
geotechnical structures are still based on such limit solutions, and specific numerical
techniques have been developed to extend limit analysis to those cases for which no
sufficiently accurate analytic solution can be found, see, e.g., [SK95, PBZL97, LS02].

Extension of the above concepts to the analysis of more complex deformation prob-
lems, such as soil-structure interaction or the modelling of the transition from the
small-strain regime up to failure conditions, had to wait until the pioneering applica-
tion of the finite element method to soil mechanics. Examples of the use of elastic—
perfectly plastic models with pressure—dependent yield functions such as those of
Mohr—Coulomb and Drucker—Prager models, are given, e.g., in [ZH77, SD83] for
shallow foundations, [ZHL75] for slopes, [SH92, SGvW95] for flexible retaining
structures, and [RK83, WK91] for tunnels.

7.3 Isotropic hardening plasticity

The experience gathered in using classical perfect plasticity in the analysis of defor-
mation problems has shown how these formulations provide a too crude description of
the actual behavior of natural soils in pre—failure conditions. A radical change of per-
spective in soil plasticity occurred after the pioneering work of Roscoe and coworkers
in Cambridge, which lead, in the sixties, to the basic principles of the so—called “Crit-
ical State Soil Mechanics” (CSSM) [RB68, SW68]. The practical use of CSSM in
geotechnical applications started in the early seventies, when CSSM was interpreted
as a particular application of isotropic hardening plasticity, see e.g., [ZN71], and gen-
eralized to full six—dimensional stress and strain states. The road was then open to a
new approach to geotechnical engineering practice, in which no such distinction be-
tween failure and deformation problems, or elastic response and plastic collapse was
needed any longer.

Isotropic hardening plasticity is obtained from the general formulation of Sect. 7.1
when all the elements of the pseudo—vector g collecting the internal variables are
scalar quantities, and, as such do not provide any information about the orientation of
the microstructure.

The prototype of isotropic hardening elastoplastic models for cohesive soils is the so—
called “Modified Cam—Clay” (MCC) [RB68], which assumes an associative flow rule.
The yield surface adopted in the original MCC model is given by:

J(p,q,ps) =p(p—ps) + -5 =0 (70)
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Figure 1: Yield surfaces and plastic potentials for isotropic hardening elastoplastic
models: a) Modified Cam—Clay [RB68]; b) Sinfonietta Classica [Nov88].

In the ¢:p stress invariant space, it has the shape of an ellipse passing through the
origin, with its principal axes parallel to the coordinate axes. The scalar quantity p,
(preconsolidation pressure) controls the size of the yield surface, and represents the
only internal state variable of the material. For any possible value of p, eq. (70)
describes a family of such ellipses, see fig. 1a. In eq. (70) M is a material constant
defining the aspect ratio of the ellipse.

The evolution equation for the preconsolidation pressure is provided by an empirically
derived logarithmic law of the type':

ps:pspség (71)

with ps = const. The hardening law provided by eq. (71) is purely volumetric, i.e., ps
may change only when plastic volumetric strains occur. Positive (contractant) plastic
volumetric strains cause an increase in ps (expansion of the elastic domain), while
negative (dilatant) plastic volumetric strains induce a reduction of ps and the shrinkage
of the elastic domain.

In the notation of eqs. (59) and (61),:

L of of of
s = hs » 45 Ps hs:: sPs o H:_s s A A
Ps = hs(p, ¢, ps) PsPs 5, p=Pabsg s

(72)
From eq. (72) it is clear that the “failure” conditions for the material (which occur
when p, = const. and H,, = 0) are characterized by purely distortional plastic strain
rates, i.e., the material can be deformed indefinitely at constant stress and constant
volume. Such particular failure states, the existence of which is experimentally ob-
served in both fine— and coarse—grained soils, are defined critical states, and form the
basis of almost all subsequent modern treatments of hardening plasticity for soils.

!'Note that, to avoid using too many different symbols, the notations employed in this work can some-
times be different from the one adopted in the original works cited.
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Modifications of MCC to improve its predictive capabilities have been discussed by
numerous authors. Among them, we recall the extension of the yield function (70) to
include the third stress invariant 8 [ZN73], the adoption of a composite yield surface
to include the so called Hvorslev surface for yield points on the “supercritical side” of
the critical state line [ZN73, HWW84], and the adoption of a hyperelastic constitutive
equation [Hou85, BTA97]. The isotropic hardening models known in the literature as
cap models [DMS71, SDMB76] can be considered essentially as Critical State models
with a modified supercritical yield function, the position of which, however, does not
change with plastic strains.

In the application of the concepts of isotropic hardening plasticity to coarse—grained
soils, two major limitations of classical critical state models have been pointed out.
First, the assumption of an associated flow rule is generally not supported by avail-
able experimental data on sand dilatancy, see e.g., [PHS66, PHS67]. In addition, the
modeling of static liquefaction in the hardening regime, observed in loose sands un-
der undrained conditions is not possible adopting an associative flow rule [Nov96].
Second, the hypothesis of purely volumetric hardening does not allow to describe the
so—called phase transition effect — i.e., the transition from contractant to dilatant be-
havior — typically observed in dense sand under undrained compression.

Non-associative isotropic hardening models for sands have been proposed since the
pioneering work of Pooroshasb er al. [PHS66, PHS67], who coupled a Cam—Clay
type plastic potential with a classical Mohr—Coulomb yield locus. Subsequent im-
provements were proposed, e.g., by Nova & Wood [NW79] and Kim & Lade [KLS88S,
LKS88]. As for the hardening function, Nova [Nov77] and Wilde [Wil77] indepen-
dently proposed an extension of the volumetric hardening rule (71) which incorporates
the effect of deviatoric plastic strain rate:

. . . 0 0 0
Ps = Ps Ps {Gﬁ + 586157} Hp = —PsPs {g +&s g} f (73)
p q) Ops

The scalar quantity ¢, appearing in eq. (73) can be considered either a constant, as in
[Nov77], or a monotonically decreasing function of the accumulated plastic deviatoric
strains, as in [Wil77]. In this last case, a critical state is recovered in the ultimate
conditions at very large plastic strains.

An example of isotropic hardening models for sands — which combines good pre-
dictive capabilities for monotonic loading with a limited number of material constants
easily linked to observed material behavior in standard tests — is provided by the model
proposed by Nova under the name Sinfonietta Classica [Nov88]. For this model, the
adopted yield function and plastic potential are given by the following equations:

flp,r,ps) =368(y—3) In (5) —ytr (r?’) + Z (y—=1) tr (r2) =0 (74)

srra) =90 -3 (L) () + f-DuE) =0 a9
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where r := s/p is the stress—ratio tensor while 5 and -y are material parameters (5 # 3
denotes non—associative behavior). The corresponding surfaces in the ¢ : p plane are
shown in Fig. 1b. An hardening law with volumetric and deviatoric hardening similar
to eq. (73) is assumed for the internal variable p,, which controls the size of the yield
surface.

Subsequent developments gave rise to a number of constitutive models which pro-
gressively diverged from the basic assumptions of CSSM in the attempt of covering
further aspects of experimentally observed soil behavior, as well as to tackle other,
more challenging classes of engineering problems. The breath and depth of such sci-
entific production is well portrayed, for example, by the proceedings of the workshops
held in Grenoble in 1982 [GDV84], Cleveland in 1988 [SB89], and Horton in 1992
[Kol93]. Another useful source of references is provided by the special volume pub-
lished on the occasion of the XI ICSMFE [Mur85].

7.4 Anisotropic hardening plasticity

Almost all geotechnical materials such as rocks, coarse—grained soils and fine—grained
soils are characterized — to a certain extent — by the existence of some preferential
orientations at the microstructural level. In granular soils such preferential orienta-
tions can be associated to the spatial distributions of the contact normals, to grain
shape and to void shape, see [ONNKS85]. Moreover, the directional properties of the
microstructure might remain more or less stable during the deformation of the solid
skeleton (as, e.g., the distribution of grain orientations in the tests performed by Oda
et al. [ONNKS85]), or they might evolve as a consequence of grain rearrangements
upon applied loading (as, e.g., the distribution of contact normals [ONNKS85]). From
this observations, it follows naturally that the macroscopic response of the material —
reflecting the properties of the microstructure — can be characterized by a more or less
marked anisotropy, both in terms of stress—strain response in pre—failure conditions,
and in terms of shear strength.

According to the possibility that superimposed loading histories may change the di-
rectional properties of the microstructure, two different kind of anisotropy can be dis-
tinguished at the macroscopic level, see [CC44]:

— inherent anisotropy, “[...] a physical characteristics inherent in the material
and entirely independent of the applied strains”;

— induced anisotropy, “[...] a physical characteristic due exclusively to the strain
associated with the applied stress”.

Inherent anisotropy is usually relevant in hard, heavily overconsolidated soils and
stratified rocks, where strong intergranular bonds prevent the occurrence of signifi-
cant rearrangements of the microstructure, or in coarse—grained soils with strongly
non-circular particles, the orientation of which cannot be modified easily unless a
substantial amount of grain crushing occurs. On the contrary, induced anisotropy
plays a major role in non—cemented granular soils with rounded particles, or in clays
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where the applied loading can modify and, in some cases, even erase the effects of the
previous loading history. Direct and indirect experimental evidence of inherent and
induced anisotropy is reported, e.g., in [ABS77] for soft rocks, in [OKH78, WAS8S,
YMHY1, YIV98] for sands, and in [DS66, Mit70, TL77, GNL83, STH92] for clays.

In the framework of the classical theory of plasticity, inherent anisotropy can be
dealt with in the formulation of the elastic constitutive equation — as in, e.g., [Boe75,
GHS3] — and/or in the definition of yield and plastic potential functions. Constitutive
equations for inherent anisotropy have been proposed, e.g., by Nova [Nov86], Pas-
tor [Pas91] and Semnani et al. [SWB16], based on a approach first suggested by Hill
[Hil50]. Essentially, these models are derived from existing isotropic hardening for-
mulations by replacing the standard invariants of the stress tensor with corresponding
anisotropic invariants defined by means of suitably chosen (constant) structure ten-
sors, which are employed as metric tensors in the construction of the scalar invariants
entering in the constitutive functions. An alternative strategy to incorporate inherent
anisotropy, based on the use of a microstructure tensor in the definition of the yield
surface, has been proposed in [PM00, PLS02, OKKAO02].

The description of induced anisotropy — i.e., the evolution of the directional properties
of the material with the loading history — requires the set of internal state variables
q to include at least one tensor—valued quantity. In most of the existing anisotropic
hardening plasticity models, this is usually assumed to be a symmetric second—order
tensor, with the character of a microstructure tensor. Although this limits the degree
of symmetry of the material to orthotropy, see [Boe87], it is considered sufficient for
most geomaterials of relevant practical interest.

In presence of a symmetric second—order microstructure tensor among the internal
variables, the general restrictions imposed to the yield and plastic potential functions
by the principle of material frame indifference, as well as the consequences of induced
anisotropy on the relative orientation between the principal directions of the stress and
the plastic strain tensors are discussed in detail in [BD84]. Plasticity models with
anisotropic hardening can be broadly grouped into two different classes, according to
the experimental evidence which they were intended to reproduce, namely:

a) constitutive models with kinematic hardening, capable of modelling soil behav-
ior under cyclic loading paths, see, e.g., [Wo082] and references therein;

b) constitutive models with rotational hardening, which are capable of describing
the changes in the orientation of the yield surface with the evolution of plastic
strains, as observed, e.g., in [YMH91, TL77, GNLS83, STH92].

Kinematic hardening models for soils originate from the pioneering work of Mroz
[Mro67], Iwan [Iwa67], and Dafalias & Popov [DP75]. In such models, a yield func-
tion of the form:

flo, o qx) = f(6,q1) =0 Gi=0-a (76)
is assumed, in which the so—called back—stress a is the microstructure tensor, re-
sponsible for the induced anisotropy, and the scalars g, (k = 1,...,n) denote the
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flo-0g)=0

Figure 2: Kinematic hardening inside the Bounding Surface.

other internal variables. As o changes during the loading process, the yield surface is
dragged by the stress—path as indicated qualitatively in Fig. 2. The motion of the yield
surface in stress space is typically restricted by a larger, outer surface, referred to as
Bounding Surface (BS), of equation:

F(o,q,) =0 {an} c{ar} 77

In classical anisotropic plasticity, the BS — generally similar in shape to the yield
surface — provides a limit to the possible evolution of the back—stress a. Models of
this kind have been proposed by various authors. Among them we recall the works of
Prevost [Pre77, Pre86], Mroz et al. [MNZ78, MNZ81], Hashiguchi [Has85, Has88],
Wood and coworkers [ATW89, GW99, RW00] and Stallebrass and Taylor [ST97].

Most of these works represent a straightforward extension of classical Modified Cam—
Clay, see Sect. 7.3. As an example, in the model of Al-Tabbaa & Wood [ATWS89], the
yield and Bounding Surface functions are given by:

3
F(mpc):ms-s—&—(p—pc)Q—pg:O (78)
3

flo,p.) = oM, (.s — deva) (s — deva) 4 (p—pa)2 . RQpi -0 (79)

where p. = ps/2, po = traa/3 and R < 1 is a material constant representing the
ratio between the sizes of the two surfaces.

In this class of models, the hardening function adopted for p. (or py) is similar to the
one adopted in critical state models, see eq. (71). As for the tensor c, rather than
prescribing explicitly the hardening function, the hardening modulus H,, is assigned
as a monotonically decreasing function of the distance § between the current state and
a image state o on the BS, defined as the point at which the unit normals to f = 0 and
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Figure 3: Kinematic hardening models: definition of the image point.

F' = 0 have the same direction (see Fig. 3a):

oH PO

H,=H (H,,9) 5 >0 H(H,0)=H, (80

In eq. (80), 6 := ||& — | and H,, is the plastic modulus at 7:
Hy=—2"n, 31

obtained from the consistency condition on the BS:

When the stress—path touches the BS, the two surfaces must share the same tangent,
otherwise some admissible states would fall outside the BS, see Fig. 3b. As shown by
Hashiguchi [Has85], this is obtained through an appropriate definition of the evolution
equation for a«. For the Al-Tabbaa & Wood model [ATW89], the non—intersection
condition requires that:

@ z—z + 2 [:_(;pc/i‘;)a} (@— o) (82)

In eq. (82), the first term is related to the translation of the center of the BS, the second
represents the effect of the change in size of the BS (and of the yield surface), and the
third a net translation in the direction of the tensor 8 := o — o, see Fig. 3a.

Anisotropic plasticity models with rotational hardening are more suitable for describ-
ing the anisotropy induced by loading histories associated to depositional processes in
natural deposits, such as one—dimensional compression and, possibly, swelling. These
models can be traced back to the pioneering works of Sekiguchi & Ohta [SO77] for
clays, or Ghaboussi & Momen [GMS82] for sands. Constitutive equations of this kind
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(a)

Figure 4: Typical yield surfaces adopted in rotational hardening models.

proposed for sands are usually intended to model irreversible processes associated
with deviatoric loading paths, and therefore adopt conical-shaped yield surfaces, open
towards the range of high mean pressures (fig. 4a). Among them, we recall the models
proposed in refs. [GMS82, PP85, MD97, GW99, DM04, TDOS].

Rotational hardening models for fine—grained soils, on the contrary, adopt closed
yield surfaces (fig. 4b,c), in order to reproduce the irreversible deformations usu-
ally observed in these materials along isotropic or proportional loading paths (¢/p =
const.). Examples of rotational hardening models for clays are given in the works of
[Has79, BY86, AD86, WNKL03, DMP06, TDP10].

Exceptions to this general trend are provided, for example, by the models of di Prisco
et al. [dPNL93] — actually a generalization of the Sinfonietta Classica model discussed
in the previous section — and Pestana & Whittle [PW99], which can be employed
for coarse as well as fine—grained materials. It is worth noting that in most of the
aforementioned models, the rotational anisotropy is employed in connection to some
form of generalized plasticity allowing plastic flow inside the main state boundary
surface, which will be discussed in Sect. 8.

Rotational hardening models can be easily derived as generalizations of classical
isotropic hardening formulations (e.g., Modified Cam—Clay) by simply replacing the
stress invariants entering in the yield and plastic potential functions with appropri-
ate mixed invariants which take into due account the microstructure tensor. Possible
ways of defining such mixed invariants are provided, for example, by Anandarajah
and Dafalias [AD86] (slightly modified):

a1 a a ay . (d")*-1
P '250'5 \/7“3 | sin(36%) : _\f[(da)Q 172 (83)
where 8 is the microstructure tensor, and:
st =0 —p*d° d” :=dev(s) 6°-6"=3 (84)

or by Wheeler et al. [WNKLO3]:

a 1 a 3 a . a (Sa)g 1
p® = gcr 1l=p ¢%:= \/; Is*]]  sin(36%) := \@W (85)
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where 6 is a purely deviatoric microstructure tensor, and:
s*:=s—pd” s :=dev (o) 4-1=0 (86)

In egs. (83) and (84), the projection of o on the isotropic axis, commonly used to
construct the isotropic and deviatoric invariants of the stress tensor, are replaced by
the corresponding projection on the microstructure tensor 8%, now playing the role of
the unit tensor — compare eqs. (83) with egs. (2) — and, in fact, defining the rotation of
the surface with respect to the isotropic axis, see fig. 4c.

In egs. (85) and (86) the yield surface is distorted in the direction of the deviatoric
axis, rather than rotated around the origin of the stress space. This effect is obtained by
shifting the deviatoric stress by a quantity proportional to the deviatoric microstructure
tensor and the current mean stress, see fig. 4b.

Several alternative strategies have been proposed to link the evolution of the mi-
crostructure tensor (i.e., the rotation of the yield surface) with the plastic strain rate.
All of them must, however, satisfy the orthogonality condition 8% . 5% = 0, required
by the assumption (84)s, or the requirement set by eq. (86)3. A thorough discussion
on the different rotational hardening mechanisms adopted for fine—grained soils has
been presented by Dafalias and Taiebat [DT13].

8 Bounding Surface models and generalized plasticity

An important limitation of classical elastoplasticity as applied to geomaterials is rep-
resented by the assumption of a large elastic domain, inside which the response of
the material is purely reversible. In light of the concepts introduced in Sects. 6 and
7, classical elastoplasticity is characterized by an incrementally bi—linear constitutive
equation only for states on the yield surface. All elastic states are, by definition, en-
dowed with an incrementally linear response. However, a large body of experimental
evidence suggests that soil behavior can be irreversible and path—dependent even for
strongly preloaded states, and that plastic yielding is a rather gradual process. Al-
though such effects can be considered of secondary importance in the simulation of
monotonic loading paths, it must be noted that a strong dependence of the small—strain
stiffness on the loading path direction has been observed, e.g., by [ARS86, Sta90] in
heavily overconsolidated soils, and that such a feature of soil behavior — which can-
not be reproduced by any incrementally linear model — can be of great importance
in all practical applications in which strong variations of the stress—path direction are
expected in different zones of the soil mass, e.g., in the analysis of excavations. More-
over, irreversible (plastic) strains occurring well inside the locus of admissible stress
states are obviously of great importance in cyclic loading processes, and the accu-
rate description of such phenomena as cyclic mobility or liquefaction under repeated
loading (see, e.g., [Wo082]) requires to take them into proper account.

The kinematic hardening models discussed in the previous section — mostly developed
during the early ‘80, in response to the problems posed by the design of structures such
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as offshore platforms, or by the quantitative prediction of soil response during earth-
quakes — are certainly capable to deal successfully with this particular issue. However,
anumber of alternative strategies have also been proposed for the same purpose, which
represent genuine generalizations of the classical framework. Among them, definitely
worth of mention are the so—called Bounding Surface models, originally developed by
Dafalias and coworkers, and the models developed in the framework of Generalized
Plasticity, as defined by Pastor et al. [PZC90].

The key concept in the formulation of a Bounding Surface model is the fact that, as in
kinematic hardening elastoplastic models mentioned before, there exists a surface in
stress space — the Bounding Surface (BS), defined by an equation similar to eq. (77)
— which separates admissible from impossible states. Such a surface is subjected to
hardening processes which may change its size, shape and orientation due to the de-
velopment of plastic strains, exactly as a standard yield surface in classical plasticity.
However, such a surface is not a yield surface, as plastic strains can occur for stress
states located in its interior. In particular, at each admissible state (inside or on the
BS), a flow rule identical to eq. (65); is assumed, in which the plastic multiplier \is
replaced by:
P (ng, - D) (87)
Ky
where: B _
K,:=np -D°n,+ H, (83)

in which ny, is a unit tensor defining the loading direction, and I;'p, by analogy with
the standard formulation, plays the role of the plastic modulus. The definition of these
last two quantites relies crucially on the possibility of associating to each stress state
o inside the BS a corresponding image state o on the BS, through a non-invertible
mapping rule.

In the so—called radial mapping BS models, see [Daf86], this is accomplished by
simply projecting the current stress onto the BS from a given projection center c, see
Fig. 5. Once the image state is found, the loading direction is taken as the gradient of
the BS at'a, while the plastic modulus H), is assumed to be a monotonically decreasing
function of the distance ¢ := ||& — o|| between the current state and the image state,
and of the plastic modulus H,, at &:

%{ >0 H(H,,0) =H, (89)

H,=H (H s 5)
The stress—strain relation in rate form is then given by an equation similar to eq. (62)1,
with the tangent stiffness D*? provided by eq. (67), the plastic multiplier A provided
by eq. (66) and K, replaced by K, of eq. (89). The analogies existing between this
procedure for defining the loading direction and the plastic modulus and the one out-
lined for kinematic hardening models in Sect. 7.4 are apparent. As a matter of fact,
Dafalias [Daf86] considered kinematic hardening models as a special class of BS mod-
els, characterized by a special form of mapping rule.

ALERT Doctoral School 2021



46 The theory of plasticity in constitutive modeling of rate-independent soils

q A

\\ P

Figure 5: Radial mapping rule in Bounding Surface models.

However, differently than in kinematic hardening plasticity, in radial mapping BS
models, no elastic region exists anymore, and the material features an incrementally
bi-linear response at any state. A comprehensive review of the Bounding Surface
concept is provided by Dafalias [Daf86]. Applications of the Bounding Surface Con-
cept to the modelling of clays are reported, e.g., in [ZLP85, DH86, AD86, WK9%4,
LYKTO02, DMPO06, TDP10], while applications to coarse—grained soils are given, e.g.,
by [PZL85, Bar86, Cw94, MD97, DM04, TDOS].

Starting from the works of Zienkiewicz & Mroz [ZM84], Pastor et al. [PZC90] de-
veloped the framework of Generalized Plasticity as a further generalization of the
Bounding Surface concept, where the concepts of plastic potential, yield function and
consistency condition are completely abandoned. In the incrementally bi-linear ver-
sion of the theory, the plastic strain rate is provided by the following equations:

& =\ Ngr if: np-D% >0 (loading) (90)
e = \yngy if: my-D% <0 (unloading) 91)
e =0 if: np-D° =0 (neutral loading) (92)
in which:
. 1 N N
)\L: = TLL~Deé KpL = nL-DengL+Hp,L (93)
p,L
. 1 ] ~ . ~
)\U = =<—"Ny - D¢e KpU =ny - D ngyu + Hp,U (94)
Ky u

In egs. (90)—(94), n1,, ngyr, and nyy are three second—order unit tensors representing
the loading direction, the plastic flow direction for plastic loading and the plastic flow
direction for plastic unloading (reverse loading), respectively, while the scalars H),

and H »,U are the corresponding plastic moduli for (plastic) loading and unloading. All
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these quantities are considered as prescribed functions of the state variables (o, q),
and, in general, their definition do not require any yield function, plastic potential or
consistency condition to be assumed.

The corresponding expressions for the elastoplastic tangent stiffness tensor are given
by:

D¢ — (1)K, ) (D° ngr) ® (n, D) (plastic loading)
D — R 95)
D — (1/K,v) (Dngy) ® (nr, D) (plastic unloading)

It is worth noting that both classical plasticity and Bounding Surface plasticity are
recovered from generalized plasticity as special cases, with suitable choices for the
constitutive functions ., ngr, ngu, Hy 1 and H), 7, see [PZC0] for further details.

9 Plasticity with generalized hardening

A last, notable case of incrementally bilinear formulations is provided by the theory of
plasticity with generalized hardening — as defined by Tamagnini and Ciantia [TC16]
— proposed in the geomechanics context to describe a number of practically relevant
aspects of the mechanical behavior of geomaterials. A common, distinctive feature of
those constitutive theories is that the size and shape of the yield locus, as well as its
evolution with the loading process are assumed to depend, in addition to accumulated
plastic strains, on some other non—mechanical state variables, usually of scalar nature.
Among them, we recall:

* the thermoplastic models proposed by Nova [Nov86] or Laloui and Cekerevac
[LCO8] to describe the influence of temperature on the brittle-ductile transition
of rocks in geophysical applications, in which the preconsolidation pressure
depend on the temperature 7'

* the elastoplastic models for unsaturated soil (formulated in terms of Bishop ef-
fective stresses) in which an explicit dependence of the size of the yield surface
on the degree of saturation is assumed to simulate the phenomenon of collapse
upon wetting for partially saturated soil, see, e.g., [JomO00];

* the extension of classical elastoplasticity advocated by [Nov00] to describe the
effects of weathering on cemented soils or weak rocks, in which some bonding—
related internal variables are subject to both mechanical and chemical degra-
dation, described through a normalized, scalar weathering function X, , see
[TCNO2, NCTO3].

These approaches share also some similarities with a number of viscoplastic models
based on the concept of a non—stationary yield locus, see e.g., [FN90, Bor92], and
to chemoplastic models proposed for early—age concrete [UC96] or clays subject to
environmental loading [Hue92, Hue97].
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The main features of the theory, as detailed in [TC16] are summarized in the following.
Let ¢ denote the additional (scalar) variable affecting the mechanical response of the
material, i.e., temperature, suction or chemical degradation. A first modification of the
classical theory to account for the changes in ¥/ is introduced in the elastic constitutive
equations, which now reads, in rate—form:

o =D (0,9) (€ — &) +m(o,0)D (96)

In eq. (96), m(o,9) is a coupling coefficient (e.g., thermal stress coefficient for
¥ = T). While the definitions of elastic domain, flow rule and loading/unloading
conditions are identical to those of the classical theory — eqs. (57), (58) and (55) — the
evolution equation for the internal variables now assumes the following generalized
form: _

where: h(o,q,9) and (o, g, V) are suitable hardening functions. The first term on
the RHS of eq. (97) quantifies the changes in the internal variables due to plastic defor-
mations, while the second term accounts for all non—-mechanical hardening/softening
processes induced by a change of 9.

From the consistency condition ~ f (o,q) = 0, the elastic constitutive equation (96)
and the flow rule (58), the following generalized expression for the plastic multiplier

is obtained: ) o7 o7 o7
'y—Kp<ao_~De+<aq n+% m>19> (98)

with K, given by eq. (61). This in turns provides the following constitutive equations
in rate form:

o =D e+my (99)
Gg=Gée+Gyd (100)
in which:
b () (M)
v i B (U OF ) el o
G H[g) he (gf ) (103)
Gy e H}g) (gz n+§i >h+n (104)

According to eq. (98), the plastic multiplier 7 can be considered the sum of the fol-
lowing two terms:

.1 of .. .1 [of af .
Y 1= K py - D% Ay 1= <8q 17—1—60_ m)z? (105)
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The first, 4,,,, coincides with the plastic multiplier of classical elastoplasticity — see
eq. (60) — while the second, ~, accounts for the effect of non—-mechanical harden-
ing/softening processes. Note that, for plastic loading to occur, only the sum of ¥,
and y needs to be positive. In particular, plastic strains may occur even for a trial
stress rate ¢*" := D°é pointing inwards the current yield locus (¥,, < 0), provided
that the change in ¥ gives rise to a reduction in size of the elastic domain sufficiently
large to keep the plastic multiplier positive, as, for example, in the case of chemical
degradation.

Examples of application of this general framework to the modelling of mechanical
and chemical degradation processes in weak rocks or bonded soils are provided in,
e.g., [INCO1, TCNO2, NCT03, CdP16, TC16].

10 Concluding remarks

In this chapter, the basic principles of the theory of plasticity have been presented,
starting from the basic thermodynamic foundations of the theory of hyperplasticity
and moving to classical (perfect, isotropic and anisotropic hardening) phenomenolog-
ical plasticity, in which the main ingredients of the theory are selected ad-hoc, based
on the available experimental evidence. Some of the most relevant extensions of the
classical theory — such as Bounding Surface plasticity, generalized plasticity and plas-
ticity with generalized hardening laws, developed to improve its predictive capabilities
for complex loading conditions including cyclic loading and environmental loading —
have also been discussed to provide an overview of the capabilities of advanced plas-
ticity formulations as applied to particular geotechnical problems.

One important aspect of mathematical modeling of soil behavior which has been thor-
oughly discussed is the need to distinguish between the non-linearity of the stress—
strain response for finite stress or strain increments and the concept of incremental
non—linearity. While a non-linear soil model can be obtained with a simple hypoelas-
tic constitutive equation, the modeling of irreversible and history—dependent behavior
requires the constitutive equation to be formulated in rate—form and the use of incre-
mentally non—linear relations between the stress and the strain rates.

The theory of plasticity represents the earliest and perhaps simplest approach to in-
cremental non-linearity, achieved through the introduction of the loading/unloading
conditions in the incremental response. Its appeal throughout the decades since its
early applications to geotechnical problems stems from the ease with which some of
its basic concepts (the elastic response, the yield surface, the plastic potential) could
find a physical interpretation in the examination of classical laboratory test results.

While classical perfect plasticity is still widely used in the analysis of failure prob-
lems in geotechnical engineering, the more advanced versions of the theory have been
mostly developed in the attempt of making more accurate numerical predictions in
terms of performance of the geotechnical structures under complex loading conditions
— i.e., relevant displacement and deformations.
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It is worth noting that, as the models increase in their predictive capabilities, they
also necessarily require the introduction of more material constants as well as of a
larger pool of history—dependent internal variables. This creates two different order of
problems whenever the use of these advanced tools is required:

a) A large pool of experimental data, gathered from tests exploring different load-
ing paths, is required to calibrate models with a large set of material constants.

b) In presence of one or more internal variables, some of which could be second—
order tensors, the definition of their initial values at the beginning of the loading
process is necessary, in the same way as the definition of the initial stress state
is required in order to start the evolution process governed by the constitutive
equations in rate—form.

As for point (a), a desirable feature of the model would be that the calibration does not
require complex testing procedures to be performed with non—standard experimental
devices (e.g., true triaxial cell, hollow cylinder apparatus, simple shear devices). The
calibration of a relatively large set of material constants has always been considered
one of the main drawbacks of advanced plasticity models, and has motivated a number
of studies aimed at devising calibration algorithms for the automatic identification of
the model constants from a set of experimental data.

However, it is usually point (b) which poses the most challenging task. In fact, it
is sufficient to consider how difficult could be to make a reasonable estimate of the
coefficient of earth pressure at rest, K, for a heavily overconsolidated soil deposit,
even in simple geometric conditions (horizontal ground surface, horizontal contacts
between soil layers), to have an idea on how hard is to estimate the initial values of a
structure tensor when no information is available on the details of the geological his-
tory of the site, or the ground surface is not horizontal and simple geostatic conditions
do not apply. In some cases, the definition of the initial state in terms of stress and
internal variables fields could require the simulation of the entire geological history of
the deposit and could represent a significant part of the numerical modeling activities
for the design of a geotechnical structure.
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Hypoplasticity and other incrementally
non-linear modelling approaches

David Masin®

ICharles University, Prague, Czech Republic

In this lecture, incrementally non-linear approaches to constitutive model formula-
tion will be introduced. Unlike elasto-plasticity, incrementally non-linear models are
charaterised by a stiffness matrix continuously dependent on strain rate direction with
explicit analytical form of stiffness matrix is often neither available nor needed for the
model formulation. The incorporation of irreversible behaviour of granular materials
is in most cases not utilised through sub-dividing the strain rate into elastic and plas-
tic part, but through incrementally non-linear character of the primary constitutive
equation itself. The concepts are demonstrated by describing three different classes
of incrementally non-linear models: hypoplasticity, barodesy and incrementally non-
linear bounding surface plasticity.

1 Introduction

In this chapter, we will leave aside rate-dependency of soil behaviour and consider
constitutive models which can be, at least in principle, written in the form:

T = M(T,q,D): D 0

where M is the tangent stiffness tensor, T is Cauchy stress, Tisits objective (Jaumann-
Zaremba) stress rate, q is a vector of state variables, D is the Euler stretching tensor
and D is its normalised value defined as D = D/||D||, where ||D|| represents Euclidean
norm of D.

In a constitutive model, the tensor M may or may not depend on D. Those models,
where M is independent of D are denoted as incrementally linear or elastic. The
elasto-plastic models are characterised by two tensorial zones of D (elastic and elasto-
plastic) and, as such, the models can be denoted as incrementally bi-linear. Further
discrete increase of the number of tensorial zones to form incerementally multi-linear
models is feasible [DL82], but not very practical from the model complexity point of
view. Instead, researchers focused on development of models where M represented
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a continuous non-linear function of D. These models are denoted as incrementally
non-linear and they are the main topic of this chapter.

The reader could pose a question why developing an incrementally non-linear model
is preferable with respect to multi-linearity. The main reason is that other constitutive
modelling frameworks exist than those based on Eq. (1). Using these frameworks it
is possible to design simple and elegant models which, if expressed using (1), would
be characterised by a continuous dependency of M on D. Analytical expression of
M is, however, often neither available nor needed for the proper functionality of these
models. In this chapter we will focus on three selected approaches to replace Eq. (1)
leading to incrementally non-linears models': hypoplasticity, barodesy and incremen-
tally non-linear bounding surface plasticity.

2 Hypoplasticity

Hypoplasticity is a special class of incrementally non-linear constitutive models whose
general rate equation reads: )
T=L:D+N|D| 2)

Central in the model are two constitutive tensors £ and N; £ is a fourth-order tensor
and N is a second-order tensor. For more details on model structure and particular
versions, the reader is referred to [Kol00, Nie03, KM 16, Mas19].

2.1 Hypoplasticity explained using response envelopes

The first part of the hypoplastic equation £ : D is, in fact, equivalent to the elastic
model with ﬁ—independent M. Therefore, identically to the elastic model, it yields
an elliptic response envelope centred about the reference stress state. In addition to
this, however, the hypoplastic model contains additively the second-order tensor part
N||D||, which is independent of D (for the given ||D||). As N|/D|| is independent of D,
its net effect on the response envelope is its translation in the stress space (Figure 1).
Consequently, the response envelope of the hypoplastic model is a single ellipse (as in
elasticity); however, unlike in elasticity, this ellipse is not centred with respect to the
stress state. Therefore, unlike elasticity and similar to elasto-plasticity, the hypoplastic
model predicts different stiffness in different loading directions.

2.2 Hypoplasticity explained using simplistic 1D version

A 1D hypoplastic model is introduced in this section to demonstrate the main principle
of hypoplasticity. 1D equivalent of Eq. (2) for shear deformation reads

dr = Ldy + N|dv| 3)

!For convenience, this terminology has been chosen to distinguish different approaches to construct the
model primary rate equation (the equation replacing (1)). It is pointed out that some authors prefer to use
the term hypoplasticity as interchangeable with incremental non-linearity, thus considering also barodesy
[Kol12] and incrementally non-linear bounding surface plasticity [Daf86] as sub-classes of hypoplasticity.
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elastic response
envelope

_ hypoplastic response
4 “"envelope

Figure 1: Response envelope of elastic and hypoplastic models. The hypoplastic re-
sponse envelope is formed from the elastic response envelope £ : D by translation,
which is specified by N||D|| (from [Mas19]).

where the stress state is defined by the shear stress 7, strain by shear strain + and
constitutive response through two moduli L and N. dX represents infinitesimal in-
crement of a variable X . In hypoplasticity, the switch function distinguishing between
loading and unloading and the strain decomposition into elastic and plastic parts are
not adopted. A scalar “modulus” N may be defined as

N=LY “
where Y is calculated using
Y =— )
Tyield

where 714 18 a limit (yield) shear stress. The modulus L is specified using parameter
E,, such that L = E,. The hypoplastic model requires two parameters 7y;e;q and
E,. Eq. (3) leads to predictions of the loading-unloading cycle shown in Fig. 2
(for £, = 2000 kPa and 7;c;¢ = —100 kPa), where predictions are compared with
equivalent elastic perfectly plastic model.

The following two cases are important for clarifying performance of the hypoplastic
model:

1. When 7 = 0, Y, calculated using Eq. (5), is also equal to zero. Therefore,
N = 0 and thus
dr = Ld~ (6)

L thus specifies the initial modulus for loading from the state 7 = 0.

ALERT Doctoral School 2021



66 Hypoplasticity and other incrementally non-linear modelling approaches

100 | Tyield
80 r
F L
& %0 hypoplasticity ——
o elasto-plasticity -~
40 |
20
E,
ol . . . ,
0 0.05 0.1 0.15 0.2 0.25

v [-]

Figure 2: Comparison of predictions of simple scalar hypoplastic and elasto-plastic
models for shear (from [Mas19]).

2. When 7 = Ty;e14, Y is equal to one. Therefore, N = L and the hypoplastic
equation reads
dr = L(dy + |dr|) )

During loading, dy < 0 and therefore d7 = 0. During unloading, dy > 0 and
hypoplasticity predicts
dr = 2Ldy ®)

It follows from the above that for the special cases of 7 = 0 and 7 = T7y;¢q the
hypoplastic model predicts responses identical to the elastic perfectly plastic model
(apart from the unloading modulus at 7 = 7,14, Which is twice as high as the loading
modulus at 7 = 0). The two models thus predict the same asymptotic states (see
Sect. 2.4). The most important difference in predictions of the two models is in the
intermediate states Ty < 7 < 0. While elastic perfectly plastic model predicts
constant stiffness F,,, hypoplasticity predicts a gradual decrease of stiffness, starting
from the initial modulus E,, and ending with the fully plastic state with stiffness equal
to zero. The stiffness decrease is caused by the definition of Y, whose value gradually
increases from 0 to 1 and thus forces the modulus NV to vary between zero and L.
Hypoplastic model thus inherently predicts non-linearity without having to introduce
complex hardening laws of advanced elasto-plastic models.

2.3 Historical overview of hypoplasticity development

The first hypoplastic equations, developed at the end of the 1980’s and in the 1990’s at
the University of Karlsruhe, considered Cauchy stress as the only state variable. The
general form of a constitutive equation then reads

T = G(T,D) e
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Kolymbas [Kol85, Kol91a, Kol91b] adopted a rational mechanics approach and ex-
pressed properties that a constitutive equation of the general form (9) should obey to
predict the behaviour of sand. The following requirements and constitutive equation
properties have been emphasized:

1. According to the third postulate by Truesdell and Noll [TN65], denoted as the
principle of material frame-indifference (principle of material objectivity), con-
stitutive equations must be invariant under changes of frame of reference. That
is, two observers, even in a relative motion, must observe the same stress in a
body. Objectivity requires G() from Eq. (9) to be an isotropic function of both
arguments T and D. That means

Q G(T.D)-Q"=G(Q-T-Q",Q-D-Q") for¥Q  (10)
where Q is an arbitrary orthogonal tensor, which quantifies rotation.
2. To represent asymptotic behaviour (see Sec. 2.4), function G() from Eq. (9)
should be positively homogeneous with respect to stress
G(AT,D) = \"G(T,D) for YA >0 (11)
Note that later on, Niemunis [NieO3] demonstrated that (11) is not necessary to
predict asymptotic behaviour (so-called directional homogeneity is sufficient).

3. Rate-independence requires Eq. (9) to be positively homogeneous of degree
one in D, that is

G(T, \D) = \G(T, D) for  VYA>0 (12)

The above three properties pose restrictions on G(). The general representation the-
orem of isotropic tensor-valued functions of two symmetric tensorial arguments has
been proposed by Wang [Wan70]. He has shown that G() can be, under full generality,
written as

G(T,D) = ¢11 + ¢oT + 3D + ¢4 T? + psD? + (T -D + D - T)+

13
¢7(T-D?> +D?-T) + ¢g(T> - D+ D - T?) + ¢o(T? - D* + D? - T?) (9

where the operation X2 is defined as X2 = X - X, where the scalars ¢1, ¢ ... ¢g are
joint invariants of T and D. Considering the other two restrictions on G(), Kolymbas
[Kol91a] expressed the first hypoplastic model (by that time denoted as the “gener-
alised hypoelastic equation”) as

D2

,_A'_
VitrD? (14)
Cy(T-D+D-T)+CsTVtrD* + ...

G(T,D) = CthI‘D + 02 tI‘(T) tI‘(D)l + CgT

The summands on the right-hand side of Equation (14) have been termed “genera-
tors” and their series is infinite. C; in (14) are material constants. Kolymbas [Kol91a]
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pointed out that this infinite sum is not endowed with a hierarchy, as is the case
with, for example, a Taylor series. Instead, any generator can be equally important
or unimportant in contributing to the description of the material behaviour. Kolymbas
[Kol91a] developed a computer code, which tested different combinations of the gen-
erators and, by a trial-and-error procedure, selected a minimal set of generators that
best represented the known behaviour of granular materials. For each version of the
model, he tested the following predictive capabilities:

1. Response envelopes.
2. Stress paths predicted for proportional strain paths (paths with constant D).

3. Predictions of typical laboratory tests on soils (drained triaxial test, oedometric
test, simple shear test).

4. Limit surface (equivalent of yield surface in elasto-plasticity).

Ilustrative examples of the selection process are given in Figures 3 (response en-
velopes).

4
250
f
A 200 |
4]
LTy &
150
160 |
120 F 100 |
80 |
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40 |
0 A L L L 0 r-
0 50 100 150 200 0 50 100 150
a [sf) b az
(a) (b)

Figure 3: Response envelopes predicted by two choices of generators in the first hy-
poplastic equation development by Kolymbas [Kol91a]. (a) accepted, (b) rejected.

The following hypoplastic version has been selected as the most suitable [Kol91a]:

T-T
tr T

T:Cl(T-D+D.T)+1CQT:D+<03T+C4 >\/D:D (15)

with material parameters C; to Cy. These can be related to the more familiar soil
characteristics like friction angle, dilatancy angle and Young’s modulus [Kol85].
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Equation (15) was taken over by [Wu92, Wu99], who proposed an alternative version
based on the quantitative analysis of the model performance:

i Ttr(T-D TT _T.-T
t—opuTs oD (o TT VDD  (16)
tr T tr T tr T

where T* = T — (tr T)1/3 is the deviatoric stress tensor. Wu [Wu92] also pointed out
that Eq. (16) can be recast in the following more convenient form of Eq. (2):

T=L:D+N|D| (17)

with the fourth- and second-order moduli £ and N defined as
CztrT(le+C2T®T> (18)
N:trT(ch-T+C4T* T) (19)

where T =T / tr T. Later on, Lanier et al. [LCCt04] proved that any other hypoplas-
tic equation based on (13) and combined with the other requirements stated above can
be expressed in the form of Eq. (17).

Eq. (17) formed the basis for subsequent development of hypoplastic models. Gude-
hus [Gud96] introduced critical state concept using so-called pyknotropy factor through
the incorporation of the pressure-dependent limiting void ratio curves by Bauer [Bau96].
Subsequently, von Wolffersdorff [vW96] included Matsuoka and Nakai [MN74] limit
stress condition, creating a model which is nowadays considered as a reference hy-
poplastic model for sand. Its parameters will be described in more detail in Sec. 2.5.

2.4 Explicit Incorporation of Asymptotic States

Though the procedure for model formulation described in Sec. 2.3 led to the first
hypoplastic models, it has later been found that it is possible to directly manipulate Eq.
(2) without a need to identify individual generators of the [Wan70] theorem. Such an
approach has been put forward by [Nie03] for explicit incorporation of failure surface
and later by [Mas12] for explicit introduction of asymptotic states, similarly to what
is being done in elasto-plastic critical state-based models and in barodesy (Sec. 3).

The general rate formulation of the model is the same as that proposed by Gudehus
[Gud96], that is )
T = f,(L:D+ faN|D]) (20)

where additional scalar barotropy fs and pyknotropy f4 factors have been introduced,
when compared with the basic hypoplastic equation (2). To incorporate the asymptotic
state boundary surface (ASBS), it is assumed that it changes its size with variable
void ratio, but not its shape. As the size of the asymptotic state boundary surface is
measured by the Hvorslev’s equivalent pressure p., the following formulation of the
isotropic normal compression line was assumed:

In(l14+e)=N—XIn(p/pr) (21)
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where IV and \* are parameters and p, = 1 kPa is a reference stress. p. can thus be
calculated from

N —In(1+ e)} 22)

Pe = Pr €XpP |: W
As the asymptotic state boundary surface does not change its shape during propor-
tional asymptotic loading, the stress normalised by the Hvorslev’s equivalent pressure
T,, = T/p. remains constant. Therefore,

. T T
T, =———5p.=0 23)
De DPe
Pe follows from (22)
) De é Pe
=T =—-—; D 24
Pe X (1 T 6) \ tr ( )
Combining of (24), (23) and (20) implies that
T fs T
T,="—=(L:D+ fuN|D|) + —<trD=0 (25)
De PeA
and thus T
— 57 DA = [ (LD 4 fENIDA) 26)

where flj‘ is the value of f; at the asymptotic state boundary surface and D is the
asymptotic strain rate corresponding to the given stress state. Equation (26) can be
manipulated in the following way:

T
- <)\*trDA + fsL: DA) = fo fN|DA| Q27)
—A:D* = f, fN| D4 (28)
—A:d=f.fiN (29)
where
T
A:f5£+y®1 (30)
pA
d= —— 31
D4
Eq. (29) implies that
A:d
N=—F (32)
fsfd
Combining (32) with (20) yields an alternative expression for the hypoplastic model:
i rropodig.
T=fL:D- f—AA :d||D|| (33)
d
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An arbitrary shape of the asymptotic state boundary surface can be incorporated into
hypoplasticity with the aid of Eq. (33), by appropriate specification of the dependence
of ff on the void ratio and stress ratio (Figure 4). The corresponding asymptotic
direction of the strain rate is then specified by d. The approach presented in this
section has been adopted by Masin [Mas13] in the development of a rate independent
model for clays. Parameters of this model are detailed in Sec. 2.6.

100

50
G4 [kPa]

Figure 4: Asymptotic state boundary surface of clay hypoplastic model (from
[Mas13])

2.5 Sand hypoplastic model

In this section, the hypoplastic model developed by von Wolffersdorff [vW96] is intro-
duced. This model is often considered as the reference hypoplastic model for predict-
ing the behaviour of granular materials. We will leave aside details of its mathematical
formulation, which the interested readers can find elsewhere [Nie03, Mas19]. Instead,
we will summarise its material parameters which the students will search for during
the calibration excercise. The model is defined using eight parameters ., hg, 1, €c0,
edo, €i0, @ and B and void ratio as a state variable additional to Cauchy stress. Its
calibration procedure has been described in detail in [HG99, Mas19].

. 1s a critical state friction angle in a classical critical state soil mechanics sense. The
simplest way of calibrating ¢, is to measure the angle of repose. Other means of its
determination are triaxial shear tests, preferably on samples in a loose state to reduce
shear-banding.

Parameters hg and n control the shape of the limiting void ratio curves. They are
sketched in Fig. 5, and they are described by

-iegeel ()] e

€0 €0 €do hs
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107 1073 10

Figure 5: Limiting pressure-dependent void ratio lines by Gudehus [Gud96]; Figure
from Herle and Gudehus [HG99].

The parameters hg and n specify not only the limiting void ratio curves, but also any
other normal compression line followed in asymptotic compression, such that

3 n
e, = e exp [— <hp) } (35)

epo controls the position of the normal compression lines for different strain rate di-
rections, and it is bound by the following inequality: e.o < epp < €;9. Of the possible
proportional strain path tests, the oedometric test is the most accessible and easy to
perform. This test is thus preferable for h, and n calibration, where hs controls its
slope and n its curvature.

The parameter e.q specifies the position of the critical state line in the p vs. e plane
through Eq. (34). The most appropriate way for its determination is thus based on
shear test results; undrained triaxial shear tests are best for the purpose as the samples
are less susceptible to shear banding than in drained tests. A simplified way of e,
calibration is based on the following logic. The soil in a heap formed during the angle
of repose test is in the loosest possible state, which corresponds to the critical state.
Its stress state is close to zero thanks to the small amount of soil used. The void ratio
of a soil in this loose heap thus approximates e.q.

Parameter e;q specifies the position of the theoretical isotropic normal compression
line. In clays, this line may easily be determined experimentally using isotropic com-
pression experiments. In granular soils, however, its direct experimental investigation
is difficult, as the initial void ratio is typically below e.q and the state converges to-
wards e;-line very slowly during isotropic compression. In fact, e;-line is a theoretical
limit of the maximum void ratio corresponding to the loosest assembly of grains in
the gravity-free space. An empirical equation for e;y was investigated by Herle and
Gudehus [HG99], who studied idealised packing of spherical particles at a state of
minimum density. They proposed the following empirical relationship for e;y, which
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is recommended for ¢; calibration:

€0 = 1.2660 (36)

eqo specifies the position of the minimum void ratio line. The best densification of
a granular material can generally be reached by means of cyclic shearing of small
amplitude under constant pressure (Fig. 6). e can then be obtained by extrapolation
using hs and n evaluated from the procedure described above.

cyclic shearing

E/pemin €d
0 Ps

Figure 6: Experimental identification of e; [HG99].

The peak friction angle ¢, predicted by the hypoplastic model is implied from the
value of the relative void ratio 7.. For the given r,, the actual value of ¢, is con-
trolled by the parameter «v. It can, in general, be calibrated using drained triaxial tests
on densely compacted soil samples. If available, however, experiments with the rela-
tive void ratio present in the soil deposit to be simulated are more suitable (the same
recommendation holds true for calibration of the parameter 3). Calibration of the pa-
rameter « using drained triaxial test on Komorany sand is demonstrated in Fig. 7a.
The experiment was performed at a cell pressure of 100 kPa. Figure 7a demonstrates
that an increase of the « value increases the predicted peak friction angle. This pa-
rameter is typically calibrated by fitting the experimental data using a trial-and-error
procedure.

Parameter /3 enters in the model the formulation of the barotopy factor f; and controls
both the bulk and shear stiffness. The most relevant way to determine [ is adopting
the results of drained triaxial tests on densely compacted soil samples; the same tests
as those used to calculate the parameter v can be adopted. Calibration of 8 using
a drained triaxial test is demonstrated in Fig. 7b. It is clear that an increase of (8
increases the soil stiffness. Similar to «, parameter (3 is typically calibrated using a
trial-and-error procedure by fitting the experimental data to the model.

2.6 Clay hypoplasticity

Clay hypoplastic model, formulated by [Mas13], has been developed using approach
from Sec. 2.4. Its parameters coincide with parameters of the Modified Cam-clay
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Figure 7: Calibration of the parameter v (a) and 3 (b) using the stress-strain curve
from a drained triaxial test on dense Komorany sand (from [Mas19]).

model [RB68], namely ¢., N, A\*, k* and v. They will be summarised here for stu-
dent’s calibration excercise.

Critical state friction angle . has the same physical meaning as this parameter of sand
hypoplastic model and it is typically calibrated using triaxial shear test, preferably
undrained triaxial shear test (CIUP) on normally consolidated (soft) reconstituted clay
to reduce shear-banding.

Parameter N defines the position of the isotropic normal compression line, whereas
the parameter A* defines its slope in the In p vs In(1 + e) plane, as shown in Figure 8.
Parameters N and \* are best calibrated using an isotropic compression test, but the

In (1+e)

Isotr. normal compression line

/Isotr. unloading line

©

current state

-
Critical state Iin\é‘\

*

Per [N Inp

Figure 8: Definition of parameters /N and A* [Mas05].

oedometric compression test may also be used for this purpose, as A* also represents

ALERT Doctoral School 2021



Masin 75

a slope of the K normal compression line in the In o, vs In(1 + e) plane (where o,
is vertical stress) and [V can be calibrated from its position.

In the Modified Cam-clay model, the parameter « specifies the slope of the isotropic
unloading line. The hypoplastic parameter x* also controls this slope; due to the non-
linear model formulation, however, the slope of the unloading line is not constant in
the Inp vs In(1 + e) plane and it varies with the overconsolidation ratio. It is thus
preferable to calibrate the parameter «* by direct simulation of the unloading test or
by simulation of the compression test starting from the overconsolidated state. Both
isotropic (preferable) and oedometric tests can be adopted for this purpose. Calibra-
tion of the parameter «* using an isotropic unloading test on Weald clay is shown in
Fig. 9a (data from Henkel [Hen56]). Another example in Fig. 9b shows the case
when an oedometric compression experiment starting from the overconsolidated state
is adopted to calibrate x* (data from Svoboda et al. [SMB10]).

experiment - *._normal compression line
* .
K'=0.005 ~-eree 0.6 - experiment —e-— |
* - 4

= e
@ 1.6 -
- £
1.55
15 g
0.25 . . . . . . . .
1.45 - 55 6 65 7 75 8 85 9 95 10
100 1000 In o/, [
p [kPa]
(a) (b)

Figure 9: (a) Calibration of the parameter x* using an isotropic unloading test on
Weald clay. Experimental data by Henkel [Hen56], (b) Calibration of the parameter x*
using the oedometric compression test on Brno clay. Experimental data from Svoboda
et al. [SMB10] (figures from [Mas19]).

Parameter v has the standard meaning of the Poisson’s ratio within the isotropic elastic
tensor £. However, its influence on model predictions is different compared to elasto-
plastic models, because in hypoplasticity the radial strains are also always influenced
by the non-linear part of the model involving the N tensor. As in the Cam-clay model,
however, v regulates the shear stiffness. Similarly to the parameter x*, v should be
calibrated by means of simulation of triaxial shear tests. An example of such a cali-
bration is shown in Fig. 10, where results of an undrained triaxial test on Dortmund
clay (experimental data from [HMK™11]) are compared with the model predictions
obtained using different values of . An increase of v decreases the predicted shear
modulus (Fig. 10a). The parameter v also affects the evolution of excess pore water
pressures in the undrained test and thus the undrained effective stress paths (Fig. 10b).
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Figure 10: Calibration of the parameter v using undrained triaxial test on Dortmund
clay. (a) stress-strain curves, (b) stress paths. Experimental data by Herle et al.
[HMK™11] (figures from [Ma§19]).

3 Barodesy

Barodesy [Kol12, Koll5, MKF16, KM16, MF17] is another class of incrementally
non-linear constitutive equations which cannot be expressed analytically using M
from Eq. (1). Barodesy has been build around Goldscheider’s rules [Gol82] of soil
asymptotic behaviour, telling that [KM16]:

1. Starting from stress-free state, proportional strain paths lead to proportional
stress paths.

2. Starting from a non-vanishing stress state and applying a proportional strain
path leads asymptotically to the proportional stress path that would be obtained
starting from the stress-free state.

Proportional path is a path deviating from origin, such that T = T, see Figure 11.

Central to the barodetic model is a function R(D), which specifies the asymptotic
direction of stress depending on the given stretching direction D, such that

T = uR(D) (37)
where 0 < g < oco. The constitutive model rate form of barodesy reads

T:h(fﬁ+g’f‘) D (38)

where h, f and g are scalar factors. The term f R represents the target asymptotic
stress ratio and the term g'f‘ ensures that for other than asymptotic stress ratios the
stress ratio converges towards the asymptotic one in proportional loading. Scalar h,
which is stress-dependent, controls stress-dependency of soil stiffness and scalars f
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I

>

Figure 11: Proportional strain paths (top) and demonstration of the first (bottom left)
and second (bottom right) Goldscheider’s rules (from [Kol12]).
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Figure 12: Demonstration of asymptotic properties of barodesy (from [Mas19]), as-
suming h||D||At = 1 for graphics simplicity.

and g introduce the effect of density. The principle of barodesy is demonstrated in
Figure 12.

The function R, specifying which proportional stress path associates with particular
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stretching direction D, is in the more recent versions of barodesy expressed as:
R =—exp (aﬁ) 39

where « is a function of tr(ﬁ) and exponential of a tensor is defined via its eigenvalues
A1, Ay and As as

exp Ay 0 0
exp A = 0 exp As 0 (40)
0 0 exp As

The expression for R defines proportional stress ratios and, in combination with ex-
pressions for f and g it defines a shape of asymptotic state boundary surface predicted
by barodesy (and thus also peak and critical states). Properties of Eq. (39) have been
studied in [FO13], who observed that the expression for R practically coincides with
yield condition of Matsuoka and Nakai [MN74] (see Figure 13 from [MKF16]).

g

Mohr-Coulomb

Oy

R - function

——e—— Matsuoka - Nakai

Figure 13: Limit state condition (stress corresponding to zero tr D) of barodesy
expressed in deviatoric plane along with failure condition of Matsuoka and Nakai
[MN74] and Mohr-Coulomb (from [MKF16]).

Stemming from its very basic formulation (38), barodetic equation is inelastic. As
pointed out by [Koll5], the second term in Eq. (38) (that is, g’f) may be indepen-
dent of D (in that case it does not change if D is switched to —D, similarly to N in
hypoplasticity), whereas the term f R depends on D (note that in some more recent
versions, such as [MF17], even the g’f term depends on D). The directional response
of the model is in any case less straightforward to interpret than in hypoplasticity, as
the term f R cannot be reconciled in a simple form £ : D, which would yield el-
liptic response envelopes if fﬁ would be independent of D. Actually, barodesy is
characterised by response envelopes with rather complex shapes (see Fig. 14), which
makes it more difficult to combine it with a model for small-strain elastic behaviour
[BFM*19].

ALERT Doctoral School 2021



Masin 79

0 100v2 200v2
—/20; (kPa)

Figure 14: Response envelopes predicted by barodesy (from [MF17]).

Similarly to the initial versions of hypoplasticity, barodesy has first been defined to
represent the behaviour of sand [Kol12, Kol15], but the models have soon be extended
for the behaviour of clay [MF17], their properties were studied in detail [MKF16] and
specific features of the model formulation were further updated [Fell3]. Recently,
the model has been incorporated into an approach to predict small strain stiffness and
cyclic loading effects [BFMT19].

4 Incrementally non-linear bounding surface plastic-
ity

Most advanced elasto-plastic models with kinematic hardening rules [Mr6z67, ATMWS§9,
ST97, TD08, GMW99] and even the generalized plasticity models with different plas-
tic mechanisms for loading and unloading [PZC90], which are highly non-linear in
stress-strain response, are incerementally bi-linear. Nevertheless, models exist which
are based on elasto-plasticicty concepts and fall within the incrementally non-linear
category. The most notable examples are bounding surface models with stress-rate
direction dependent flow rule [Daf86, WDS90, DT16]. Note that these models have
been denoted by their authors as hypoplastic due to their incrementally non-linear
character (the term hypoplasticity has actually been first used for these type of models,
before the term was taken over for the group of models described by Eq. (2)). These
models will be described in this chapter. Another example of incrementally-nonlinear
model is so-called overlay enhancement of existing elasto-plastic model proposed by
Benz et al. [BVS09] and applied to the hardening soil model by Benz [Ben07]. In
their model, the elastic stiffness matrix depends on the loading direction with respect
to the previous loading history and the model is thus incrementally non-linear. Its
principle is similar to the intergranular strain extension of hypoplastic models.

An interesting property of incrementally non-linear bounding surface plasticity mod-
els is that they become intrinsically implicit - the stress rate T is calculated by Eq. (1)
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using stiffness matrix M, where M itself depends on the stress rate T. This property
makes the models more complex from the numerical integration standpoint, implicit
integration algorithm can however still be defined [PD19] and models used within
numerical computations of boundary value problems.

A notable recent example of these models is a zero elastic range plasticity model
for sands denoted as SANISAND-Z [DT16, TD17], which will be described in this
section. Most of the components of SANISAND-Z model actually follow from the
family of rotational and isotropic hardening elasto-plastic models (such as [MD97,
GMW99]), with a version of SANISAND model enhanced by fabric changes effects
[DMO04] as a direct predecessor. These models consider a rotational hardening yield
surface to be represented by a thin cone (either closed for isotropic hardening, or not
for simplicity) in the stress space (Figure 15), with hardening modulus controlling the
model response calculated by means of distance of current stress from so-called image
point on bounding surface and possibly other helper surfaces (critical state surface and
dilatancy surface for SANISAND model), see Figure 15.

Anisotropy Bounding surface
Critical State envelope
Yield surface

11

=0 __=0

Space diagonal (011 - 33)

P22

Figure 15: Yield, bounding and other surfaces of SANISAND model [YST19].

Central to the model are then so-called mapping rules, defining how an image point
is found on bounding surface from the known stress-state and current position of the
yield surface. This mapping rule is for the case of SANISAND model (for simplicity
for bounding surface F* only) demonstrated in Figure 16a.

The hardening law is defined in deviatoric plane. The key is to find an image point
r® on the bounding surface F* for current stress deviator r. For this, normal n to
the yield surface is constructed first and r° is found by projecting the deviatoric plane
origin onto bounding surface in the direction nn. Hardening rules are then assembled
such that the deviatoric stress rate direction # coincides with the direction of the tensor

ALERT Doctoral School 2021



Masin 81

1

To T3

Fb =0
()

Figure 16: Mapping rule of SANISAND model (a) and equivalent mapping rule of
SANISAND-Z model (b) (from [TD17]).

r — rb. Plastic deviatoric strain rate direction is then defined by normal R’ to the
bounding surface at the image point r°.

The idea of zero elastic range model is founded in experimental observations indicat-
ing that the “true” elastic range of soils is very small, if not vanishing, such that the
yield surface of properly calibrated SANISAND model is very narrow, still adding-up
significantly to the model complexity. In addition, it has been observed that from the
standpoint of cyclic loading simulations, which is the primary target of these models,
vanishing elastic range does not lead to much different results. In SANISAND-Z, the
procedure of defining the image point is very much reversed, with 7 being input into
the derivation of image point instead of being output of the model elasto-plastic struc-
ture (in [DMO04] model, the direction of 7 is implied by the translation of the yield
surface centre c in the deviatoric plane in the direction r — ). In the incrementally
non-linear version of the model, current deviatoric stress r is simply projected onto
the bounding surface F} in the direction r (Figure 16b). Plastic deviatoric strain rate
direction is then defined as before to be a normal R’ to the Lode angle dependent
bounding surface at the image point °. The Lode-angle dependency of the bounding
surface shape has been neglected, while it has been preserved in the calculation of
plastic strain increment direction R’. Omitting Lode-angle dependency of bounding
surface allowed the authors to find a closed-form solution of the image point r?, it
would have to be calculated numerically otherwise [Tai21].

From Figure 16b it is clear that plastic strain increment direction R’ depends on the
stress increment direction # which renders the model incrementally non-linear. The
remaining model features are taken-over from the original model [DMO04], preserving
thus the primary model predictive capabilities, while simplifying its mathematical for-
mulation, but increasing complexity of its numerical integration through the implicit
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formulation as a trade-off.

100 25 12 60

@) | )

Figure 17: Drained cyclic simple shear test simulated with [DMO04] (dashed lines) and
SANISAND-Z (solid lines) models (figure from [DT16]).

For demonstration, see Figure 17 where results of drained cyclic simple shear test
are simulated with the incrementally bi-linear model from [DMO04] (dashed lines) and
with SANISAND-Z model (solid lines). The cyclic response is indeed practically
indentical. As expected, the shear modulus degradation curve (Figure 17c) shows a
small-strain ”plateau” for the [DMO04] governed by its non-zero purely elastic range
and a gradual decrease for SANISAND-Z. Still, even for the SANISAND-Z model,
the ’S-shape” of the curve is preserved, which is critical for correct predictions of
boundary value problems at continuous loading [DRB96, FPB05, GZP02, YMY06,
Mas09].

5 Conclusions

This lecture introduced a particular class of constitutive models for soils, which are
characterised by their stiffness matrix M contiuously dependent on loading direction
D (with analytical expression for M often unavailable). The concepts have been in-
troduced using three particular model classes, namely hypoplasticity, barodesy and
incrementally non-linear bounding surface plasticity. Regardless the fact that their
formulation often deviates from the well-established concepts of elasto-plasticity, the
goal in correctly predicting soil non-linear behaviour is the same and thus also the re-
sponse of the models is often comparable to advanced elasto-plastic models (see Fig-
ure 17). An advantage of incremental non-linear models over advanced models elasto-
plastic is arguably simpler mathematical formulation, with some advanced properties
such as possibility of explicitly treating the bifurcation and instability phenomena
[CD8&9, Wu00]. This, however, comes at a price of less straightforward modification
for various intricate features of soil mechanical behaviour (for hypoplasticity and bar-
odesy) or implicit mathematical structure rendering its numerical implementation a
demanding task (for incrementally non-linear bounding surface plasticity).

In any case, incrementally non-linear models, not long ago considered an academic
excersise (even in 2002, [TV02] concluded that “’the theory of hypoplasticity remains
mainly confined to research applications”) now have a firm position within the field
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of soil constitutive modelling, being available in commercial finite element codes (not
only through the SoilModels project [GAGT08]) and adopted in various advanced
applications by both academia and practitioners.
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Modelling non-linearity, small-strain stiffness
and cyclic loading

David Masin®

ICharles University, Prague, Czech Republic

Non-linear stress-strain behaviour is possibly one of the most strinking behavioural
patterns of soils (and granular materials in general) distinguishing it from other en-
gineering materials. In this chapter, we first summarise the approaches developed for
modelling non-linear state- and history- dependent soil response. In subsequent sec-
tions, approaches to modelling the effects of strain and stress accumulation in cyclic
loading are described. Both “implicit” approaches, which adopt standard non-linear
constitutive models to predict cyclic response, as well as the explicit accumulation
models, which aim for tracking the final ”accumulated” state only are covered.

1 Introduction

The source of soil non-linear behaviour is its granular structure, where irreversible
strains develop from the very beginning of the loading process due to relative move-
ment of soil grains and redistribution of contact forces. For this reason, granular
materials differ from other engineering materials, which often exhibit non-negligible
elastic regions before they start developing irreversible strains. To capture this com-
plex behaviour using a continuum constitutive model, standard approaches used for
example for modelling the behaviour of metals must be extended significantly, allow-
ing for tiny (or zero) elastic ranges and introducing state variables tracking recent
history of deformation. These approaches are described in this chapter.

In principle, predicting non-linear response is also key for predictions of the effects
of cyclic loading. As a matter of fact, however, models developed using the informa-
tion on stiffness degradation during monotonic loading often do not deliver sufficient
accuracy when predicting soil subject to loading cycles and additional enhancements
of these models are needed. Predictive capabilities and deficiencies of some of the
most advanced models for cyclic loading are presented here. Finally, an alternative
approach is covered, which does not aim to follow the individual loading cycles, but
which rather aims to track explicitly the overall average response as cycling proceeds.
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2 Modelling soil non-linearity and small strain stiff-
ness

This section on small strain stiffness follows from [Mas19].

The history of modelling soil stiffness non-linearity is directly related to the history of
understanding soil non-linearity stimulated by advances in experimental techniques.
Early soil constitutive models considered linear elastic behaviour before failure. Such
predictions seemed reasonable before the development of local strain transducer meth-
ods for small strain stiffness measurements (see Fig. 1a).
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Figure 1: (a) Comparison of stress-strain curves obtained from external and local
deformation measurement (from Jardine et al. [JSB84], modified). (b) Shear stiffness
vs. shear strain (log-scale) curve measured on London clay using local transducers
(from Gasparre et al. [Gas05, GNMT07])

The following aspects of predictive capabilities of constitutive models will be dis-
cussed in more detail in this lecture:

1. Predictions of small strain stiffness non-linearity; i.e., a decrease of soil stiffness
measured by local strain transducers (approx. 0.001% to 0.1%).

2. Predictions of unloading non-linearity; i.e., the soil non-linear response pre-
dicted not only in loading, but also in unloading.

3. Predictions of very small strain stiffness; i.e., the initial stiffness measured by
dynamic methods (below 0.001%).

4. Predictions of recent history effects; i.e., the dependency of soil stiffness on the
general loading history (including directions other than loading and unloading).

A straightforward modification of a linear elastic perfectly plastic model to include
stiffness non-linearity is based on replacement of linear elasticity by non-linear elas-
ticity with the stiffness depending on strain level. Such a model has been proposed,
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for example, by Jardine et al. [JPFB86]. This model has been set up to closely rep-
resent the stiffness degradation curve (see Figure 2 [APP97]). Thanks to the inherent
properties of the non-linear elastic formulation, this model is incapable of predict-
ing stiffness dependency on loading direction (recent history effects) and, in fact, it
leads to incorrect predictions for any non-monotonous path (for example, it predicts
an unrealistic increase of soil stiffness in unloading). Also, the predictions are unre-
liable for stress paths different to those used for model calibration. In specific cases,
however, the model provides reasonable predictions of geotechnical problems. These
models were used in particular for predictions of ground deformation due to tunnelling
[APP97, FPBOS]. The non-linear elastic model described in this paragraph predicts in
monotonous loading not only small strain stiffness non-linearity, but also very small
strain stiffness as measured by dynamic methods.
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Figure 2: Prediction of stiffness degradation curve by non-linear elastic model (figure
from [APP97]).

Most of the other approaches to modelling soil non-linearity activate plastic strains
within the state boundary surface to predict the non-linear and irreversible response.
The first class of such models, which will be outlined in this summary chapter, predicts
plasticity and non-linearity in continuous loading, while still predicting the elastic
response in unloading. Notable examples of this class of models are radial-mapping
bounding surface plasticity models [Daf86]. These models are typically based on the
critical state soil mechanics Cam-clay type models, which will be denoted as single-
surface models here. The yield surface of the single-surface model is contained also
in the bounding surface plasticity model, and predictions at this surface coincide with
predictions of the single-surface models. In bounding surface models, however, this
surface is not a yield surface in the elasto-plastic sense, because plastic strains can
be generated even within this surface. This surface is denoted as a bounding surface
instead.

The principle of bounding surface models can be explained with the aid of Fig. 3
(from Russel and Khalili [RKO06]). The current state (¢ in Fig. 3) is at the loading sur-
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Figure 3: Schematic representation of loading surface, bounding surface and radial
mapping rule of the bounding surface plasticity model (figure from Russel and Khalili
[RKO06]).

face. A so-called mapping rule is adopted to find a corresponding conjugated position
at the bounding surface (¢ in Fig. 3). The elasto-plastic hardening modulus and plas-
tic strain increment direction is found as if the soil state was at the bounding surface.
The hardening modulus used in the model is then composed of two parts: the harden-
ing modulus at the bounding surface, plus an additional contribution calculated from
the distance between the current state and conjugated state at the bounding surface
(denoted as ¢ in Fig. 3). In unloading, model predictions are elastic. Radial-mapping
bounding surface plasticity models are capable of predicting stiffness non-linearity in
the small strain range. However, the lack of the “elastic nucleus” does not allow the
prediction of high elastic stiffness in the very-small-strain range. Elasticity in unload-
ing means the model is incapable of predictions of recent history effects and stiffness
variation in unloading. This shortcoming of the bounding surface plasticity models
has been eliminated in [KHVO05], this model will be introduced in Sec. 3.

Different in notation but similar in principle and in predictive capabilities to the bound-
ing surface plasticity models are the so-called subloading surface plasticity models by
Hashiguchi et al. [Has89, HSOTO02], the MIT-E3 model by Whittle and Kavvadas
[Whi93, WK94] and subsequent models evolved from the MIT-E3 concept [PW99].
Similar in principle (non-linear response in loading and elastic response in unloading)
is also the hardening soil model of Schanz et al. [SVBO0O0]. Also these models need to
be further enhanced to predict small strain stiffness effects [Ben07].

An important addition to the radial mapping bounding surface plasticity models is the
consideration of a non-linear response in unloading. A concept that enabled these
predictions is the so-called generalized plasticity by Pastor et al. [PZC90]. These
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models predict plastic strains in both loading and unloading. In these models, the
plastic hardening modulus H and plastic strain increment direction m are defined
for both loading (Hr, my) and unloading (Hy, my). Loading and unloading is
distinguished by means of a tensor n, which, in classical elasto-plasticity, is calculated
as a normal to the yield surface f as n = 0f/0o. In generalized plasticity, the notion
of the yield surface is abandoned, and it is sufficient to define an explicit expression for
n. Similarly, generalized plasticity models abandon the notion of the plastic potential,
and it is sufficient to provide an explicit expression for m (that is, for m; and my).
Classical elasto-plasticity, as well as bounding surface plasticity, may then be seen as
special cases of generalized plasticity with Hy — oo.

While generalized plasticity models predict small strain stiffness non-linearity in both
loading and unloading, they do not predict the very small strain range of elastic be-
haviour (so-called “elastic nucleus”). This range is tiny — as discussed above (Figs.
1b and 2), its size is of the order of 0.001% in the strain space, but it turns out to
be important for correctly predicting the displacement field in boundary value prob-
lems. One of the concepts for predicting the elastic nucleus and non-linear response
in loading as well as in unloading is denoted as kinematic hardening plasticity.

=)

o, e\
p

Po

Figure 4: Principle of the kinematic hardening “bubble” model (figure from Rouainia
and Muir Wood [RMWOT1], modified).

Kinematic hardening plasticity for modelling of soils was introduced by Mrdz et al.
[Mr6z67, MNZ78, MNZ79]. A typical model was proposed by Al-Tabbaa and Muir
Wood [ATMWS89]. This model is based on the critical state soil mechanics Modified
Cam-clay model and it is known as the “bubble” model in the soil mechanics com-
munity. The concept will be explained with the aid of Fig. 4. Kinematic hardening
bubble models consider the outer (bounding) surface, similar to the radial mapping
bounding surface of plasticity models. As in bounding surface plasticity models, pre-
dictions at the bounding surface coincide with predictions by the single-surface critical
state model. Unlike generalized plasticity, but the same as bounding surface plasticity,
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bubble models predict the elastic behaviour in unloading. Unlike bounding surface
models, however, the elastic range is limited in the stress space to a small elastic nu-
cleus (Fig. 4). Once the stress state in unloading reaches the opposite side of the
elastic nucleus, plastic strains are generated again, and the surface moves within the
stress space following the current stress point (thus “kinematic hardening”).

The plastic modulus is a sum of two components as seen in bounding surface models.
The first part is a modulus at the conjugated point at the bounding surface (denoted
as 0. in Fig. 4). It is not found using a mapping rule as in bounding surface mod-
els, but is instead defined as a point having the same normal to the bounding surface
as is the normal to the elastic nucleus constructed at the current stress o (Fig. 4).
To facilitate this geometrical construction, the elastic nucleus is assumed to have the
same shape (and different size) as the bounding surface. The second component of
the hardening modulus is a function of the distance between the current stress o and
conjugated stress o, similar to the bounding surface models. The plastic strain in-
crement direction is calculated from a normal to the plastic potential surface, which
moves together with the elastic nucleus (most often, associated plasticity is assumed).
Finally, the kinematic hardening law controlling the elastic nucleus movement is intro-
duced into the model such that the yield surface and bounding surface never intersect
each other. Kinematic hardening bubble models represent a successful concept of soil
constitutive modelling, and many variants of them have been proposed in the literature
[RMWO00, GMWO01, KAOO]. Similar concepts to the kinematic hardening bubble mod-
els have been incorporated into the bounding surface model of Khalili et al. [KHVO05].
To predict cyclic loading phenomena of sands, they proposed a kinematic loading sur-
face moving within the main bounding surface, similar to bubble models. Instead
of calculating the hardening modulus based on conjugated points with the same nor-
mals to the loading and bounding surfaces, they proposed a new mapping rule with a
moving projection centre.

Kinematic hardening models other than the bubble models have been proposed for
modelling granular materials (such as sands or gravels). They focus on predictions in
shear and instead of considering closed bubbles” within the stress space, they con-
sider the yield surface as a narrow region radiating from the origin of the stress space
(Fig. 5). The yield surface is subject to rotational hardening (it does not move freely
within the stress space, but rotates about the origin of the stress space). While these
models cannot represent the behaviour of sand in compression, they are successful in
predicting the response in shear. This choice is facilitated by the fact that, in sands,
plastic straining is predominantly associated with shearing. Typical examples of this
class of models are the SANISAND model by Manzari and Dafalias [MD97] and the
Severn-Trent sand model by Gajo and Muir Wood [GMW99]. A more recent version
of the SANISAND model eliminates its shortcoming by closing the yield surface in
the compression direction [TDO0S8].

The kinematic hardening single-bubble models described above predict small strain
stiffness non-linearity in loading and unloading, as well as very small strain stiff-
ness. They, however, do not predict the effects of recent history. To this aim, Stalle-

ALERT Doctoral School 2021



Masin 95

q -
[/4
% mc A'ﬁ
pd
R
~
-
= MCV
7
o
MEV
\

Figure 5: Kinematic hardening model for sand (figure from Gajo and Muir Wood
[GMW99)).

brass and Taylor [ST97] enhanced the bubble model [ATMW&9] from Fig. 4 by an
additional kinematic "history” surface, which encloses a much smaller elastic locus
(yield surface) and sets a boundary around the current stress state where the soil be-
haviour is influenced by recent history effects. Subsequently, several modifications
of this model have been developed by different authors [BS04, GZP06, MHO3]. A
similar concept has also been proposed by Puzrin and Burland [PB98, PB0OO]. Einav
et al. [EPHO3, EPO4, EP0O3] demonstrated that kinematic hardening models may be
constructed in a way consistent with thermodynamics theory, and that the number of
kinematic surfaces can, in principle, be unlimited (Fig. 6).

Apart from the above models based on elasto-plasticity, models exist for predicting
non-linearity based on different concepts. One approach specifically developed to
predict the effects of recent history (and consequently also soil non-linearity in the
small strain range both in loading in unloading), is a brick model concept by Simpson
[Sim92]. In the brick model the elastic locus and soil history is defined in the strain
space, instead of the stress space as in typical elasto-plastic models. The modelling
concept has a geometrical interpretation of a man pulling bricks (Fig. 7); loose strings
do not contribute to soil stiffness, whereas each taut string decreases soil stiffness in
a pre-defined way. While the main concept of the brick model is defined in the strain
space, it incorporates a stress-space based critical state failure condition. Advantage
is taken of the fact that the area below the shear strain vs. normalised shear stiffness
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Figure 6: Multiple kinematic surfaces of a continuous hyperplastic critical state model
(figure from Einav and Puzrin [EP04]).

curve determines the critical state friction angle [Sim92]. More recent models based
on the brick concept can be found in [VLJ05, ESS12, CT20].
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Figure 7: Geometrical interpretation of the brick model (figure from Ellison et al.
[ESS12]).

Another approach to modelling soil non-linearity is the so-called multi-laminate frame-
work [PS83, PP87, CV04]. The multi-laminate model is based on the elasto-plastic
theory; calculation of the plastic strain increment is, however, different from standard
elasto-plastic models. In the multi-laminate framework, soil is assumed to be a solid
block behaving elastically, intersected by a number of randomly oriented planes where
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plastic straining may occur. The actual macro stress tensor is projected onto the micro
stress vectors on every plane where the possible plastic strain increments are calcu-
lated. The plastic contribution from all planes is then spatially summed up to obtain
the macro plastic strain [CV04] (Fig. 8). The basic multi-laminate framework has
been enhanced by Scharinger et al. [SSP09] to predict very small strain stiffness.

macro level, micro level spatial averaging,
static constraint plastic strain

der=an 28,
Pl 5
de;

k-th sampling plane k-th sampling plane

Figure 8: Schematic representation of the multi-laminate model (figure from Cudny
and Vermeer [CV04]).

An approach for incorporating small strain stiffness effects into elasto-plastic models
that do not consider soil non-linearity has been proposed by Benz et al. [BVS09] and
applied to the hardening soil model by Benz [BenO7]. In their model, plastic strains
are not considered. The elastic stiffness matrix depends on the loading direction with
respect to the previous loading history and the model is thus incrementally non-linear.
In cyclic loading, the model predicts a hysteretic response, but the original stress is
recovered in a strain cycle; such a class of models is often denoted as paraelastic
[HN79]. Another paraelastic model capable of improving the small strain stiffness
predictions of other models is due to Niemunis et al. [NPSGT11b].

One of the approaches inherently capable of modelling soil non-linearity is hypoplas-
ticity. When compared to other modelling approaches discussed in this section, the
basic hypoplastic models are capable of predicting non-linear soil behaviour in both
loading and unloading. These models are incapable of predicting very small strain
stiffness and the effects of recent history. To include these two effects, the hypoplas-
tic models can be enhanced. The most commonly adopted way of hypoplastic model
enhancement is the intergranular strain concept [NH97], but other approaches are also
possible. For example, Niemunis et al. [NPSGT11b, NPSGT11a] proposed hypoplas-
tic model enhancement by paraelasticity and Fuentes and Triantafyllidis [FT15] devel-
oped so-called ISA extension of hypoplasticity, which is an extension of intergranular
strain concept and specifically targets cyclic loading effects. Simplified version of
this approach, denoted as ISI, has been proposed by [DMF20]. [WH14] updated the
intergranular strain model such that it reasonably predicts the effects of cyclic accu-
mulation if calibrated using monotonic experiments.
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The idea behind the intergranular strain concept is as follows: it is assumed that at
the beginning of the loading process the grain skeleton does not rearrange, and all
the measured deformation of the soil is attributed to reversible deformation of the so-
called intergranular strain layer, combined with the elastic deformation of the grains
themselves. After a certain amount of strain, the grains start to rearrange. The re-
versible deformation is described by an additional component of the model, which
will be described below. The deformation associated with the grain rearrangement is
irreversible and is predicted by the base model, which is typically hypoplasticity but
the concept can be combined with other modelling approaches [BFM ' 19].

In the intergranular strain-enhanced hypoplasticity model, it is assumed that during
loading the intergranular layer deforms first, before rearrangement of the soil skele-
ton. The deformation of the intergranular layer is thought to be associated with the
reversible response. The skeleton starts to fully rearrange without the intergranular
layer contribution once the intergranular strain reaches its maximum value. The inter-
granular strain is a strain-like quantity, and it is an additional state variable denoted as
4. The intergranular strain is, in general, a second-order tensor (as is the strain rate).
However, the concept will be described here in 1D for simplicity, in which case the
intergranular strain is a scalar (9).

Fig. 9 shows the evolution of ¢ in an unloading-reloading cycle prescribed by the
strain rate D. As the model is rate independent, the actual strain rate is arbitrary, and
it has been selected as |D| = 1. Figure 9a shows the initial state with zero ¢ and zero
strain rate. Figure 9b shows the intergranular strain, which reaches its maximum value
|0] = R in unloading, and Figs. 9c to 9e show its development in reloading.

D=0 D=-1 D=+1 D=+1

. D=+1
il N

—'>

i
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=0 8=- =0
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(a) (b) {c) (d) (e)

Figure 9: Intergranular strain limit values in 1D (figure from [NH97]).

The evolution of the intergranular strain in 1D is described by

. _ el
i— <1 R)D for6D >0 )
D for6D <0

where the maximum value of the intergranular strain is denoted as R and it is a param-
eter. Equation (1) is graphically represented in Fig. 10, which shows the dependency
of the intergranular strain rate & on the value of § for a strain cycle of D = +£1. Ini-
tially, the intergranular strain 8, intergranular strain rate § as well as strain rate D are
zero (state ”0”). Once the sample starts to be deformed at D = —1, the intergranular
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strain rate becomes equal to 5= -1 (state 1), but after that, as 6D > 0, the in-
tergranular strain rate decreases with its normalised value ||/ R down to zero (state
”2”). Any further deformation in the same direction does not change the maximum
value § = —R. Once the strain rate is reversed to D = 1, the intergranular strain rate
is equal to 5=1 (state ’3”), and it remains so as long as 6D < 0. When § = 0 (state
”4”) the intergranular strain rate starts to decrease again and it vanishes when § = R
(state ”5”). Another strain reversal then activates the intergranular strain rate in the
opposite direction § = —1 (state ”6”).

(3) (4) +1
=y

§=—R 0 5=k O

@ M 6

= ¢
(02 ®

Figure 10: Graphical representation of the evolution equation (1) of the intergranular
strain (figure from [NH97]).

In the model, the value of the intergranular strain controls the response so the be-
haviour is interpolated between reversible elastic with high stiffness (when D < 0)
and hypoplastic (when |§| = R and 6D > 0).

. | mLD for 6D <0 @
771 A=p)ymLD + p(LD + N|D|)  for6D >0
where p is the normalised length of the intergranular strain tensor p = |§|/R. The

reversible elastic response in the small strain range is governed by the stiffness mL,
where L is the stiffness tensor of the linear part of the hypoplastic equation and m is a
model parameter controlling the stiffness magnitude. When |6| = R and 6D > 0, the
model response is hypoplastic (¢ = LD + N|D|). Linear interpolation between these
two cases that are controlled by the value of p which governs the response otherwise.
In the full 3D version of the model, the parameter m is actually represented by two
parameters mpg (for 180° strain path direction change) and my (for 90° strain path
direction change), one parameter is included to control the interpolation process (x)
and one other parameter is included to control the intergranular strain evolution (3,.).
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3 ”Implicit” modelling of cyclic loading

Modelling of soil cyclic behaviour can be accomplished in two ways. Firstly, stress-
strain constitutive models capable of simulating the effects of cyclic loading (in par-
ticular, strain and pore water pressure accumulation) can be used. This approach is
fully general but has several shortcomings. In particular:

* Regardless remarkable development in past decades, constitutive models are
still not accurate for predicting cyclic accumulation for more than hundreds or
few thousands of cycles.

» Simulations are extremely CPU-intensive for large number of cycles, making
them practically impossible for tens of thousands of cycles or more.

* Constitutive model integration error, which can be relatively well controlled in
monotonic loading, amplifies significantly when cyclic accumulation is a sim-
ulation target. This again increases simulation times, as the relative integration
error tolerances must be kept at very tight values to guarantee acceptable accu-
racy of model integration.

* Even the most advanced models do not provide reliable extrapolation of predic-
tions outside the range of loading conditions used for model calibration.

Some of these shortcomings can be resolved through the use of explicit accumulation
models, described later in Sec. 4. In this section, we will focus on predicting the
effects of soil cyclic loading through standard constitutive models. This approach is
sometimes denoted as "implicit” modelling of the effects of cyclic loading (as opposed
to the explicit modelling through the accumulation models).

As a matter of fact, predicting the effects of cyclic loading requires the models to ac-
curately predict soil non-linear behaviour, from the very small to large strain range.
Therefore, models used for cyclic loading predictions often coincide with models pre-
dicting non-linear behaviour, which have been described thoroughly in Sec. 2. For
this reason, we will not describe additional modelling approaches in this section. In-
stead, we will focus on some examples of model predictions along with demonstration
of model shortcomings.

3.1 Cyclic modelling of sands

Out of many approaches available, we will demonstrate here predictions of two ad-
vanced modelling methods: based on kinematic hardening plasticity (SANISAND
model family [DM04, YTD21]) and based on hypoplasticity [vW96] with intergranu-
lar strain [NH97] (denoted as hypoplasticity IS model hereafter). The models perfor-
mance under cyclic loading has been studies in detail in [WFT19] and some of their
limitations demonstrated in [DFM™21] using experimental data by [WT16a, WT16b].
Some observations of these authors are summarised in this section.

Let us first analyse the monotonic response of the models as a background informa-
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tion. Figure 11a,b shows predictions of drained monotonic triaxial tests on sand sam-
ples with different initial densities for hypoplastic IS model (a) and for SANISAND
model (b). Predictive trends are reasonable for these tests, although discrepancies
exist in stiffness evolution (for SANISAND model, in particular). Predictions of
monotonic oedometric loading-unloading tests are presented in Fig. 11c,d, where hy-
poplasticity delivers reasonable predictions, while SANISAND model does not prop-
erly capture the position of normal compression line, which is a typical consequence
of kinematic hardening structure of the model where yield surface is represented by
a rotating cone in the stress space without specific mechanism to tackle compressive
behaviour. This shortcoming is not corrected even in recent advanced versions of the
model [DFM*21], though SANISAND family models with capped yield cone have
also been developed [TDO08]. Additionally, hypoplasticity may not properly capture
normal compression behaviour for small oedometric unloading cycles [DFM*21].
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Figure 11: Prediction of drained monotonic triaxial tests (a, b) and oedometric tests
(c, d) by hypoplastic IS model (a, ¢) and SANISAND model (b, d). Figure from
[WFT19], data from [WT16a, WT16b].

Let us now focus on the effects of cyclic loading. We will study cyclic loading ef-
fects under undrained conditions, as they are relevant for the most critical applications
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(such as soil liquefaction during earthquake loading or cyclic effects of thunderstorm
loading of offshore structures). Figure 12 shows predictions by SANISAND and hy-
poplastic IS model for undrained cyclic triaxial tests with deviatoric stress magnitude
for each cycle being symmetric about p-axis. Both models predict the response qual-
itatively correctly in that they reproduce accumulation of pore water pressure leading
to a decrease in mean effective stress, which is dragging the state towards the lique-
faction point of zero mean effective stress and is accompanied with specimen failure.
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Figure 12: Prediction of undrained cyclic triaxial tests with deviatoric stress magni-
tude for each cycle being symmetric about p-axis by hypoplastic IS model (a, c) and
SANISAND model (b, d). Figure from [WFT19], data from [WT16a, WT16b].

Even this “standard” experiment from the model development point of view reveals,
however, three typical shortcomings of the models:

1. Unlike SANISAND, hypoplastic model does not really reach the liquefaction
point of zero mean effective stress with “’butterfly-shaped” cyclic stress paths.
Cyclic loops finally stabilise at a non-negligible minimal value of mean effective
stress. This shortcoming is corrected by hypoplasticity with evolving fabric by
[LY21] (Fig. 13a).
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2. As in the experiments, cyclic loading imposes accumulation of axial strain,

which is, however, biased towards extension for both hypoplastic IS and SANISAND

models. This shortcoming is also corrected by hypoplasticity with evolving fab-
ric by [LY21] (Fig. 13b). Even better improvement is delivered by SANISAND-
MSf [YTD21] extension of SANISAND model (Fig. 14 from [DFM*21]).

3. Irrespectively of the fact that the cyclic accumulation is reasonable for one par-
ticular cyclic ¢ amplitude for which the models have been calibrated, all the
models fail to a significant extent in extrapolating the pore water pressure accu-
mulation for different cyclic loading amplitudes than used for model calibration.
This is demonstrated through CSR-N curves in Figure 15a, where cyclic stress
ratio (¢”™P! /(2py)) is plotted with respect to number of cycles needed to reach
liquefaction-induced failure (defined by a deliberately chosen threshold value
of vertical strain). For completeness, Figure 15b shows cyclic stress paths pre-
dicted by SANISAND model calibrated to tests from Fig. 12, exhibiting signifi-
cant overprediction of the rate of cyclic pore water pressure accumulation. This
is possibly the most significant issue of models for cyclic loading, somewhat im-
proved by more advanced versions of the models (such as SANISAND-MSf),
but still relatively far from correct [DFM*21].
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Figure 13: Improvement of predictions of hypoplastic IS model from Figure 12
through fabric evolution by [LY21].

Other typical experimental pattern, captured by some but not all models for cyclic
loading, are results of undrained triaxial tests interrupted by unloading to ¢ = 0 kPa
after a constant axial strain increment for each cycle. Such results are shown in Fig.
16. It is clear that hypoplasticity IS fails in predicting gradual deterioration of shear
stiffness during loading, and, similarly to item No. 1 discussed above, soil does not
really reach liquefaction point of zero mean effective stress. This state is reached by
SANISAND, however, in that case the rate of reaching cyclic mobility is exagger-
ated, a consequence of inaccurate extrapolation outside the cyclic conditions used for
model calibration (item No. 3 discussed above). In addition, SANISAND model over-
predicts ¢, which is a consequence of wrongly predicted evolution of shear stiffness
during monotonic loading, discussed above when describing predictions of monotonic
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Figure 14: Improvement of predictions of SANISAND model from Figure 12 (la-
belled as DMO04 in this figure) through the MSf extension. Figure from [DFM*21],
data from [WT16a].
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Figure 15: Inability of the models to extrapolate predictions outside the narrow range
of cyclic conditions used for their calibration. Figure from [WFT19], data from
[WT16a].

triaxial tests (reference to Fig. 11).

Apart of the model features and limitations discussed above, many other predictive
issues obviously exist, such as “overshooting” effect after minor unloading or im-
proper model predictions after drained preloading (see [DFM™21]). Another example
of model formulation problem has been discussed by [WH14], who demonstrated that
if the hypoplastic IS model was calibrated using stiffness degradation curve in mono-
tonic loading, it did not properly capture the effects of cyclic loading and vice versa.
They have developed an improvement of the hypoplastic IS model targeting this prob-
lem.
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Figure 16: Predictions of undrained triaxial tests interrupted by unloading to ¢ = 0
kPa after a constant axial strain increment for each cycle by Hypoplastic IS (a) and
SANISAND (b) models. Figure from [WFT19].

3.2 Cyclic modelling of clays

In demonstrating predictive capabilities of cylic models for clays, we will adopt the
following three advanced models: the ISA [FT15] extension of intergranular strain
concept in combination with clay hypoplastic model by [Ma§14]. This combination
has been proposed and evaluated in [FMD20], while ISA was also combined with
the sand hypoplastic model in [FWGL20]. The second model tested will be a kine-
matic hardening model from the "SANI” family, denoted as SANICLAY-B [ST14].
The third modelling approach will be the three surface kinematic hardening “bubble”
model by [ST97] extended by the transversally isotropic elastic behaviour by [GH83]
inside the yield surface (A3-SKH). Comparison of the model predictive capabilities
has been presented in [DTS™'21] using experimental data on kaolin clay from [WT18].

As in the case of sands, we again start with predictions of monotonic tests as a
background information. Predictions of undrained monotonic triaxial tests and oe-
dometric loading-unloading tests are compared with experiments on kaolin in Fig.
17. It is worth pointing out that, as in the case of sands, models do not capture per-
fectly shear stiffness evolution and thus the shape of stress-strain curves in triaxial
tests, SANICLAY-B performing worst (consistently with predictions of SANISAND
for sand). Apart of hypoplasticity, in this case also the two elasto-plastic models
(SANICLAY-B and A3-SKH) predict normal compression line in oedometric load-
ing, contrary to predictions of SANISAND for sand. This is because advanced clay
models adopt closed state boundary surface shape of elliptic or quasi-elliptic shape to
predict both compression and shear behaviour. Contrary, in sands, the shear-induced
mechanism is considered as the most critical and thus the authors often adopt “cone”
rotational hardening models, which do not capture compression behaviour properly.

Continuing to cyclic loading, let us again start with undrained cyclic triaxial tests
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Figure 17: Predictions of undrained monotonic triaxial tests (a, b, ¢) and oedometric
tests (d, e, f) on kaolin clay. ISA clay hypoplasticity (a, d), SANICLAY-B (b, e) and
A3-SKH (c, ). Figure from [DTS*21], data from [WT18].

with deviatoric stress magnitude for each cycle being symmetric about p-axis (Fig.
18). In this case, the two elasto-plastic models fail in predicting pore water pressure
accumulation, as the accumulation stops when critical state mean effective stress is
reached. This fact is also clear from the accumulated pore water pressure vs. cy-
cle number curves, shown in Fig. 20 for tests from Fig. 18 (C4) and also for tests
at other cyclic deviatoric stress amplitudes (see [DTST21] for detailed explanation).
The hypoplastic ISA model delivers much more reasonable predictions here than the
tested elasto-plastic models, although it fails in predicting the final "butterfly” shape
of stress paths at cyclic mobility. The SANICLAY-B model is, however, better repre-
senting strain accumulation, at least for specific loading amplitude of 45 kPa (C4 test)
from (Fig. 18). Here, both hypoplastic ISA model and A3-SKH model fail to a large
extent (hypoplasticity is exaggerating strain accumulation into compression side and
A3-SKH is underpredicting strain acumulation). As in the case of sands, no model
is capable of extrapolating the predictions for different cyclic amplitudes for single
parameter set, however. As a typical demonstration of this fact, equivalent of Fig. 18
is shown for cyclic deviatoric stress amplitude of 70 kPa in Fig. 19. For example,
while SANICLAY-B model performed very well in predicting cyclic strain accumula-
tion for deviator stress amplitude of 45 kPa (Fig. 18g), it underpredicts significantly
strain accumulation for the amplitude of 70 kPa (Fig. 19g). For further comparisons
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regarding the effect of the initial overconsolidation ratio and stress ratio, the reader is
pointed to [DTST21].
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Figure 18: Predictions of undrained cyclic triaxial tests on kaolin with deviatoric stress
magnitude of 45 kPa, for each cycle being symmetric about p-axis. ISA clay hy-
poplasticity (b, f), SANICLAY-B (c, g) and A3-SKH (d, h). Figure from [DTS*21],
data from [WT18].

Consistent with these results are predictions of cyclic tests controlled not by the fixed
deviatoric stress cyclic amplitude, but by the fixed axial strain cyclic amplitude (Figure
21). Also in this case, the two elasto-plastic (SANICLAY-B and A3-SKH) models fail
in predicting pore water pressure accumulation behind the critical state mean stress.
Here, the hypoplastic ISA model works reasonably well. Similarly to cyclic tests with
constant ¢®™P!, SANICLAY-B predicts best the vertical strain vs. deviatoric stress
profile, with hypoplastic ISA model showing too low stiffness for the final cycles.
This is a consequence of the fact that, unlike experiment, the model reaches almost
in full the state of zero mean stress. While stiffness is considered as proportional to
mean stress, it becomes underpredicted.

4 Explicit cyclic accumulation models

The examples of “implicit” cyclic model predictions and their limitations presented
in previous section showed that regardless remarkable development of models in past
years, implicit modelling of cyclic loading still poses a challenge for model develop-
ers. For some specific applications, it may thus be beneficial to use explicit modelling
strategies, which are described in this section. In these models, average accumulated
values of the tracked variables (such as pore water pressure and strain) are being pre-
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Figure 19: Predictions of undrained cyclic triaxial tests on kaolin with deviatoric stress
magnitude of 70 kPa, for each cycle being symmetric about p-axis. ISA clay hy-
poplasticity (b, f), SANICLAY-B (c, g) and A3-SKH (d, h). Figure from [DTS*21],

data from [WT18].
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Figure 20: Accumulated pore water pressure of experiments from Figure 18 (C4) and
experiments at other deviatoric stress magnitudes (C1, C2, C5, C7 and C8) plotted
with respect to cycle number. ISA clay hypoplasticity (a), SANICLAY-B (b) and A3-
SKH (c). Figure from [DTS*21], data from [WT18].

dicted, instead of detailed evolution of these variables in each of the cycles. Details of
the model formulation are presented later on. As with the case of "implicit” modelling,
we will first start with summarising the main properties of this approach:

* The explicit approach does not suffer the main drawbacks of the implicit meth-
ods. Most importantly, accumulation curves can be fit to very high number of
cycles (of the order of magnitude of 10000 and higher), where implicit solution
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Figure 21: Predictions of undrained cyclic triaxial tests on kaolin with constant axial
strain amplitude of 1%. Figure from [DTS™21], data from [WT18].

is no-more feasible, namely due to inaccurate constitutive model itself, due to
magnified errors of the model integration and due to extremely high CPU-cost.

* The main drawback of the explicit accumulation models is the fact that the ac-
cumulation curves are constructed for specific cyclic states (such as magnitudes
of cycles in terms of strain or stress, current stress ratios, cyclic loop shapes,
etc.). It thus becomes tricky to use these methods for irregular cyclic loading
(such as loading occurring during earthquakes).

» Explicit accumulation models are best suited to cyclic loading of small to mod-
erate total strain amplitudes (< 1073). For larger amplitudes, accumulation
becomes rapid due to state approaching failure and accumulation response to
symmetric cycles of controlled variables (for example, strain) becomes pro-
gressively asymmetric. In this case, implicit calculation often becomes more
beneficial than the explicit approach.

In this chapter, we will cover an explicit modelling approach proposed by [NWTO05,
Wicl6].

Principle of explicit accumulation models is presented in Fig. 22. Fig. 22a demon-
strate the standard “implicit” calculation strategy, where each cycle is calculated using
a nonlinear “implicit” constitutive model. Explicit strategy is sketched in Fig. 22b. As
indicated there, the explicit accumulation models allow us to follow the average accu-
mulation curve (instead of simulating each cycle independently) with all the benefits
of explicit calculation (speed, low CPU cost, eliminated integration errors). Still, ex-
plicit simulation cannot be used on its own. This is because a cyclic strain magnitude
and tensorial strain loop shape is a key input into the explicit constitutive model and,
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Figure 22: Principle of explicit accumulation models (figure from [Wic16]).

for general boundary value problems, these quantities cannot be found without run-

ning the implicit simulation. The procedure of running the explicit simulation is as
follows [NWTO05, Wicl6]:

1.

The finite element model is setup as standard using an implicit constitutive
model and first few cycles are calculated. More cycles than one are needed so
that the internal state variables of the constitutive model evolve towards steady
cyclic conditions.

. Strain path is recorded for each integration point during the last implicit cycle

and the tensorial strain amplitude is calculated.

. Based on the input from item No. 2 and based on current state, accumulation

strain rate D*¢ is calculated using the explicit accumulation model equations
(see later).

. Stress rate T is calculated from D¢ using the model equations (see later) and

stress increment for the given integration step is found using AT = TAt, where
At represents pseudo-time increment in current integration step. In the model
implementation, cycle number IV is often mapped to pseudo-time (for example,
simply by setting N = t/[time unit]), simulations thus from the standpoint of
the finite element code resemble simulations with time-dependent constitutive
models, which consider time as a state variable. Note that, as the accumulation
curves are not highly non-linear in N, AN significantly higher than 1 can often
be used in one calculation step (for higher cycle numbers in particular), which
makes for an enormous CPU efficiency when compared with standard implicit
modelling.

. As the stress state may gradually change during the explicit phase and this

change affects cyclic tensorial strain amplitudes, additional implicit steps (’con-
trol cycle” in Fig. 22b) are included within the explicit phase to update the
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information on tensorial strain amplitudes to increase accuracy of subsequent
explicit solution.

Central to the accumulation model are equations for T and D*°. T is calculated using
the simple equation resembling visco-plastic formulation:

T=¢: (D—D* — D) ©)

where D*°° is the cyclic accumulation strain rate, £ is an elastic stiffness matrix
(preferably stress-dependent for consistency with stress-dependent soil behaviour).
D is a plastic strain rate, which is needed in the case that the cyclic loading is ac-
companied with monotonic loading to make sure the state does not surpass failure
surface.

Equation D*°° is in the model from [NWTO05] considered as a product of accumula-
tion strain direction m and a number of factors, each representing a physical quantity
affecting the accumulation rate:

D*° = m farmpl /N fp fy fefr @

The direction of accumulation found experimentally is shown in Fig. 23. [NWTO05]
actually proposed that the accumulation direction closely follows associated flow rule
used in Modified Cam-clay model [RB68] and adopted thus its equation without fur-
ther modifications. The other scalar factors in Eq. 4 represent the effects of the fol-
lowing quantities. A simple description is provided here, the reader is directed to
[NWTOS5] for details of the formulation:

* fampl represents the effect of tensorial strain amplitude A, Note that an elabo-
rate procedure is needed to quantify A, for complicated cycle shapes.

. f v represents the effects of cyclic history, that is, change of the accumulation
rate with increasing number of cycles. Actually, product ¢ = fampi fn must
be defined as a single equation to make sure the model obeys so-called Miner’s
rule (it implies that the sequence of application of constant-amplitude blocks of
cycles is of no importantce).

* fy quantifies the effect of stress ratio, f, the effect of mean stress and f, the
effect of void ratio.

* Finally, f, quantifies the effect of cycle polarisation (for details of its elaborate
formulation, see [NWTO05]).

Note that the use of Eq. (3) does not necessarily imply that D**“ must be a control-
ling variable and T the controlled one. Depending on the boundary conditions, the
Equations (3) and (4) imply either change of permanent deformation, or the change of
stress, or both [Wicl6]. As a special case, accumulation strain rate can be restricted
by a zero volume change condition tr D**“ = 0, which implies undrained conditions.
Eq. (3) then predicts the pore water pressure accumulation rate. The model can thus
be used to predict both drained and undrained conditions. This makes it, at least in
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Figure 23: Experimental data showing directions m of strain accumulation (figure
from [NWTO05]).

principle, also suitable for predicting cyclic response of clays. Such a model has been
tested by [Wic16], who included two further scalar factors, namely the factor control-
ling the effects of overconsolidation ratio focr and the factor controlling the effect
of loading frequency f; to allow for rate-dependency of clay behaviour. Different

procedure to calculate the effects of cyclic phenomena in clays has been proposed by
[JGAT14].

5 Conclusions

Predicting soil non-linearity and the effects of cyclic loading gives rise to possibly the
most complex modelling approaches adopted for predicting the behaviour of “’simple”
soils, where the effects of additional variables such as temperature, partial saturation
and chemical composition of pore fluid do not play a role. Various approaches exist
with the same target, which is predicting the non-linear state- and history-dependent
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stress-strain response. Some of them were covered in this lecture, showing how the
same physical phenomenon may be approached using quite different mathematical
frameworks. As the next step, evaluation of the models for predicting the effects
of cyclic loading was presented. It was quite clear, that regardless the development
in past decades, modelling of stress- and strain-accumulation during cyclic loading
has their limits which are very difficult to surpass. An alternative approach is rep-
resented by explicit accumulation models, where the average accumulated state is
followed, instead of soil response within each cycle. While valuable for conditions
of low-amplitude regular cyclic loading, these models present less accurate predictive
capabilities for irregular large loading cycles.

It is the author’s opinion that modelling the effects of cyclic loading is one of the
directions of soil constitutive modelling research which are far from being solved and
many interesting approaches have yet to come.
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Meta-stable structure, breakage and thermal
effects

David Masin®

ICharles University, Prague, Czech Republic

In this lecture, we will focus on the effect of various phenomena affecting soil be-
haviour, such as meta-stable structure caused by clay fabric and bonding or by inter-
particle cementation in coarse-grained soils. Also, the effects of particle breakage
and the effects of temperature on soil behaviour will be explored. In all cases, we first
start with experimental evidence on the particular effect, followed by micromechani-
cal interpretation of the processes involved. Finally, a procedure for modelling these
phenomena will be discussed. It will be shown that, however independent these ef-
fects may seem, they can all be well represented using a simple concept of additional
hardening laws controlling the size of the yield surface (or bounding surface, state
boundary surface, asymptotic state boundary surface, whatever modelling concept is
adopted for definition of reference model). Obviously, additional effects can take place
depending on the process of interest (such as thermally-induced strains due to thermal
expansion of grains) and these effects must also be included in the model formulation
to obtain correct overall prediction of the process of interest.

1 Introduction

The effects of meta-stable structure, inter-particle cementation, breakage and thermal
effects, along with the effects of partial saturation discussed in a separate lecture,
may appear quite independent from the perspective of physical processes involved,
leading to very similar modelling approaches. In this lecture, we will show how to
include these advanced phenomena into models. Thanks to the hierarchical model
structure, the concepts presented here can equally be adopted in combination with dif-
ferent modelling theories (being it single-surface elasto-plasticity, bounding plasticity,
generalised plasticity or hypoplasticity), provided the reference models are based on
the critical state soil mechanics principles.
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2 Clay Structure

This section on the effects of soil structure follows from [Mas19].

2.1 Mechanical Behaviour of Structured Clays

The influence of structure on the behaviour of fine-grained soils has been thoroughly
studied in the past; see, in particular, Burland [Bur90], Cotecchia and Chandler [CCO00]
and Leroueil and Vaughan [LV90].

The notion of soil structure is considered to be a combination of *fabric’ (the arrange-
ment of soil particles) and ’bonding’ (cementation of particles) [CCO0]. By this def-
inition, any clay has a structure. To eliminate ambiguity in the description of the
effects of structure, standardised way for fabrication of a reference material has been
adopted in soil mechanics. The widely accepted method is the so-called reconstitution
method. As defined by Burland [Bur90], reconstituted soil is prepared by thorough
mixing of natural soil at a water content of 1 to 1.5 times higher than its liquid limit
wr,. The soil is mixed with water to form a slurry without drying prior to mixing.
After reconstitution, the samples are prepared by one-dimensional consolidation in a
high oedometer (’consolidometer’). A reconstituted soil prepared in this way does not
show any effects of bonding and has a ’standardised’ fabric.

The effects of fabric and bonding are best illustrated using their influence on soil
normal compression behaviour and shear strength. As illustrated in Fig. 1, structured
soil has the normal compression line (NCL) shifted higher in the graph of Inp vs.
In(1 + e). The normal compression line represents the highest possible void ratio the
soil can exhibit for the given mean stress p. Structure thus allows the soil to exist at
a higher porosity than the corresponding reconstituted material. In other words (see
Fig. 1), structured soil has (for the given void ratio) a higher Hvorslev’s equivalent
pressure p, than the reconstituted soil. The ratio of the Hvorslev’s equivalent pressures
of structured and reconstituted soils can be denoted as ’stress sensitivity’ s, [CC00].

Structure also influences undrained shear strength of the soil. While the critical state
friction angle appears to be unaffected by the effects of structure, structured soil has a
higher undrained shear strength than the reconstituted soil at the same void ratio. The
ratio of these undrained shear strengths has been denoted as the strength sensitivity
Sus by Cotecchia and Chandler [CC00]. By investigation of a number of different
structured soils, Cotecchia and Chandler [CC00] observed that it is reasonable to as-
sume that the strength sensitivity is equal to the stress sensitivity and to define a single
variable s; (denoted simply as ”sensitivity”), such that s, = s, s = s,. Sensitivity thus
represents a primary variable adopted in the description of the behaviour of structured
soils.

'Note that Cotecchia and Chandler [CC00] define stress sensitivity as a ratio of the preconsolidation
stresses pe of structured and reconstituted soils, but it can be formulated using equivalent pressure pe
alternatively.
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Figure 1: Definition of stress sensitivity, the primary variable adopted in the descrip-
tion of the structured soil behaviour (graph from Masin [Mas07]).

The position of the isotropic normal compression line determines the size of the state
boundary surface in the isotropic direction, whereas the undrained shear strength con-
trols its apex in the p vs. ¢ space. Cotecchia and Chandler [CCOO0] also studied the
complete shape of the state boundary surface and found that, within reason, the shape
of the state boundary surface (that is, the shape of its constant void ratio cross-section)
is similar for reconstituted and structured soils. The state boundary surfaces thus differ
in size only, determined by s;. The principle is clear from the sketch in Fig. 2.

q

Pe SiPe

Figure 2: Sketch of state boundary surfaces (SBS) of reconstituted and structured soils
(figure from [Mas19]).
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Earlier in this chapter, it was mentioned that the soil structure is composed of the
combination of fabric and bonding. These two types of structure influence the soil
behaviour in different ways. Fabric cannot be easily disturbed by loading within the
strain range applicable to most geoengineering problems. Thus, when structure is
caused by fabric only, s; may be assumed to be a constant [BS04]. The normal com-
pression line of structured soil then has in the plane Inp vs. In(1 + e) the same
slope as the normal compression line of reconstituted soil (measured by the param-
eter A*). Its position is controlled by the parameter N, related to N and s; by
Ny = N 4+ X In s;. The undrained shear strength of the structured soil is s;-times
higher than the undrained shear strength of the reconstituted soil at the same void ratio.
Stiff sedimentary clays typically behave in this way.

Contrary to fabric, inter-particle bonding in natural soils is typically not high enough
to sustain loading relevant to geotechnical applications. Due to the bonding degra-
dation, s; of bonded clays decreases during compression and shearing. The normal
compression line of a structured soil thus has a higher slope than the normal com-
pression line of a reconstituted soil, until the bonds degrade completely. The normal
compression line of a bonded material is sketched in Figure 3. It demonstrates that
it is possible to represent this behaviour by assuming a constant slope of the normal
compression line A* combined with variable sensitivity s;. Figure 4 shows two exper-
imental examples of such a behaviour. Soft sedimentary clays typically behave in this
way.

In (1+e)

variable NCL
~.._  depending on
X current s;

NCL rec.

0 Inp

Figure 3: Normal compression behaviour of bonded soils.

2.2 Constitutive Modelling of Structured Clays

In this section, we will demonstrate incorporation of the effects of structure into exist-
ing critical state soil mechanics-based constitutive models. While many models exist
using similar concept [LC02, WNKLO03, MNZ79, BS04, RMWO00, KA00, GMWOlI,
CV04, RFDP03, Asa05], we will demonstrate the procedure here through its incorpo-
ration into hypoplasticity. The procedure described has been adopted by [Mas07] to
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Figure 4: Examples of normal compression behaviour of bonded soils. (a) Bothkennar
clay from [NSD92], (b) Pisa clay from [CRO4].

modify the existing hypoplastic model for clays by [Mas05].

When the effects of structure are to be implemented into existing constitutive from, the
following changes need to be done. First of all, sensitivity s, must be considered as a
state variable in the enhanced model. The Hvorslev’s equivalent pressure is expressed
as in the enhanced model by

Nln(lJre)} )

Pe = StPr €XP |: W

where N and \* are parameters representing the reconstituted soil behaviour.

Next, it is necessary to specify the rate equation for sensitivity s;. Since the degrada-
tion of inter-particle bonding is caused by soil deformation, the rate of s; depends on
the stretching tensor D. Both the volume strains and shear strains can cause degrada-
tion of bonding. In the model, a separate parameter is introduced to distinguish the
effect of the shear and volumetric strain components on structure degradation. The
rate equation for s; reads

§ = sp — sp)éd )

A* (
where k is a model parameter controlling the rate of structure degradation and s is the
final sensitivity. As suggested by Baudet and Stallebrass [BS04], s is not necessarily
equal to one. The value sy > 1 represents stable elements of the structure caused
purely by the soil fabric. ¢? is the damage strain rate, defined as

el = \/ () + ﬁ (és)° 3)
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where €, = — tr D is the volume strain rate, é; = /2/3||D*|| is the shear strain rate
and A is a parameter controlling their relative influence on the structure degradation.

Further, it is necessary to modify the formulation so that the model properly predicts
the softer response in normal compression. It is clear from Fig. 3 that while p,. is
calculated using the theoretical normal compression line of the slope A* corresponding
to the current void ratio (i.e., Eq. (1)), the model predicts a softer response in normal
compression thanks to the decrease of sensitivity. Let us denote the actual slope of
the normal compression line of a structured soil as A¥,,.. It can be evaluated using

the following procedure: the normal compression line of the structured soil can be
expressed as (see Fig. 1)

In(I+e)=N+A"1ns; — A" In (5) @)

Its time differentiation results in

) A*(“”tp> 5)
1+e st P

The rate equation (5) can alternatively be written using the actual slope A%, as

é p
1+e strp ( )
To evaluate \},,., the isotropic form of the structure degradation law is needed. It reads
(from (2))
k é
S N 7
8¢ )\*(St Sf)lJre @)
A combination of (4), (5) and (7) leads to the following expression for A},
A's
Aopp = ———F————— 8
ST s — k(s — sy) ®
In the structured model, A%, enters the expression of the tensor A:
T
A=f L+ —®1 9)
)‘str
and factor f
3p (1 1\1-2v
s = — — 10
/ 2 <)\:t7,+/£*> 14+v (10)

The slope of the unloading line is controlled by «* and it is assumed to be independent
of the value of s;.

The above approach is needed to predict the behaviour of bonded clays. In the case
where the sensitivity s; is constant during loading (most stiff clays), /V of the original
model may be simply replaced by N + A* In s; and the original model can be used
without any modification.
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2.3 Calibration of Material Parameters — Clays with a Stable Struc-
ture

Calibration of the new parameters &, A and s¢, together with parameters controlling
normal compression behaviour N and \*, will be discussed here. Calibration of pa-
rameters will be discussed separately for clays with a stable structure (constant s;
caused primarily by fabric) and a meta-stable structure (variable s; caused by fabric
and bonding).

As explained in Sect. 2.2, calibration of the model for clays with a stable structure is
simpler. In principle, we may adopt the basic hypoplastic model for the modelling.
The following two identical alternatives are available:

 Evaluate the parameters N and \* based on tests on reconstituted soils. Then
adopt the basic model with the parameter IV replaced by Ny, = N + A* In s,.

* Evaluate the parameters N and \* based on tests on reconstituted soils. Then
adopt the model for structured clays with the calibrated value of sensitivity s,
while assuming £ = 0 and any A # 1.

In both cases, isotropic (or oedometric) tests on reconstituted soil should be per-
formed. This is because clays with a stable structure (typically stiff clays) often have
very high preconsolidation pressures. Calibration of the true slope of the normal com-
pression line \* is complicated in this case, as it is often not clear whether the normal
compression line has already been reached; see Figure 5. Once the parameter \* is
known from the test results on a reconstituted soil, the value of N4, or s; can be
evaluated using the compression tests on the structured clay.

The sensitivity value can be evaluated as the ratio of the Hvorslev’s equivalent pres-
sures of structured and reconstituted soils (see Figure 1). Alternatively, it can also be
evaluated as a ratio of the undrained shear strengths of structured and reconstituted
soils. Note, however, that the reconstituted soil must be consolidated to the same void
ratio as the equivalent structured soil prior to undrained shear strength testing in this
case.

2.4 Calibration of Material Parameters — Clays with a Meta-Stable
Structure

To calibrate the model for clays with a meta-stable structure, the initial value of sen-
sitivity s; needs to be evaluated using the same procedure as described in Sect. 2.3.
Also, similarly to the stiff clay behaviour, the parameters /N and A* need to be cali-
brated using tests on reconstituted soils.

The parameter k represents the rate of structure degradation and it controls the actual
slope of the normal compression line A}, predicted by the model (Eq. (8)). For cali-
bration of k, the isotropic compression test is more suitable than the oedometric test,
as in the latter case structure degradation is also influenced by the parameter A. The

influence of the parameter k on the normal compression line is demonstrated in Figure
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Figure 5: Typical problem in calibration of the parameter A* using compression test on
undisturbed stiff clay samples. (a) correct calibration leading to the same value value
of \* for reconstituted and undisturbed samples. (b) possible incorrect calibration
using tests on an undisturbed sample which would have been stopped at o, = 2500
kPa. Experimental data on Calabria clay and the background graph (retouched) from
[GMMO6]. Figure used in [Mas19].

6. The value of £ = 0 implies a model with constant s; (stable structure). Increasing
the value of k increases the rate of structure degradation. The parameter k can be cal-
ibrated by means of simulation of the soft clay normal compression behaviour using
element test software. Alternatively, in the case of the isotropic compression test, Eq.
(2) may be integrated analytically giving a finite expression for the dependency of s;
on the volume strain ¢, and other model parameters:

k
st = sy + (st0 — Sy) exp |:_)\*6'U:| (11)

where s, is the initial value of sensitivity.

The parameter A controls the influence of shear strains on structure degradation. A
should preferably be calibrated using undrained shear test results after the parameter k
has been calibrated using isotropic (or oedometric) compression tests. The parameter
A influences the stress path of the undrained shear test (see Figure 7). It should be
calibrated by means of element test simulations of shear tests.

The model also requires specification of the final sensitivity s;. Following Baudet
and Stallebrass [BS04], this parameter quantifies stable elements of structure solely

ALERT Doctoral School 2021



Masin 129

1.1

0.9

0.8

In (1+e) [-]

0.7

0.6

05

45 5 55 6 65 7 75 8
In (p/py) [-]

Figure 6: The influence of the parameter k on the isotropic normal compression line
of clay with a meta-stable structure (figure from [Mas19]).
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Figure 7: The influence of the parameter A on the undrained stress path of clay with a
meta-stable structure (figure from [Mas19]).

due to the soil fabric. While s; may be higher than one, many natural soft clays
can reasonably be represented by sy = 1. The influence of sy on the isotropic nor-
mal compression behaviour of natural structured clay with both bonding and fabric is
demonstrated in Fig. 8.

2.5 Examples of Model Predictions

The model for structured clays has been evaluated by [Mas07] using experimental
data on Pisa clay by Callisto and Calabresi [CC98] and Bothkennar clay by Smith et
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Figure 8: The influence of the parameter sy characterising stable elements of structure
due to soil fabric (figure from [Mas19]).

al [SJTH92]. Here, we presented predictions of an updated model from [Mas19].

Figure 9 shows predictions of oedometric tests on undisturbed and reconstituted Both-
kennar clay (data on samples extracted using two sampling methods). It is clear from
Figure 9 that it is reasonable to assume the value of sy = 1 in the case of Bothkennar
clay.
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Figure 9: Predictions of oedometric test on undisturbed and reconstituted Bothkennar
clay. Experimental data from [SJTH92], simulations from [Mas07].

Structure degradation in shear is best represented using stress paths plotted in the space
of stress normalised by the Hvorslev’s equivalent pressure of reconstituted soil. Figure
10a shows results of two experimental data sets on Pisa clay from [CC98]. The tests
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labeled as Ri were performed on reconstituted soil, whereas the tests labeled as Ai
were performed on undisturbed soil. The tests were performed from the anisotropic
stress state (estimated in situ stress state) with a controlled stress path direction. This
direction (in degrees, measured anti-clockwise in the p vs. ¢ space) is indicated as a
number ¢ in the experiment label. Structure degradation in the experiment is mani-
fested by bending of the normalised stress paths when the state approaches the state
boundary surface. Figure 10b shows predictions of these tests using the hypoplastic
model, together with the shape of the asymptotic state boundary surface predicted by
the model. The model properly predicts these structure degradation characteristics.
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Figure 10: Predictions of stress probing tests on reconstituted and undisturbed Pisa
clay. Experimental data from [CC98], simulations from [Mas07].

To demonstrate the effects of structure degradation, Figure 11 shows the same predic-
tions for experiments on undisturbed samples as in Fig. 10b, together with predictions
using the original hypoplastic model (that is, using the model with the parameter &
set to 0). This model is incapable of predicting the structure degradation and thus the
normalised stress paths are not predicted properly.

3 Cementation of coarse-grained soils

3.1 Experimental and micromechanical evidence of the effect of
cementation in coarse-grained soils

In coarse-grained soils, an important feature affecting soil behaviour is cementation.
Similar to structured clays, discussed in the previous section, cementation increases
soil peak shear strength. [WL08] studied mechanical behaviour of cemented sands and
observed a significant effect of cementation on peak shear strength (Figure 12a). They
also concluded that if cementation is not extreme, its influence on critical strength is
much less significant due to almost complete bond degradation in shearing. Some
influence was still observed, however, due to remaining clusters of bonded particles.
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Figure 11: Predictions of stress probing tests on undisturbed Pisa clay. Comparison
of predictions from Fig. 10b with predictions by the same model without structure
degradation (k = 0).
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Figure 12: The effect of cementation on peak (a) and critical state (b) strength of
cemented sands (figures from [WLO8]).

Similar effect of cementation structure in sands to the effects of structure in clays
has also been observed in compression. Soil exhibits stiff response up to the yield
point, when the bonds start to break and softer response follows. Finally, soil behaves
as an uncemented sand, which is a consequence of complete bond breakage. This

behaviour is demonstrated in Figure 13 from [LN95] showing compression behaviour
of calcarenite.

Cementation in sands may be quite realistically modelled using discrete element method
(DEM), which gives an insight into the soil behaviour from micromechanical point of
view. Such models have been presented by [JYZU11], adopting contact model rep-
resenting bonds shown in Figure 14. Consistently with the experimental results pre-
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Figure 13: Compression behaviour of calcarenite (figure from [LN95]).
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Figure 14: Contact model used in DEM analysis by [JYZU11] to represent inter-
particle cementation.

sented above, [JYZU11] observed a significant effect of cementation on peak shear
strength at low confining pressures (Figure 15a). At higher confining pressures, the
effect is much less pronounced, as the inter-particle bonds had already been broken
during the pre-shear compression stage (Figure 15b). Discrete element method allows
us to investigate micromechanics of the process shown in Figure 15. Figure 16 shows
bond breakage rate shown together with stress-strain curve from Figure 15. A clear
peak in bond breakage rate can be observed, associated with the peak in stress-strain
curve.

3.2 Modelling the effect of cementation in coarse-grained soils

Modelling of the effects of cementation is, similarly to modelling the behaviour of
structured clays, based on variable size of the state boundary surface. A typical exam-
ple is represented by the model by [LN95]. The yield surfaces of the fully cemented
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Figure 15: The effect of cementation on biaxial test results investigated using DEM
method by [JYZU11]. (a) low confining pressure, (b) high confining pressure.
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Figure 16: Bond breakage rate plotted together with stress-strain curve of biaxial test
on cemented DEM sample (figure from [JYZU11]).

and uncemented soil are shown in Figure 17. Note that, unlike in clays, the yield sur-
face of cemented material spans quite significantly into the tensile stress region thanks
to tensile strength of the bonds.

Key to the model is, again similarly to modelling of structured clays, specification
of the evolution equation for internal variables defining current cementation level and
controlling the size of the yield surface. They are defined in terms of damage strain
rate ¢2, calculated as a function of both plastic volumetric and shear strain rate. With
properly selected evolution equations, the model predicts the response both in com-
pression and in shear in agreement with experimental data (Figure 18) and in accor-
dance with DEM observations developed later.
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Figure 17: Yield surfaces for bonded and unbonded coarse grained soil model adopted

by [LN95].
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Figure 18: Predictions of the model for cemented soils by [LN95]. (a) behaviour in
compression, (b) behaviour in shear.

Note that, similar concepts as used here for modelling of cemented materials can be
used for modelling of the other effects. For example, [NCT03] extended the model by
[LN95] to include effects of chemical degradation of inter-particle bonds, which can
take place independently of mechanical loading.

4 Particle breakage

Particle breakage is an important phenomenon influencing the behaviour of granu-
lar materials. In this chapter, we first show that particle breakage commonly takes
place, being inevitable part of loading process in granular materials. Subsequently,
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its influence on the mechanical behaviour of granular materials will be clarified using
experimental data and, finally, approaches to model these effects will be shown.

4.1 Measures of particle breakage

First of all, before studying the effects of particle breakage, we need to define mea-
sures quantifying the breakage. They will later play a role of state variables within the
continuum constitutive models. Several measures have been proposed in the literature,
most notably:

* Marsal [Mar67] breakage index B,: When measuring the level of particle break-
age, soil grain size distribution is determined before and after the experiment
using standard set of sieves. B, represents the sum of increases of material
weight on the sieves when compared to the original state.

* Hardin [Har85] relative breakage B,, which represents weight increase of par-
ticles below 0.74 mm normalised by the initial weight of particles above 0.74
mm.

* Einav [Ein07a, Ein07b] modified relative breakage BF: Follows on Hardin’s
definition, but considers that breakage is not unlimited and, finally, an ultimate

grain size distribution is reached which is not modified any further, see Figure
19.

100
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60 distribution, F,
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Figure 19: On the definition of Einav modified relative breakage index BY (figure
from [Ein0O7a])
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4.2 Experimental evidence on particle breakage — shear experi-
ments

Let us now show experimental evidence on particle breakage. First, we start with
breakage induced by shear experiments. Figure 20 from [IS02] shows variation of
Marsal breakage index B, of railway ballast measured in large-scale triaxial appa-
ratus during shear test. Clearly, the level of particle breakage increases with both
effective confining pressure and axial strain. Similar conclusions have been obtained
by [ASR10] - Figure 21 shows the dependency of breakage index By on confining
stress in large-scale triaxial testing of rockfill materials of various grain shapes. Soils
with rounded grain shapes ("Alluvium” trend line and soils with code starting ”A”)
show somewhat lower degree of breakage than materials with angular grain shapes
(’Blasting” trend line and soils with code starting ’B”’). Evolution of B, in ring shear
testing of carbonate sand has been studied by [CSBFGO04]. They investigated the level
of particle breakage for different sampling positions within the ring shear sample,
demonstrating clearly that material in the shear zone is much more prone to particle
breakage when compared to materials from zones above and below the shear zone
(22).

20

Confining pressure q

* 300 kPa "

® 200 kPa 1 e
1
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m 10 kPa

Failure strain (&)

Breakage index, By: %

UL I T 7T I L I L I L
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Figure 20: Variation of B, of railway ballast in large-scale triaxial apparatus during
shear test (figure from [1S02]).
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Figure 21: Dependency of B, on confining stress in large-scale triaxial testing of
various rockfill materials (angular and rounded) (figure from [ASR10]).
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Figure 22: Evolution of B, in ring shear testing of carbonate sand for different sam-
pling positions within the ring shear sample. Zone 2 is the shear zone, zones 1 and 3
are above and below the shear zone respectively (figure from [CSBFG04]).

4.3 Experimental evidence on particle breakage — compression ex-
periments

Particle breakage during soil loading is not restricted to tests in shear, though this
deformation mode appears to be the most efficient for breaking the grains. Evolution
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of particle breakage during experiments in compression (high-pressure oedometric
tests) of Leighton Buzzard silica sand has been studied by [McDO02], results are shown
in Figure 23. Particle breakage is evident with the major breakage event taking place
at the stress levels corresponding to the yield stress (Fig. 23b), which is rather well
defined (Fig. 23a).
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Figure 23: Particle breakage of Leighton Buzzard silica sand in high-pressure oedo-
metric tests. (a) Evolution of void ratio with stress, (b) particle size evolution (figure
from [McDO02]).

4.4 Influence of particle breakage on soil mechanical behaviour

The soil mechanical properties are determined by particle size and shape, mineralogy
and soils structure. Breakage, which causes changes of granulometry and of particle
shape thus, indeed, affects the soil mechanical behaviour. Quantification of the ef-
fect is, however, not straightforward. As grains crush inevitably, a suitable reference
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material (ideally unbreakable material) is not available. This makes quantification of
the effects of particle breakage less straightforward than, for example, quantification
of the effects of structure (Sec. 2), where reference ’unstructured” material can be
formed easily by reconstitution. Still, the influence of particle breakage can be judged
using indirect methods or using DEM modelling.

First of all, let us inspect indirect methods. Here, we focus on the effect of grain size
on soil properties in experiments, which were repeated on soils artificially prepared
at various grain size distributions mimicking change of grain size distribution due to
breakage. Sure, the experimental results are further effected by the particle breakage
during the tests themselves, but this breakage will occur in all the cases, so the tests
with different initial granulometry may be considered as indicative of the effect of
evolving grain size distribution due to breakage, at least from a qualitative point of
view.

Simply speaking, soil granulometry affects practically all soil properties. The only
case where the effect would be reduced is for self-similar grain size distribution curves
(translated horisontally in grain size distribution chart plotting fraction percentage vs.
logarithm of grain size), but even in that case the size effects affect properties of grains
and thus the overall soil behaviour. Here, we will discuss the most important/relevant
effect of grain size from the constitutive modelling point of view: critical state friction
angle, normal compression line and stress/dilatancy relationship.

Experiments studying the effect of particle breakage on critical state have been pre-
sented by [YS16, Yul7] and [BC11]. Both authors imposed artificially particle break-
age by shearing the original soil in triaxial apparatus under high confining pressures.
The same soil was subsequently shared again under low confining stress conditions
(not imposing significant further breakage) to test the effect of breakage on critical
state line. It turned out that particle breakage did not affect critical state friction angle
significantly, but it changed position and inclination of the critical state line in In p
vs e plane, affected stress-dilatancy relationship and thus also peak friction angle (see
Figure 24). The effect of particle breakage on peak friction angle has also been studied
by [SMR11] for coarse grained (grains up to 50 mm) alluvial gravel, who clearly ob-
served a decrease of peak friction angle with increasing particle breakage (Figure 25).
Downward parallel shift of normal compression line in In p vs e plane was observed
by [GSD14].

Stress-dilatancy relationship was a focus of the work by [CDTV02] who studied
shear behaviour of pyroclastic soil with crushable particles. They observed that the
stress-dilatancy relationship progressively deviates from the linear dependency be-
tween dilatancy d and stress ratio 1 expected by classical soil mechanics theories
(e.g., [Row62, Bol86]). They suggest this is because soil particles progressively crush
during the shear process thus affecting the stress-dilatancy relationship continuously.
These authors also assume the effect of grain crushing on critical state friction angle,
which is not consistent with observations by [YS16, Yul7, BC11] discussed above; it
is however to be noted that soil they tested has significantly more crushable particles
that the soils investigated in [YS16, Yul7, BC11].
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Figure 24: The effect of particle breakage on critical state friction angle (a) and dila-
tancy (b) on breakage during drained triaxial tests (figure from [McDO02]).

The influence of particle breakage on compression behaviour can be also studied us-
ing discrete element method which (unlike soils) has an advantage of being able to
simulate behaviour of ideally unbreakable soils for comparison. Breakable grains are
typically created by agglomerating unbreakable spheres and proper setting of contact
parameters [CBNO4] (Figure 27a). Numerous works show that particle breakage is the
major source of normal compression line shape for granular materials. For example,
see Figure 27b by [BNCO08], demonstrating downward shift of normal compression
line due to breakage: effect similar to the loss of structure in structured soils.

4.5 Constitutive modelling of particle breakage

A number of models exist to predict the effects of particle breakage. It is to be pointed
out that various authors focus on different soils with different breakage characteristics
of grains so they may consider different features of soil behaviour to be of a different
importance from the constitutive modelling point of view.

One of the models has been proposed by [CDTVO02], which will be discussed here.
These authors introduced a state variable b > 1 varying with breakage (measured here
through damage strain), such that b = 1 for fully broken grains. This approach allowed
them to model downward shift of NCL with particle breakage through the concept of
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Figure 25: The effect of particle breakage on peak friction angle of alluvial gravel
(figure from [YS16]).
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Figure 26: The effect of particle breakage on stress-dilatancy relationship. Experi-
mental data (a) and interpretation (b) by [CDTV02]

breakage dependent size of the yield surface (Figure 28), similar to the concept of
debonding in cemented soils. They also considered the effect of breakage on critical
state friction angle. Different ways of obtaining similar shape of normal compression
line has been proposed by [RK04], which specified multi-linear NCL equation directly
without introducing additional breakage-related state variables (Figure 29a) and by
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Figure 27: The effect of particle breakage investigated through DEM modelling.
(a) breakable ”particles” constructed by agglomeration of elementary spheres (figure
from [CBNO4]), (b) the effect of breakage on the isotropic normal compression line
(figure from [BNCO08]).

[Ein07b], who obtained the expression through thermodynamically-based continuum
breakage mechanics (Figure 29b).
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Figure 28: Yield surface dependency on particle breakage quantified through state
variable b (figure from [CDTV02]).
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Figure 29: The effect of particle breakage on normal compression line predicted by
models by [RK04] (a) and [Ein07b] (b)

Interesting to point out is the modelling procedure adopted by [CDTVO02] to predict
stress-dilatancy relationship introduced in Figure 26. They considered decreasing ¢,
with particle breakage. This dependency also implies variable shape of the yield sur-
face with breakage. When combined with the associative flow rule, this means also
variable stress-dilatancy relationship, which is however still not representing well the
experimental stress-dilatancy data. As a remedy, [CDTVO02] chose associative flow
rule and included additional parameter controlling yield surface shape such that the
implied stress-dilatancy relationship during breakage matched the experiments.

5 Thermal Effects

This section on the effects of temperature follow from [Mas§19].

Soil behaviour is influenced by temperature. Samples tested at different temperatures
exhibit different stiffness and strength. Temperature variation even at a constant stress
level causes the soil to deform. In most cases in geotechnical practice, temperature
variations are not substantial and temperature effects do not need to be considered
in simulations. However, temperature effects become important in a number of spe-
cial applications, such as nuclear waste disposal facilities, buried high-voltage cables,
pavements and geothermal energy. A model to predict temperature effects on soi be-
haviour is presented in this section.

5.1 Influence of Temperature on Soil Mechanical Behaviour

The influence of temperature on soil behaviour is discussed by Masin and Khalili
[MK12], who summarised the experimental evidence along with modelling approaches
suggested by various authors. The following aspects of soil thermal behaviour appear
to be the most important.
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5.1.1 Compression behaviour under constant temperature

Temperature influences the soil normal compression lines. A majority of the exper-
imental data show that in the stress range relevant to engineering applications, the
normal compression lines at different temperatures may be considered parallel to each
other, while as the temperature increases the void ratio at the normal compression
line for the given effective mean stress p decreases [UK09, CM68, CL04, BDMOO].
Although a number of research studies show a constant slope for the normal compres-
sion line with temperature, exceptions have also been reported [TGC97, RGLO03]. In
all the cases, however, an increase in temperature leads to a decrease in the apparent
preconsolidation stress.

5.1.2 Behaviour in shear under constant temperature

The experimental evidence of the influence of temperature on the soil peak strength
is contradictory, as is discussed below. However, most results show that the critical
state friction angle is independent of temperature [UK09, HPDO98, HB90, LGY 796,
TGC97, CL04, ANBBP09]. Variation of the peak strength with temperature appears
to be dependent on the soil being tested. Some authors report a decrease in the peak
strength of an overconsolidated soil with increasing temperature [UK09, HPDO98,
HB90, LGY 196, DBT96]; Contradictory to this behaviour, however, some authors
have reported an increase in the peak shear strength and a decrease of the appar-
ent preconsolidation pressure with temperature [TGC97, HHWS85, ANBBP09, CL04,
KTOS95].

5.1.3 Soil response due to variation in temperature at high overconsolidation
ratios

It is generally agreed that the soil response to heating-cooling cycles is strongly de-
pendent on the apparent overconsolidation ratio. At high overconsolidation ratios, the
soil response is essentially reversible, thus, there are no permanent changes in the soil
structure. As discussed in detail by Khalili et al. [KUJ10], this type of response is
controlled solely by the thermal expansion coefficient of the solid particles and it is
independent of the soil porosity. The available experimental data also demonstrates
that the thermal expansion coefficient of the soil skeleton oy may essentially be con-
sidered as independent of the effective stress and temperature [UK09, DOFG™96,
SDCO02, AE93].

5.1.4 Soil response due to variation in temperature at low overconsolidation
ratios

As indicated in the previous paragraph, the response of a soil at high overconsoli-
dation ratios is generally reversible. At low overconsolidation ratios, however, the
mechanisms controlling the heating and cooling responses are substantially different.
Upon cooling, the state boundary surface increases in size and the soil structure is
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thus stable. Consequently, the volumetric response is the result of the thermal con-
traction of the soil particles, which does not depend on the overconsolidation ratio
[UK09, DOFG196, SDCO02]. In contrast, a reduction in the size of the state bound-
ary surface due to heating imposes irreversible changes to the open structure of a
soil at low overconsolidation ratios, leading to the so-called heating-induced com-
paction. In general, the compaction strains due to heating of a soil at low over-
consolidation ratios are significantly larger than the straining imposed by the expan-
sion of soil particles, and they are controlled by the relative position of the normal
compression lines at different temperatures. The compaction due to heating is not
an abrupt process that activates once the soil state reaches the state boundary sur-
face; instead, its influence gradually increases with decreasing overconsolidation ra-
tios [DOFG 196, HB90, BHP88, SDC02, DCS82].

5.2 Thermomechanical Constitutive Modelling of Saturated Soils

In this section, a thermomechanical model proposed by [MK12] is described as an
example of enhancing constitutive models for the effect of structure. First, reversible
strains due to thermal expansion and cooling contraction of soil particles are incor-
porated. These thermally-induced strains are independent of the effective stress. The
enhanced hypoplastic equation is written as

T=f[C:(D-D"")+ f4N|D D ] (12)

where DT¥ is the strain rate due to thermal volume changes of the solid particles. In
agreement with the experimental evidence cited above, DTE may be calculated using
an elastic volumetric model as

DTF = %asT (13)

In Eq. (13), T represents temperature and s is the thermal expansion coefficient of
solid particles. Khalili et al. [KUJ10] demonstrated that the thermal expansion/cooling
contraction of solid particles alone does not lead to rearrangement of the soil skeleton.
Consequently, it does not impose any change in the void ratio. In the thermal model
the void ratio rate is calculated as

é¢=(1+e)tr(D—-D"F) (14)

The dependency of the normal compression line on temperature is calculated simi-
larly to the dependency of the normal compression line on suction in the model for
partially saturated soils. Parameters [N and A\* of the basic model become functions
of temperature. The temperature dependent normal compression line reads:

In(1+¢) = N(T) — \*(T) In pﬁ (15)
with
N(T)=N +nrhn <T> A(T) = A" +IpIn <T> (16)
To TO
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where N, \*, np and [ are parameters and T} is an (arbitrary) reference temperature.

To incorporate compaction of the soil structure due to wetting, the hypoplastic model
is enhanced by the thermal-induced collapse factor Hy calculated to ensure consis-
tency of the model with the asymptotic state boundary surface (see [MK12] for deriva-
tions).

5.3 Demonstration of the Model Predictions

The thermomechanical model for partially saturated soils has been developed and
evaluated in [MK12]. The model has been evaluated using comprehensive experi-
mental data on partially saturated compacted silt by Uchaipchat and Khalili [UK09].
Figure 30 shows experimental data and simulations of isotropic compression tests at
different suctions and temperatures. The model correctly predicts the increase of the
apparent preconsolidation stress with increasing suction and decreasing temperature,
as well as the non-linear stiffness decrease as the state approaches the normal com-
pression line. Figure 31 shows the volumetric strains generated by heating-cooling
cycles at different effective stresses under saturated conditions. At a low effective
stress, the model predicts a practically reversible behaviour solely controlled by the
thermal expansion coefficient ag which is in agreement with experimental results. As
the stress level increases, the material compacts upon heating due to structural rear-
rangements and shrinks upon cooling due to cooling-induced particle shrinkage. The
effects of suction and temperature on the behaviour in shear are shown in Fig. 32. An
increase in temperature and decrease of suction decreases the predicted peak strength
and dilatancy of the soil.
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Figure 30: Constant suction and constant temperature isotropic compression and un-
loading tests. Experimental data (a) by Uchaipchat and Khalili [UK09], predictions
(b) by [MK12].

Finally, Figure 33 shows pore water pressures generated by pure heating of a saturated
soil under undrained conditions and at an isotropic stress state. Unlike in the case
of constant temperature undrained tests, heating under undrained conditions causes
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Figure 31: Volume changes generated by drained heating experiments of saturated
soil. Experimental data (a) by Uchaipchat and Khalili [UK09], predictions (b) by
[MK12].
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Figure 32: Drained triaxial shear tests at different temperatures and suctions. Experi-
mental data (a,c) by Uchaipchat and Khalili [UK09], predictions (b,d) by [MK12]

changes in the soil volume. This can be calculated using the thermal expansion coef-
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ficients of the solid particles as and water «,,:

trD = [ayn + as(1 —n)]T (17)

where n is the porosity n = e/(14e¢). The development of pore water pressures is then
controlled by the hypoplastic model. The coefficient o, depends on both temperature
and pressure. An empirical expression by Baldi et al. [BHP88] was adopted in the
simulations:

= ap + (a1 + f1T) Inmuy, + (ag + 52T)(In muw)2 (18)

where u,, is the pore water pressure in kPa and the constants have the following values:
ag = 4.505 x 1074 °C~1, a; = 9.156 x 107°°C~1, B = —1.2 x 1076 °C2,
ap =6.381 x 1070 °C™1, By = —5.766 x 1078 °C~2 and m = 1.5 x 107% kPa™".
The model properly predicts the pore water pressure development and its dependency
on the initial effective stress.
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Figure 33: Pore water pressures generated during undrained heating of saturated
soils. Experimental data (a) by Uchaipchat and Khalili [UK09], predictions (b) by
Masin and Khalili [MK12].

6 Conclusions

Meta-stable structure, inter-particle cementation, breakage and thermal effects, along
with the effects of partial saturation discussed in a separate lecture, are all phenomena
which can be covered using similar constitutive modelling concept based on critical
state soil mechanics combined with additional hardening laws specific for the process
of interest. This simplifies constitutive model development, as existing modelling pro-
cedures for specific problems may be easily combined with newly developed reference
constitutive models.
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Time and rate dependence
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The time dependence of the mechanical behaviour of geomaterials is testified by
numerous experimental test results. According to the material taken into considera-
tion, the time dependency is associated with different phenomena, some of them
purely mechanical, other thermo/hydro/chemo/mechanically coupled. In this chap-
ter, a synthetic description of the most popular constitutive modelling approaches,
conceived in the last decades to account for the time variable in the light of rate
dependent elastic-plasticity, is provided.

1 Introduction

The mechanical response of geomaterials is severely affected by both time and ap-
plication rate of perturbations and this governs the response of numerous geo-
structures. Typical examples are (i) creeping landslides, (ii) delayed static liquefac-
tion in artificial berms, (iii) ageing in clayey materials, (iv) squeezing in deep tun-
nels, (v) solid to fluid and viceversa phase transition in granular materials.

According to the type of natural materials taken into consideration, the rate depend-
ency of the mechanical response is characterized by different time scales (material
characteristic time) and due to a large variety of thermo/hydro/chemo/mechanical
processes.

As far as pure mechanical processes are concerned, in §2 “micro-inertial effects”,
associated with the micro-structural fabric rearrangement, are discussed, whereas in
83 material progressive failure, associated with the propagation with time of mi-
crocracks present in either the grains themselves or in the intergranular bonds (in
case of cemented/structured materials), is considered. Even if these two mechanical
phenomena are completely different from a micro-mechanical point of view, the
macroscopic (at the representative elementary volume scale) response can fruitfully
be simulated by employing a unique constitutive framework: the delayed plasticity
(or viscoplasticity) theory originally proposed in [P63] (82).
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Since elastic-viscoplasticity is a trivial extension of standard elastic-plasticity and its
numerical implementation is very simple, its popularity is very large. Under suitable
simplifying hypotheses, for very slow perturbations (or for sufficiently small materi-
al characteristic times) the visco-plastic solution converges to the corresponding rate
independent elastic-plastic one and the same can be stated for the conditions for
mechanical instability (84).

When the delayed/rate dependent material response is due to coupled ther-
mo/hydro/chemo/mechanical processes (85), the material characteristic time is gov-
erned by the necessarily coupled processes taking place at the micro-scale. As far as
chemo/mechanical coupling is concerned, elastic-plastic constitutive relationships
are usually modified, by making yield function/plastic potential to be dependent, by
means of the definition of suitable state/hardening variables, on both accumulated
irreversible strains and chemical reactions.

Strain rate dependency is also observed when granular materials are subject to very
large strain rates or when effective stresses are negligible (86), that is when the so
called inertial number ([JFP06], [MiDO04]) is sufficiently large. In this case, accord-
ing to the strain rate time history, the material may experience a phase transition
from a solid-like to a fluid-like behaviour (“fluidization™) or viceversa (“reconsoli-
dation™).

2  Micro-inertial effects

When granular materials, even under dry conditions, are perturbed by the applica-
tion of external loads (creep tests), if micro-structural irreversible fabric rearrange-
ments take place, the material response is delayed and macroscopic irreversible
strains progressively increase with time. According to [dPI96] such a time depend-
ency is due to particle micro-inertia ([SV95]) and to a probabilistic evolution of the
microstructure from an initial stable configuration to the final one, passing through a
large number of intermediate fabric configurations.

To reproduce this material behaviour, the delayed plasticity theory proposed in
[P63], can be employed. According to this theory, strain rate tensor is decomposed
into an instantaneous/reversible and a delayed/irreversible part (e'ii]"). With respect
to standard plasticity theory, the consistency condition is abolished (implying that
the effective stress state can be either inside or outside the yield locus f (Figure 1))

and the flow rule is expressed as it follows:

LT ag
& =yP 20, 1)
being g the plastic potential, o;; the effective stress tensor, y a positive constitutive

fluidity parameter and @ the viscous nucleus. @ can be defined as the distance
(measured through a suitably defined mapping rule) between the state of stress and
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the yield locus position, but, in most of the cases, @ is a non-negative and increasing
function of f. Under this assumption, f may be interpreted as a scalar measure of
the probability of occurrence with time of fabric rearrangements and, consequently,
of the irreversible strain accumulation. In most of the cases & is assumed to be nil
when £<0, implying the existence of an elastic domain, but, in general, irreversible
strains may also be assumed to develop within the yield locus ([dPSZ07]). The di-
mensional fluidity (inverse of a viscosity) parameter y (generally coinciding with
t-1, being t, the material characteristic time) governs the strain rate: when y — o
the irreversible strain rate becomes infinite and the material response becomes in-
stantaneous. If the previously mentioned hypothesis of & definition is assumed,
when y — oo standard elastic-plasticity is recovered. As in standard -elastic-
plasticity, the yield locus may evolve with the accumulated irreversible strains ac-
cording to the hardening law, taking into account the influence of microstructural
rearrangement on the REV response. In case of creep tests, the hardening (Figure 1)
of the yield function is associated with a reduction in strain rates (primary creep),
whereas the softening (Figure 1) with an increase (tertiary creep).

Qs
State of
>0 stress

(decreasing

(increasing \strain rates)

P 2/
f N
ﬁ strain rates) .,
&

¥

Q\_
i
I3
'S
S
N
@

A3

Figure 1: Evolution of the yield function

3  Material progressive failure

In granular materials rate dependency is also observed when experimental tests at
large confining pressures are performed. In this case, in addition to the previously
cited micro-inertia effects, grain crushing may also take place ([YL93]). This is
associated with the evolution with time of microcracks naturally present in the
grains. Rate dependency associated with grain crushing may be described by em-
ploying models based on breakage mechanics ([EO7a], [EQ7b]), coinciding, as was
shown by [ZB17], with elastic-viscoplastic models, whose viscous nucleus is the
results of a suitable upscaling procedure.

An analogous process, named “subcritical crack growth” ([WFT80, A84, OA01,
OAO07]), may also occur in cemented/structured materials, where a dominant role is
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played by the crack evolution with time in the intergranular bonds. From ‘90s
(IGN93], [LN95], [NCTO03]) the mechanical behaviour of bonded geomaterials is
simulated by employing elastic-plastic constitutive relationships, in which yield
function and plastic potential are assumed to depend on additional hardening varia-
bles, related to the strength of intergranular bonds. Under the hypothesis of material
isotropy, these reduce to two (p,,, and p, of Figure 2), that in general are assumed to
be independent of pg, describing the size of the yield locus for the equivalent un-
bonded material. According to this approach, during either diagenesis or natural
cementation, both p,, and p, increase with time, result of chemo/mechanical pro-
cesses. In case of mechanical perturbations, both local damages and spatial propaga-
tion of microcracks in intergranular bonds may cause a progressive reduction in p,,
and p;. This process takes place with time and an alternative ([N82]) approach to
simulate such a time dependency is based on the introduction of a prescribed time
evolution of p,, and p,.

Yield function

.~” Unbonded “.
’ . Al
material '

pt ps pm

Figure 2: Yield function for cemented/bonded geomaterials \

4 Stability analysis for elastic-viscoplastic materials

As is well-known, when geomaterials are tested under constant effective loads
(for instance standard triaxial creep tests), strain rate may evolve with time (Figure
3): after the load increment, if the applied load is sufficiently high, an initial strain
deceleration (primary creep) may be followed by a constant strain rate branch (sec-
ondary creep) and by a severe strain acceleration (tertiary creep). This transition
cannot be simulated by employing incremental constitutive relationships and the
condition associated with the onset of instability, cannot be obtained neither by
means of bifurcation ([SV95]) nor controllability ([N94]) theories.

For elastic-viscoplastic materials, the onset of instability can be defined by em-
ploying the approach proposed in [PdP16], combining Lyapunov theory of stability
[L92] and the controllability theory [N94]. According to this approach, under quasi-
static (inertia contributions are neglected) mixed stress-strain control conditions, the
constitutive relationship can be written as it follows:
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X=AX+F )

being X a vector containing the rate of the response variables (changing according
to the test control), F a forcing term related with the controlled variables and their
first and second time derivative, whereas matrix A depends on both constitutive
relationship and controlled variable rates. In case of “generalized creep tests” (i.e.
when both rate and acceleration of controlled variables are nil), F=0 and A only
depends on the constitutive relationship. The eigenvalues of A can be employed to
analyse the stability: a stable response is obtained when all the eigenvalues are nega-
tive. Instability takes place when at least one eigenvalue becomes non-negative,
corresponding to the condition H < H,,, being H the hardening modulus and H, the
controllability modulus ([BDdP11]). This condition is coincident with the one of
elastic-plastic materials ([BDdP11]).

Strains

Primary  Secondary Tertiary
creep creep creep

Time

Figure 3: Transition from primary to tertiary creep.

5 Thermo/hydro/chemo/mechanical processes

Time dependency in geomaterials may also be due to thermo/hydro/chemo mechani-
cal processes, evident in case of clays, peats and naturally/artificially cemented soils.
Common in the literature is the use of constitutive modelling approaches, in which
the viscoplastic parameters, taking the hydro/chemo mechanical coupling into ac-
count, are phenomenologically calibrated ([ZC74], [AO82], [BK85], [DZ87],
[KS92]). The secondary compression of clays can also be interpreted as a hy-
dro/chemo/mechanical process [NAO1], consisting in the migration toward
macropores of water present the micropores (the adsorbed water and the water pre-
sent within the clay aggregates).

In case of cemented/bonded materials, by following the strategy already mentioned

in 83, the time factor may be conveniently introduced in the (generalized) hardening
functions, that become dependent not only on the accumulated irreversible strains
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but also on non-mechanical processes, such as hydro-chemical reactions taking
place at the microscopic scale. Since the yield function may evolve even without
mechanical perturbations (i.e. at a constant effective stress) and the evolution with
time of the yield locus is not necessarily associated with the development of irre-
versible strains, until yield locus shrinkage is not sufficiently severe any macroscop-
ic evidence of material degradation is absent. On the contrary, when hydro/chemical
damage is sufficiently severe, the yield function nullifies and a variation in effective
stresses and an accumulation of irreversible strains occur, governed by the fulfilment
of the consistency rule and by the time dependent hydro/chemo process ([GCH15],
[CdP16]).

An example of the use of this type of approach is in [CdP16], where the weathering
of calcarenites induced by the material saturation is studied. In this model, p,, and
p, are assumed to be correlated via a non-dimensional constant and to be related, by
employing a simplified upscaling procedure, to the intact material tensile strength &,
to the mean diameter of intergranular bonds ¥, evolving with time due to dissolution
of calcium carbonate into water inducing a change in a (normalized with respect to
the initial mass) calcite mass &, throughout a suitably defined non-dimensional mi-
cro to macro upscaling parameter X:

pe = XY (). ©)

In case of calcarenite, the intergranular bonds are made of calcite, and therefore the
evolution rule for & is derived from the rate of dissolution of calcium carbonate into
water solutions ([CH13]):

¢ =k, (€~ [Ca>2[C03T2) (1 + gel') 0

being K, a dissolution parameter, C an equilibrium constant, e,’fl the volumetric
plastic strains, [Ca?*] and [CO3~] are the ionic concentration values and ¢ a
chemo-mechanical coupling parameter, taking into consideration the increase in wet
surface due to micro cracks development within the intergranular bonds.

6 Response under large strain rates

Under quasi static conditions, the soil is able to sustain external loads by means
of a network of permanent contacts (“force chains”) developing among grains. In
this case the soil is characterized by a solid-like behaviour. On the contrary, when
the soil is subjected to fast deformations or the effective pressure is very low, this
force chains network becomes unstable and grains start colliding to each other (“col-
lisional regime”). In this second case the soil behaves like a fluid and any change in
strain rate may induce a change in both stress level and void ratio.
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To reproduce the steady state response of granular materials under both small and
large strain rates, is very common the employment of a simplified constitutive rela-
tionship known in literature as u — e — I rheology ([JFP06], [MiD04]), being u the
stress ratio, e the void index and I the inertial number, defined as: I = dé;+/p/p’,
being d and p the soil particle (average) size and density, £, the second invariant of
the deviatoric strain rate tensor and p’ the effective pressure. According to this con-
stitutive law, at steady state, a unique relationship among I, ¢ and e exists. This
constitutive relationship cannot capture some basic characteristic of granular materi-
al behaviour, such as the dependency of the u value on the Lode angle (6, Figure 4a,
[RAP19]) and the dependence of e on hoth £; and p'. In fact, in Figure 4b where
DEM results ([RdP19]) are reported, a reduction in I due to a decreasing &, is asso-
ciated, for sufficiently small values of I with a constant e value, whereas a reduction
in I due to a decreasing p' is related to a marked reduction in e.

® 0=0°,p'=150kPa + 0=60°, p'=150kPa
O 0=0°¢:=12 1/s & 0=60°, £=12 1/s
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Figure 4: DEM numerical results: a) u vs I and b) e vs I for triaxial compression
(6 = 0°) and extension (8 = 60°)

To overcome the limitations of the u —e —1 rheology, recently visco-
elastoplastic constitutive relationships, assuming an in parallel scheme (Figure 5,
[RAPV16], [RAP19], [VMdP20], [RMdP21], [MRdP21]) for the stress contributions
associated with the force chains (ai‘j.s) and the one associated with the collisional
regime (oy;), were proposed. crl.‘j.s is therefore calculated by using elastic plastic con-
stitutive relationships for granular materials, including the critical state theory. In the
perspective of the in parallel scheme, the critical state is a particular steady state,
occurring when the collisional contribution is negligible (quasi static conditions). o
is calculated by using kinetic theories for granular gases ([GD99], [BJ15]), accord-
ing to which collisional stresses depend on both &; and on a scalar state variable,
measuring the degree of agitation of grains (the ensemble average grain velocity
fluctuation about their mean velocity), usually named granular temperature (7). For
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small €, values both T and o;; are negligible. The stress is almost entirely carried by
force chains and the material behaves like a solid. On the contrary, for large &, val-
ues both T and o5 become dominant, while o;;" is negligible and the material has a
behaves like a fluid. In case of progressively increasing &; (“heating”), ai‘j.s progres-
sively decreases and a solid to fluid transition (fluidization) takes place, whereas for
progressively decreasing €; (“cooling”), o—i‘j.s progressively increases and a fluid to
solid transition (resolidification) takes placg

U

ol

Oij .

—
=0

Force chains contribution
T
L
Collisional contribution

Q
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Figure 5: In parallel scheme

7  Concluding remarks

Time and rate dependency of geomaterials is associated with different hy-
dro/chemo/mechanical processes taking place at the microscopic level. According to
the process governing the material response, different constitutive modelling ap-
proaches can be adopted. In this chapter the authors have presented different strate-
gies, each one interpretable as an extension of elastoplasticity, for theoretically cap-
turing and numerically simulating material time dependence. From the pioneering
works of the last century, nowadays the researchers are focused on the attempt of
justifying time dependent material mechanical response on the basis of suitable
upscaling approaches, capable not only of justifying the constitutive assumptions but
also of conceiving them.
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In recent times, much attention has been given in the computational geomechanics
community to those geotechnical problems in which geometric non-linearity plays an
important role. Notable examples are provided by the evaluation of pile bearing ca-
pacity, the modeling of subsidence phenomena associated to hydrocarbon extraction,
sinkhole formation, the evaluation of the effects of pile driving, the interpretation of
cone penetration tests and the modeling of slow slope deformations in presence of
significant modifications of the slope geometry. The need for robust and accurate
numerical modeling tools for analyzing this type of problems has led to the develop-
ment of innovative material point—based numerical methods, such as SPH, MPM and
PFEM, as an alternative to the classical FEM. In both FEM and material point—based
approaches, a fundamental issue to be addressed is the extension of existing inelastic
constitutive theories to the finite deformation regime. This chapter provides a review
of two different and widely used approaches to finite deformation plasticity. The first
approach is based on an ad-hoc additive split of the rate of deformation tensor into an
elastic and a plastic part. In this case, objective stress rates are employed to address
the issue of objectivity of the material response. The second approach is based on
the assumptions of: i) multiplicative decomposition of the deformation gradient into
an elastic and a plastic part, and ii) characterization of the elastic response of the
material by postulating the existence of a suitable free energy function.

1 Introduction

Non-linearity is a very important feature of the behavior of most geotechnical systems
and a particular challenging one when the numerical modeling of the performance of
such systems under the design loads is required by the design demands.

Historically, the research activities in the characterization of non-linearity in geotech-
nical engineering have been focused on the modeling of material non-linearity, emerg-
ing from the non-linear, inelastic and history—dependent behavior of soils and rocks.
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Significant development in the constitutive modeling of soils within the framework of
the theory of plasticity or of other incrementally non-linear theories such as the theory
of hypoplasticity have been achieved in the last decades. An overview of these devel-
opments is provided by the chapters by Tamagnini and Oliynyk [TO21] and Masin
[Mas21] in this volume.

In recent years, however, the attention of researchers working in the field of computa-
tional geomechanics has been shifted from material to geometric non—linearity, which
may play a major role in all those situations in which the deformed configuration of
the soil body differs significantly from initial (reference) configuration. This may oc-
cur due to either large deformations or to large rotations, even in presence of relatively
small strains.

Early interest in geometric non-linearity has been motivated by the study of one—
dimensional consolidation problems in very soft soils or slurries. One—dimensional
finite deformation theories of consolidation have been proposed since the early ‘60,
see, e.g., [GEH67, GSC81] and references therein. However, it is only with the parallel
developments of the Finite Element method that the multidimensional analysis of non—
linear geotechnical problems addressing the issue of geometric non-linearity from the
general principles of continuum mechanics became possible, see e.g., [CBS79, BA9S,
BTA98].

Besides the prediction of time—dependent deformations and displacements of soft, sat-
urated soils subjected to time—dependent loading conditions, geometric non—linearity
may play an important role in other geotechnical engineering applications. Notable
examples are provided by the evaluation of pile bearing capacity in offshore platforms
design [McL88, KL88]; the modeling of subsidence phenomena associated to hydro-
carbon extraction [PJB88] and sinkhole formation [MCG?20]; the study of the effects
of pile driving [JBK™18]; the interpretation of cone penetration tests under undrained
or partially drained conditions [CS17, MACG18, MG21, OCT21]; the modeling of
slow slope deformations in presence of significant modifications of the slope geome-
try [SAY ™16, CPT19, BN21].

Most of these applications motivated the development of a new class of numerical
methods — broadly classifiable as material point—based methods — to circumvent the
problems experienced with the classical or ALE FE methods in presence of severe
mesh distortions. Among these, we recall the Smoothed Particle Hydrodynamics
(SPH) method, see [BN21] and references therein; the Material Point Method, see
[SCS94, BWV11], and the Particle Finite Element Method (PFEM), see [OCW 107,
COS13, MCAG17, MACGLIT7].

In all the aforementioned applications, a fundamental point to be addressed is how to
extend existing constitutive theories developed for infinitesimal deformations to the
finite strain regime. The scope of this chapter is to illustrate the different approaches
proposed in the literature to address this point, focusing on the mathematical theory of
plasticity. After a short summary of the scheme of notation adopted (Sect. 2), to make
the exposition sufficiently self-contained, some basic concepts of non—linear contin-

ALERT Doctoral School 2021



Oliynyk & Tamagnini 169

uum mechanics — including the fundamental issue of objectivity with respect to su-
perposed rigid body motions — are briefly recalled in Sect. 3. The approaches to finite
deformation plasticity based on an ad—hoc decomposition of the rate of deformation
tensors — still widely used in practice — are discussed in Sect. 4. The fundamentals of
the finite deformation plasticity theories based on the multiplicative split of the defor-
mation gradient and on the existence of a free energy function for the characterization
of the elastic response of the material are presented in detail in Sect. 5. Finally, Sect. 6
provides some concluding remarks concerning the relative merits and drawbacks of
the two approaches.

2 Notation

In the following, all stresses and stress—related quantities are effective, unless oth-
erwise stated. The sign convention of continuum mechanics (traction and exten-
sion positive) is adopted throughout. Both direct and index notations will be used
to represent vector and tensor quantities according to convenience. In direct nota-
tion, vectors and second—order tensors will be represented by boldface italic charac-
ters; upper— and lowercase blackboard bold fonts — as for example C¢ and c® — will
be used for fourth—order tensors. Following standard practice, for any two vectors
v,w € R3, the dot product is defined as: v - w := wv;w;, and the dyadic prod-
uct as: [v ® wl;; := v;w;. Accordingly, for any two second—order tensors X,Y,
X Y = X;;Y; and [X ® Y;jm = X;;Y. The quantity | X[ == VX - X
denotes the Euclidean norm of the second order tensor X.

3 Preliminaries: basic kinematic concepts

3.1 Deformation

Let B € R3 be the reference configuration of the continuous body, and let X denote
the position of a macroscopic material point in B. A smooth deformation is a one—to—
one mapping ¢ : B — S € R? providing the position & of the material point X in
the current configuration S:
T = p(X) 1

see Fig. 1.
The deformation gradient is the gradient of the deformation ¢:

FX) = 22 _vxe(x) )

~a9x x$

The local condition of impenetrability of matter requires that:

J(X) =det(F) >0 3)
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Figure 1: Reference configuration, current configuration and deformation mapping.

The scalar J is known as Jacobian determinant. According to the polar decomposition
theorem, the deformation gradient can be decomposed as:

F=RU=VR @

in which R is a proper orthogonal tensor, called rotation tensor, while U and V'
are symmetric, positive—definite tensors called right and left stretch tensors, respec-
tively. These two tensors measure locally the changes in volume and shape of the
body. Frequently, in place of U and V/, the following alternative deformation tensors
are adopted:

C =F'F b:=FFT (52)
E::%(C—l) e::%(l—b_l) (5b)

The tensors C' and b are called right and left Cauchy—Green deformation tensors,
while E and e are known as the Green and Almansi strain tensors.

3.2 Motion

A motion of a continuum body is a one—parameter family of configurations, indexed
by time. If we indicate with I := [0, T'] the time interval of interest, for each ¢ € I the

mapping: )
¢, B S, e R? ©6)

is a deformation which maps the reference configuration B onto the configuration S;
at time ¢. Consequently, we can write:

T =, (X) = p(X,1) (7
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for the position of the material point X € B at time t. We define trajectory of the
material point X the mapping:

tel— X
Sot( )X:ﬁxed

i.e., the set of all points  occupied by the material point X as ¢t varies within the
interval L.

The material velocity, denoted by V(X ,t)!, is the time derivative of the motion:
Ip(X,t)
ot

The material velocity is tangent to the trajectory of the material point X at all times .
Similarly, the material acceleration, A(X,t), is defined as the time derivative of the
material velocity:

V(X,t) = ®)

IV(X,t)  d%p(X,1) ©)
ot ot?

The material velocity and acceleration are vector fields defined on . Since X appears

explicitly as an independent variable, V' and A provide the so—called Lagrangian

description of the motion.

A(X,t) =

The spatial or Eulerian description of the motion is obtained from the material de-
scription by changing the independent variable X (material coordinates) to the posi-
tion vector x in the Euclidean space. Accordingly, we define the spatial velocity and
acceleration as:

v:i=Vop,! a:=Aop;? (10)

where the symbol (o) denotes the function composition, and X = ¢~ *(x,t) is the
inverse deformation mapping. The fact that ¢ is invertible is guaranteed by the condi-
tion (3), applied to J; = det(Vx ;).

From eq. (2), the rate of change of the deformation gradient is given by:

OF  %p, OV
o T axol ax - VXV (1

where V x V is the material velocity gradient. By the chain rule,

0 dp
VXV:aiX('vo(’ot):V'via)(t =VovF (12)
Combining eqs. (11) and (12), we arrive at the following expression for the spatial
velocity gradient Vv:
— ﬁi F!
ot
Note that, to follow the standard notation of continuum mechanics, the same symbol is used for the

material velocity and the left stretch tensor. The context will make clear which of these two object is being
considered.

Vo 13)
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The symmetric part of Vv, denoted by d, is called the spatial rate of deformation
tensor, and its antisymmetric part, denoted by w, is called the spin tensor:

d:= ¢ (Vo+ Vo7 w = (Vo - Vo) (14)

Combining eqs. (5a)1, (12) and (14);, we can obtain the following relation between
the time rate of C and d:

st a2\ BT

10C 1 (0F" . .z OF
ot ot

) = %FT (Vo' +Vv) F=F"dF (15

L(oc
2\ Ot
is known as material rate of deformation tensor. Eq. (15) indicates that the spatial rate

of deformation is the push—forward to the spatial configuration of the material rate of
deformation.

The quantity:

By defining rotated configuration the local configuration obtained by applying the
rotation tensor R to the neighborhood O, of x € S;, we can define the rotated rate
of deformation tensor D as follows:

D(X,t)=R" (doy,) R (16)
The tensor D is a material field, and can be considered the pull-back of d to B by the

rotation tensor only.

3.3 Stress measures

The usual measure of stress, the symmetric Cauchy stress tensor o, is a spatial field
defined on the current configuration of the body. Another widely used spatial measure
of stress in finite deformations is the Kirchhoff stress tensor T, defined as:

Ti=Jop; o (17)

In writing the balance of momentum in the material setting, a different material mea-
sure of stress — the first Piola—Kirchhoff stress tensor P — emerges naturally to quan-
tify the effect of contact forces. The first Piola—Kirchhoff stress tensor is related to o
and 7 by the relations:

P=(top)F T =Joop,)F T (18)

The first Piola—Kirchhoff stress tensor is a two—point tensor, and for this reason, its
symmetry properties are given by:

PFT = Fp? (19)
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The second Piola—Kirchhoff stress tensor, defined as:
S=F'P=FYrop)FT=JF Y oop,)F " (20)

is a material stress measure whose symmetry is inherited from the symmetry of the
Cauchy stress tensor. It is worth noting that, in geometrical terms, the second Piola—
Kirchhoff stress tensor can be considered the pull-back of the spatial Kirchhoff stress
tensor to the reference configuration, see eq. (20)s.

Finally, another useful symmetric material stress measure is provided by the rotated
stress tensor X2, defined as:

S=R'(top,)R (21)

All the stress measures introduced in this section are power—conjugated to the different
rate of deformation measures introduced in Sect. 3.2. Indicating with P the stress
power per unit reference volume, we have:

P:Ja-d:T-d:P~F:S~<;C'>:E~D (22)

where the superposed dot denotes the derivation with respect to time following the
motion of the material point (material time derivative).

3.4 Objectivity and objective stress rates

The notion of objectivity is one of the fundamental principle of mechanics and plays
a major role in the definition of constitutive equations in rate—form in the finite defor-
mation setting.

Let ¢ : B x I — & be a given motion, with & = ¢ (X, t) be the position in S of the
material point X at time ¢. Consider a superposed rigid body motion which carries x
into =T by the map:

xSzt =c(t)+Qt)r e R? (23)

where c(t) is a time—dependent translation and Q(¢) is a time—dependent proper or-
thogonal transformation which defines a rigid rotation. The superposed motion is rigid
as it preserves the distance between any two points x; and @2 in S;.

A spatial tensor field is said to transform objectively under the superposed rigid body
motion of eq. (23) if it transforms according to the standard rules of tensor analysis
[SHO8].

Applying the superposed rigid body motion (23) to the motion (X, t) we have:
zt =" (X 1) =c(t) + Q(t)p(X. ) (24)
and thus the deformation gradient transforms as:

Fr =Vxep" =QH)F(X,1) (25)
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This allows to obtain the following transformations for the spatial velocity gradient,
rate of deformation tensor and spin tensor:

Vot = F(FH ™ = QveQ” + QQ” (26)
dt =QdQ" 27)
w' = QuwQ" +QQ" (28)

Due to the presence of the antisymmetric term QQT on the RHS of egs. (26) and (28),
neither Vv nor w transforms objectively. On the contrary, the rate of deformation
tensor d does transform objectively.

Assuming that the Cauchy stress tensor is objective, and thus transforms as:
ot = QO'QT (29)

it is simple to show that its material time derivative o does not transform objectively.
In fact, taking the material time derivative of both sides of eq. (29), one obtains:

&t = 0oQ” + Q5QT + Qr Q)"
—QeQ"+0Q 0" +0tQQ"
=QQ" +QQ"st — 0T QQ" (30)

which is clearly a non—objective transformation. Following the same lines, it is triv-
ial to show that the material time rate of the Kirchhoff stress tensor 7 is also non—
objective.

The importance of this result stems from the fact that a superimposed rigid body mo-
tion on a body occupying the spatial position S; would give rise to a change in & or 7
which is not associated to any deformation. Therefore, constitutive equations in rate—
form suitable for finite deformations must be constructed linking an objective measure
of rate of deformation with an objective measure of the stress rate.

Objective stress rates are modified material time derivatives of Cauchy or Kirchhoff
stress tensors constructed to restore objectivity. Many such rates have been proposed
in the literature but, as pointed out by Simo and Hughes [SH98], all of them are
particular cases of a fundamental geometric object referred to as the Lie derivative. In
particular, the Lie derivative of the Kirchhoff stress tensor is defined as:

2= {rg;

[F’l(T o sot)F’T} FT} 0wt

R

where the last result is a consequence of eq. (20). The objectivity of the Lie derivative
of 7 derives from the fact that its calculation requires the following steps: i) first, the
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tensor 7 is pulled back to the reference configuration, where the resulting object — the
second Piola—Kirchhoff stress .S — is not affected by rigid body motions superimposed
on the spatial configuration; ii) then, the time derivative of S is calculated; and, iii) the
result is pushed forward to the spatial configuration to transform it in a spatial object.

Taking into account that F o —F'FF~'itis relatively easy to show that:
L] =1 — (Vo)T — 7(Vo)T (32)

Another widely used objective stress rate is the so—called Jaumann—Zaremba stress
rate, which, for the Kirchhoff stress tensor reads:

¥: T —wT +TW (33)

This is essentially a corotated derivative relative to spatial axes rotating with instanta-
neous angular velocity equal to w.

4 Finite deformation plasticity based on the additive
split of the deformation gradient

Early applications of rate—independent plasticity to finite deformations have been de-
veloped starting from ad—hoc extensions of the fundamental assumptions of infinites-
imal plasticity. In particular, models of this class are all based on a additive decompo-
sition of the rate of deformation tensors. Models formulated in the spatial description
assume that:

d=d°+d’ (34)
where d° and d” are the elastic and plastic parts of the spatial rate of deformation d.
Models formulated in the rotated description (Sect. 3.2) assume that:

D = D¢+ D? (35)

in which D¢ and DP? are the elastic and plastic parts of the rotated rate of deformation
D. In the following, the basic assumptions and the resulting constitutive equations for
these two classes of finite deformation plasticity model will be briefly reviewed.

4.1 Formulation in the spatial description

In models of this class, the elastic response is characterized by a hypoelastic constitu-
tive equation in rate—form of the type:

T=a"d* =a“(d - d) (36)

Due to the principle of material frame indifference [Tru56], the hypoelastic tangent
stiffness tensor a® must be an isotropic tensor function of 7. In geomechanics, this is
usually accomplished by adopting the following expression for a®:

a® = Ki(P)1 ® 1+ 2G4(P) (IS - ;1®1> (37)
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where P = tr 7/3 is the mean Kirchhoff stress, 1 is the second—order identity tensor
and I°® is the symmetric fourth—order identity tensor.

As with the infinitesimal theory, irreversibility is introduced by assuming that the state
of the material (7, ¢) must belong to the convex set:

E:={(r.q) | /(r.q9) <0} (39)

defined in terms of a yield function f(7,q), where q is a set of internal (scalar or
tensorial) variables which account for the effects of the previous loading history.

The plastic rate of deformation is prescribed, as in infinitesimal plasticity, by the fol-
lowing flow rule:

.0
& =5 52(7,q) (39)

in which g(o, q) is a prescribed plastic potential function, chosen in order to match
available experimental observations, and + is the plastic multiplier. The yield function
and the plastic multiplier are subjected to the Kuhn—Tucker complementarity condi-
tions:

720 fr,q) <0 Yf(r.q) =0 (40)

stating that plastic flow may occur only for stress states on the yield surface (yield
states).

Indicating with the symbol g;, € g the scalar internal variables and with the symbol
., € g the tensorial internal variables, so that ¢ = {g¢x, ., }, the evolution equations
for the components of g are given by:

ik = 3 hi(T,q) (41)
St = 4 b (T, Q) (42)

where hj and h,, are suitable hardening functions. Note that, differently from in-
finitesimal plasticity, the hardening law for the tensorial internal variables must be
formulated in terms of their objective rates — the Jaumann rate in the case of eq. (42).

The consistency condition for plastic loading processes ( f = 0) allows to derive the
following expression for the plastic multiplier:

. 1 /of
7_Kp<87-'ad> 3
where:
_0f _.0g __of, of
Kp = . a or + Hp >0 Hp = an I, 60!m h,, 44)
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The principle of material frame indifference poses the following restrictions on the
scalar functions f and g. For any proper orthogonal transformation (), we must have:

fQTQ", Qo Q" i) = f(7, tm, q1) (45)
9(QTQ",Qan Q" 1) = g(7, ctm, q1) (46)
The consequences of egs. (45) and (46) are discussed in detail in [BD84, Boe87].

Applications of this approach to the formulation of finite deformation plasticity mod-
els for metals are reported, e.g., in the works of [ND81, POP83], while applications to
geomaterials are provided, e.g., by [Pre80, MSZ95].

The main advantage of this formulation of finite deformation plasticity lies in its sim-
plicity. The main constitutive functions of a specific model can be easily derived
with minimal modifications directly from the corresponding infinitesimal plasticity
counterpart. The most important limitation lies in the characterization of the elas-
tic response given by eq. (36). Since d° need not be the rate of deformation of any
“elastic” strain measure, the elastic constitutive equation (36) cannot be related to any
elastic potential function, and it is therefore hypoelastic. This limits the applicability
of this class of models to “small” elastic strains. Moreover, in computational appli-
cations, the hypoelastic constitutive equation (36) has to be integrated numerically
via incrementally objective integration algorithms, whose formulation is by no means
trivial.

4.2 Formulation in the rotated description

A possible alternative to the plasticity formulation in the spatial description is obtained
by recasting the constitutive functions and the evolution laws in the rotated description
of Sect. 3.2. In this case, the structure of the theory is similar to that of the spatial
formulation of Sect. 4.1, but the relevant state variables and the total deformation rate
are all expressed in the rotated configuration:

>=RT'rR A, = RYa,R D =RYdR (47)

In the rotated configuration, the scalar internal variables g remain unaffected. The
additive decomposition of eq. (35) is adopted for the rotated rate of deformation.

The elastic response of the material is characterized by a hypoelastic constitutive equa-
tion in rate—form of the type:

> = A°D°= A°(D — D") (48)

where the hypoelastic tangent stiffness tensor /A is related to the hypoelastic tangent
stiffness in the spatial setting, a®, by the transformation:

aju = RiaRjpRec RipAfygep (49)
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Irreversibility of the material response is introduced by assuming that the state of the
material (X, gx, A,,,) must belong to the convex set:

Ei={(Z a0 An) | F (5, q, An) <0} (50)

defined in terms of a yield function F(3, gx, A, ).

The plastic rate of deformation is prescribed by the following flow rule:

oG
7%
in which G(3, qx, A,,) is a prescribed plastic potential function. The yield function

and the plastic multiplier are subjected to the Kuhn—-Tucker complementarity condi-
tions:

D? = (27Qk>Am> (5])

¥>0 F(2,q5, Am) <0 YF(%, gk, Am) =0 (52)
stating that plastic flow may occur only for stress states on the yield surface.

The evolution equations for the (scalar and tensorial) internal variables are given by
the following hardening laws:

Qk = "YHk(quk,Am) (53)
A =Y H (2, g, Ay) (54)

where Hj, and H,, are suitable hardening functions for the rotated description. Note
that, in this case, the time derivatives appearing on the LHS of eqs. (48) and (54) are
standard material time derivatives, as the tensors X and A,,, are material objects.

The consistency condition for plastic loading processes (F = 0) allows to derive the
following expression for the plastic multiplier:

1 /OF
Y= —( — - A°D
¥ K, <a§: > (55)
where:
F F F
K, : 4 -Ae%+HP>0 H, = —8—H 0 H,, (56)

o2 oz g " 9A,,

The formulation in the rotated description appears to have been favored by a number
of researchers in metal plasticity, e.g., [Die79, JB84]. As a matter of fact, it is used
in a number of large scale simulation codes, such as, for example ABAQUS Standard
[HKS16].

This approach presents the same limitation of the formulation based on the spatial
description: since D need not be the rate of deformation of any “elastic” strain mea-
sure, the elastic constitutive equation (48) cannot be related to any elastic potential
function, and it is therefore hypoelastic. In addition, the implementation of the rotated
description approach in Finite Element procedures is computationally quite involved
and requires repeated use of the polar decomposition theorem, see, e.g., [SH98].
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5 Finite deformation multiplicative plasticity

In contrast with the formulations outlined in the previous Sect. 4, the formulation
of finite deformation plasticity based on the multiplicative decomposition of the de-
formation gradient allows for a proper definition of elastic and plastic deformation
measures. As such, multiplicative plasticity is amenable to a rigorous thermodynam-
ical treatment, leading to a hyperelastic characterization of the reversible response of
the material, as well as to associative evolution laws for the plastic deformation and
the internal variables.

In the following Sects. 5.1-5.5, we will present in detail the finite deformation the-
ory of multiplicative hyperplasticity proposed by Oliynyk and Tamagnini [OT20] as
an extension of the infinitesimal theory of hyperplasticity as defined by Houlsby and
Puzrin [HPO7], in order to provide a clear motivation for the associative flow rules and
hardening law to be used in finite kinematics. In Sect. 5.6, we will extend the the-
ory to the general non—associative case, which encompasses most of the constitutive
models of this class developed for soils. The presentation of the theory will be limited
to the particular case of isotropic materials, for which the internal variables are all
scalars. This allows to keep the mathematical structure of the constitutive equations
to an acceptable level of complexity, while maintaining a sufficient level of general-
ity to encompass most of the relevant constitutive models for geomaterials developed
within this theory. The reader is referred to, e.g., [MS03, BRL19] for the extension of
multiplicative plasticity to the case of anisotropic materials.

5.1 Kinematics

The key point in finite deformation multiplicative plasticity is the assumption of a
product decomposition of the deformation gradient F' into a reversible (elastic) part,
F°, and an irreversible (plastic) part, F'*:

F = F°F? (57)
see, e.g., [Lee68, SHIS, Borl3].

An essential feature of the product decomposition is the introduction of a local inter-
mediate configuration, relative to which the elastic response of the material is defined,
see Fig. 2. From a phenomenological point of view, (F¢)~! can be interpreted as the
local deformation which brings the neighborhood O, of x to the neighborhood O¢ of
& when the material is unloaded back to the reference stress state. The local configu-
rations for each material point of B are, in general, not compatible, in the sense that
they generally “do not fit together” to produce an intermediate configuration for the
entire body.

The decomposition (57) is not unique, as an arbitrary rigid body rotation can be super-
posed on the intermediate configuration without altering the total deformation gradi-
ent. However, in the particular case of isotropic materials, the orientation of the local
intermediate configuration is not relevant.
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d(X1)

e
O

Figure 2: Multiplicative decomposition and intermediate configuration.

The following symmetric strain tensors for elastic and plastic deformations can be
defined from F'© and F:

b¢ := FF°T C? .= FPTE? (58)

The first tensor is known as left elastic Cauchy—Green tensor and is a spatial measure
of the elastic deformation. The second tensor is known as right plastic Cauchy—Green
tensor and is a material measure of the plastic deformation. They are linked by the
following relation:

b = FCP'FT (59)

i.e., b is the push—forward to the spatial configuration of the inverse of C?.

The time rate of the elastic left Cauchy—Green tensor is provided by:
b" = 1b° + b°1T + Z,[b°] (60)

where we have indicated with the symbol I the spatial velocity gradient Vv, see
eq. (13), and

L] =F {jt (cp—l)} F”

is the Lie derivative of the elastic left Cauchy—Green tensor.

Mimicking the relation (13) for the spatial velocity gradient, we define the elastic and
plastic velocity gradients as follows:

1°:= F'Fe? L’ :=F'Fr! (61)

While 1¢ is a spatial tensor, L' isan object defined in the intermediate configuration.
To obtain the spatial counterpart of L" we consider its push—forward to the spatial
configuration

I» = F°L"F! (62)
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and define it spatial plastic velocity gradient. It is easy to show that, with the above
definitions:
l=1°+0 (63)

i.e., the multiplicative decomposition of the deformation gradient is consistent with an
additive split of the rate of deformation tensor, provided that I° and I” are defined as
in egs. (61); and (62).

It is also possible to show that the following relation holds between ., [b°] and I”:
Z,[b°] = =2 sym (I"b°) (64)

see [Sim98].

From the spatial elastic and plastic velocity gradients, I° and I?, the elastic and plastic
rates of deformation and spins can be defined:

d° ;= sym (I°) w® := skw (1%) (65)
d? :=sym (I7) w? = skw (I7) (66)

In order to construct a plasticity theory, both components of the plastic velocity gradi-
ent need to be specified by suitable flow rules. In the following, we will assume that
the plastic spin is always equal to zero, and I” = dP, as in [Sim98].

5.2 Free energy function

Consistent with the assumption of isotropy, let the set .7 of state variables be given
by:
= {b%, a}

where o = {a1, g, ..., oy, } is a vector containing the m scalar, strain-like internal
variables accounting for the effects of deformation history. Assuming that the elastic
response is not affected by microstructural changes, the following free energy function
per unit reference volume can be adopted:

P(F) = P°(b%) + 4P () (67)

in which the contributions of the elastic deformation and of the internal variables are
fully uncoupled. As a consequence of the principle of material frame indifference, the
function ¢ must depend on b® only through its invariants (i.e., the principal elastic
stretches A%, eigenvalues of F'©).

The material time rate of the free energy function v is given by:

P OY° e OYP 0P e OYP
Y=o Y T e YT P Ta ™ 68)
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Taking into account eqgs. (60) and (64), and considering that, due to the symmetry of
01 /0b° and the fact that b and 9tp/9b° commute:

% e\ __ &Pe DL€
abe Sym (d b ) - abe (d b )
67/} e 61/} eT\ __ ‘91/J e
o7 10+ g - (v17) = ( ob°" ) ¢
we obtain: " 8¢e
h — e dP — % . 6
P = ( 95° b ) d— <2 95° ) d X & (69)
where: 81/)”
X="5q (70)

is the so—called generalized stress, work—conjugated to c.

5.3 Dissipation function

Let: )
D :=7-d— (71)

be the dissipation function of the material per unit reference volume for isothermal
processes. The second principle of thermodynamics requires that & be non—negative:

T-d—v¢>0

Inserting eq. (69) in eq. (71), we have:

Ew € Ew e /4 J— o
= . . . >
9 (7- b"b) d+2 beb d’"+x-a>0 (72)

Since inequality (72) must hold for any non—dissipative process (for which d” = 0,
& = 0) a standard argument leads to the following hyperelastic constitutive equation:

5 OV e
73
abe ( )
and to the reduced dissipation inequality:
D=1-d+X- >0 (74)

5.4 Yield function and evolution equations

Under the assumption of rate—independence for the material response, the dissipation
function 2 must be a homogeneous function of degree one in the fluxes (d?, ¢).
Euler’s theorem for homogeneous functions then requires that:

0D W 0T
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where the two quantities:

09 09

Xr = 5qp X~ 54 (76)

are defined generalized dissipative stresses. Comparing eqs. (74) and (75) we deduce
the following equality:

X, —7)-d"+(x—X) &=0 (77)

which is trivially satisfied if Ziegler’s orthogonality conditions [Zie83, HPO7] are as-
sumed:

X, =T X=X (78)

Eqgs. (78) are sufficient conditions for eq. (77) to hold, but not necessary ones. Ziegler’s
orthogonality conditions must be considered as a (weak) restrictive constitutive as-
sumption, yet compatible with realistic descriptions of many classes of granular mate-
rials, see, e.g., [CH97, HPO7]. When egs. (78) hold, egs. (76) represent the dual flow
rules for the material, linking the conjugates state variables (7, 7) to the plastic fluxes
(dP, &) when the material is at yield (2 > 0).

The classical associative flow rule can be obtained by observing that the homogene-
ity of degree one of the dissipation function implies that the (degenerate) Legendre
transform of & provides the yield function in stress space:

where the non—negative scalar quantity < multiplying f plays the role of the plastic
multiplier. The set:

E:={(r.x) | f(r,%) <0}

is the elastic domain of the material, where the plastic multiplier is zero and all the
processes are non—dissipative (d” = 0, & = 0). The boundary of E:

OE := {(7-7Y) ‘ f(T’Y) = O}

is the yield surface, on which 4 may be positive and irreversible processes may occur.
Note that the vector x plays the role of a stress—like internal variable, linked to the
vector of the strain—like internal variables a by the constitutive equation (70).

From eq. (79), a standard argument provides the associative flow rule and hardening
law for d” and ¢

af

.
& =55 (802)
Q=4 % (80b)
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Eq. (64) and the flow rule (80a) provide the following expression for the Lie derivative
of b° consistent with the assumed yield function:

Z,[b°] = —2sym (dPb°) = —2% sym (((;);f_be) (81)

The corresponding evolution equation for the elastic left Cauchy—Green tensor is then
given by:
of
ZJ pe
or
In the RHS of eq. (82) the isotropy of the yield function and of the elastic constitutive

equation allow to replace the term sym {(0f/07)b°} with (0 f/0T)b, since Of /0T
and b° commute.

b =1b° + b1 — 274 (82)

5.5 Constitutive equations in rate—form

By a pull-back/push—forward operation to the intermediate configuration, the elastic
constitutive equation (73) can be recast in the alternative format:
e

T=2F°—_F°T (83)
aC

where C° := F°TF*° is the elastic right Cauchy—-Green tensor, and ¢¢(C°) =
¥e(b%) = ¥¢(\4) due to material isotropy.

Taking the material time derivative of this last expression we obtain, after some alge-
bra, the following constitutive equation in rate—form:

=17 + 717 + cd° (84)
where:
621/_18

IV 85
0C 4p0Ccp

e _ e e e e e e _
Cijkl = CABCDFiAFjBFkCED Chpep =

Noting that I° = d° + w® = d° + w and recalling the definition of the Jaumann
objective rate of Kirchhoff stress of eq. (33), eq. (84) transforms into:

Xza%d—dﬁzwf(d—ﬁgf> (86)
T
where:

az?jkl = (ijk:l + Tik(sjl + Til(sjk: (87)

For the stress—like internal variables %, eq. (70) and the associative hardening law
(80b) provide the following evolution equation:

. . af . 0%y
_ _ATHP D .
X =—7H Ix with HP .= 3 3 (88)
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Enforcing the consistency condition for plastic processes, we finally obtain the ex-
pression for the plastic multiplier:

_ 1L Jor .
i= ¢ (55 aca) (59)
in which: P P P o
_ OF 0F O w0l (90)

= a
P or or  Ox ox
The elastoplastic constitutive equation in rate—form then reads

V_ oep v _ge_ L (ne0] 0f
T =ad a a , (a 5r ® aaT ©n

where a®? is the elastoplastic continuum tangent stiffness of the material. This re-
sults coincides with the one provided by [Sim98], Ch. III, Sect. 38, for multiplicative
associative plasticity, generalized to multiple plastic mechanisms.

5.6 Generalization to non-associativity

In many circumstances the assumption of associative plastic flow for both the plas-
tic rate of deformation and the stress—like internal variables could be too restrictive
and not suitable to reproduce some important aspects of the mechanical response of
granular materials. Under such circumstances, a phenomenological extension of the
results presented in Sect. 5 can be obtained by introducing ad—hoc, non—associative
flow rules for the plastic flow variables. Their evolution equations then take the form:

. Jg
/2
d’ =7 9 (1,9) (92a)
g=7h(r,q) (92b)

where the scalar function g is the plastic potential and the function h defines the so—
called hardening law of the material. In egs. (92) the symbol g has been used in place
of x for the stress—like internal variables to stress the fact that they are generally not
associated to any free energy function.

As in the associative case, the consistency condition yields the following expression
for the plastic multiplier:

.1 of .
- <6T a d> ©3)
in which: of 9 of
oo 91 %9 9
K, = 5r a or g h>0 94)

The rate form of the constitutive equation in the spatial setting is still given by eq. (91)
but the elastoplastic tangent stiffness now reads:

a® —at - L (aeag) ® (aeaf> (95)
K, or or
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The formulation of multiplicative plasticity within the framework of the theory of
hyperplasticity is relatively recent. It is due to Oliynyk and Tamagnini, [OT20], who
adopted this approach to extend to the finite deformation setting a breakage mechanics
model for cemented granular materials [Ten15]. The applications of this approach in
its non—associative form date back to the pioneering works of Simo and Meschke
[SM93] and Borja and Tamagnini [BT98] in the early ‘90. Since then, a number
of finite deformation plasticity models for geomaterials have been proposed within
this framework, see, e.g., [CAS98, JRS01, SSS02, RW06, MCAG17, BB18§, BRL19,
MCC™19, OCT21].

6 Concluding remarks

In this chapter, two widely used alternative approaches to finite deformation plasticity
have been presented in detail. The main advantage of the formulation based on the
additive split of the rate of deformation tensor is in its simplicity. With this approach,
any existing infinitesimal plasticity model can be easily adapted to finite deformations.
The main drawback of this approach is in the hypoelastic nature of the elastic consti-
tutive equation, which may give rise to physically unrealistic behavior under repeated
loading cycles and actually limits the applicability of this class of models to the case
of “small” elastic deformations. This aspect of the formulation has also important
computational implications. In fact, in classical elastic predictor—plastic corrector im-
plicit stress—point algorithms, the state update during the “elastic” predictor step is
by no means trivial, since incrementally objective algorithms, as defined by Hughes
and Winget [HW80], need to be employed to prevent integration errors in presence of
finite rotations, see [SH98].

Plasticity models based on the assumption of multiplicative split of the deformation
gradient circumvent completely this issue by relying on a hyperelastic characteriza-
tion of the reversible response of the material which allows for arbitrarily large elastic
deformations. In addition, the evolution equations for the plastic rate of deforma-
tion and the internal variables can be derived rigorously from the basic principles
of hyperplasticity theory [HPO7]. Finally the existence of a one—to—one relation be-
tween the relevant stress and elastic deformation measures makes it possible to for-
mulate the evolution problem using the elastic deformation as the primary state vari-
able, so that the elastic predictor stage reduces to a trivial kinematic update, see, e.g.,
[BT98, OT20]. The main disadvantages of the multiplicative plasticity approach in its
applications to geomechanics are the mathematical complexity associated to the treat-
ment of anisotropic behavior and the proper choice of a suitable free energy function
capable of reproducing the observed elastic behavior of the soil.
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Numerical implementation of elastoplastic
models in the Finite Element Method

Claudio Tamagnini®, Kateryna Oliynyk®®

) University of Perugia, Italy
Y University of Dundee, UK

This chapter presents an overview of some of the most widely used numerical proce-
dures for the implementation of elastoplastic constitutive models in non—linear Finite
Element codes. The first part of the chapter is devoted to the formulation of the evo-
lution equations and the discussion of the stress—point algorithms for infinitesimal
plasticity. The second part focuses on the evolution equations of finite deformation
multiplicative plasticity and the corresponding stress—point algorithms. Both the im-
plicit Backward Euler method — based on a two—stage procedure with an elastic pre-
dictor problem and a plastic corrector problem — and explicit adaptive schemes with
substepping and error control are covered for both infinitesimal and finite deformation
plasticity models.

1 Introduction

In recent years the parallel development of: i) advanced constitutive theories for the
mechanical behavior of geomaterials, ii) robust and accurate numerical methods for
the solution of partial differential equations, and iii) powerful computer architectures,
has led to a radical change in the analysis of geotechnical problems, notably in some
areas such as the design of deep excavations or the analysis of complex soil-structure
interaction problems where traditional design methods — based on the classical dis-
tinction between “failure” and “deformation” problems — are not able to capture the
most relevant aspects of the soil-structure system behavior.

A common and almost universal feature of the constitutive models proposed for geo-
materials — from those which have now became a standard design tool in geotechnical
practice to the ones which were mainly developed for research purposes — is the fact
that they are cast in incremental form. Rather than providing the state of stress associ-
ated to a specific state of strain, they define the evolution laws for the state variables.
Therefore, the quantitative evaluation of the mechanical effects of a given “load”, be
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it an imposed stress increment, strain increment or a combination of both, requires
the solution of an initial value problem, consisting in the integration of the constitu-
tive equation along the assigned loading path, with prescribed initial conditions. As
this task cannot be performed analytically, except in very special cases, the develop-
ment of a numerical algorithm for this purpose is a crucial part of any computational
procedure for the solution of non—linear problems in geomechanics.

More specifically, in the application of numerical methods — such as the finite Element
method — to the solution of a non-linear initial/boundary value problem, the following
general strategy is usually adopted, see [SHOS]:

1. from the original system of governing partial differential equations (PDEs), a
non-linear system of algebraic balance equations is obtained by the introduc-
tion of appropriate space and time discretizations. Such a system is typically
solved by adopting an incremental—iterative approach;

2. for any given global iteration, the discretized equilibrium equations generate in-
cremental motions, which, in turn, are used to determine the incremental strain
history by purely kinematic relationships;

3. for a given strain increment, updated values of the state variables are obtained by
integrating numerically the constitutive equations at the local level, with given
initial conditions; for their local scope, the procedures employed for this task
are typically referred to as stress—point algorithms;

4. the discrete balance equations are then checked for convergence, and if the con-
vergence criterion is not met, the iteration process is continued by returning to
step (2).

As first pointed out by Hughes [Hug84], the integration of the constitutive equation at
the local level — i.e., step (3) — represents the central problem of computational plastic-
ity, since it corresponds to the main role played by the constitutive equation in actual
computations. There are of course many other important computational ingredients in
the overall procedure, but they are particular to the type of solution strategy employed,
and involve the constitutive theory only in a limited way, if at all. Moreover, the pre-
cision with which the constitutive equations are integrated has a direct impact on the
overall accuracy of the analysis.

Since the early works on metal plasticity, summarized in [Hug84], a number of funda-
mental treatises have been published on this subject. Among them we cite the books
of Simo and Hughes [SH98], de Souza Neto et al. [dPO11] and the chapter written by
Simo [Sim98] for the Handbook of Numerical Analysis.

In this chapter, we present an overview of some of the most widely used stress—point
algorithms for the integration of classical and advanced plasticity models for soils,
reflecting our personal experience in this field. After a brief description of the no-
tation (Sect. 2), in Sect. 3 we address the main problem of computational plasticity
for the case of infinitesimal deformations, summarizing the evolution equations to be
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integrated and the different numerical procedures for their integration, separating ex-
plicit adaptive strategies with error control based on Runge—Kutta methods and the
implicit Backward—Euler algorithm, which has now become a standard in computa-
tional plasticity. The evolution equations for finite deformation multiplicative plastic-
ity and the corresponding explicit, semi—implicit and implicit integration algorithms
are presented in Sect. 4. In both Sect. 3 and 4, particular attention is paid to the defini-
tion and the computation of the consistent tangent stiffness matrix, which guarantees
the asymptotic quadratic convergence of the Newton—Raphson method when it is used
for the iterative solution of the discrete equilibrium equations.

2 Notation

In the following, all stresses and stress—related quantities are effective, unless oth-
erwise stated. The sign convention of continuum mechanics (traction and extension
positive) is adopted throughout. Both direct and index notations will be used to repre-
sent vector and tensor quantities according to convenience. In direct notation, vectors
and second—order tensors will be represented by boldface italic fonts. Boldface italic
fonts and blackboard bold fonts — such as ¢ and C° — are used to represent fourth—
order tensors, according to convenience. Following standard practice, for any two
vectors v, w € R3, the dot product is defined as: v - w := v;w;, and the dyadic
product as: [v ® w|;; := v;w;. Accordingly, for any two second—order tensors X, Y,
X Y = X;;Y; and [X ® Y;jp = X;;Y. The quantity | X[ == VX - X
denotes the Euclidean norm of the second order tensor X, unless otherwise stated.

3 Stress—point algorithms for infinitesimal plasticity

3.1 Evolution equations

The evolution equations of the theory of infinitesimal plasticity are briefly summarized
below. Let € be the strain tensor and q be the vector (of dimension 7, ) of the internal
state variables accounting for the effects of the previous loading history. Also, let:

E:={(0.q) |/ (o.q) <0} M

be the elastic domain, defined through a suitable yield function f(o,q) = 0. Taking
into account the usual additive decomposition of the strain rate tensor, €, into an elastic
(€°) and a plastic (€”) part, we have:

o =D (o) [é— &) 2
., . g

=75 377(0, q) (3)
q="7h(o,q) “)
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subject to the following Kuhn—Tucker complementarity conditions:

>0, flo,q) <0, 4f(o,q)=0 (5)

which state that plastic processes (7 > 0) can occur only for states on the yield surface,
and to the consistency condition:

i (Of L OF N _
vf—v(ao_ 0+aq q)—O (6)

requiring that the state of the material remains on the yield surface (f = 0) whenever
plastic loading occurs. Eq. (2) is the elastic constitutive equation of the material in
incremental form. The fourth-order tensor D(¢o) is the elastic tangent stiffness of
the material. Eq. (3) provides the flow rule for the plastic strain rate, defined in terms
of the plastic potential function g = g(o, ). The non—negative scalar 7 is the plastic
multiplier. The evolution of the internal variables q is provided by the hardening law
(4), in which h is a prescribed hardening function.

From the consistency condition (6) the following expression for the plastic multiplier
is obtained:

.1 Jof .,
7—Kp<aa'1’€> @
in which:
_Of .99 __of
K, = Yo D 0 +H,>0 Hy = i h ®)

Substituting the expression (7) for the plastic multiplier in egs. (3) and (4), we obtain:

o = D¢ q= HP¢ )
where:
(%) dg of

ep .__ e e e

D =D ; (D 90 ® 90 D (10a)
H(Y) af

P ._ e

H? = ; h® (80D (10b)

where 7 () is the Heaviside step function, equal to one if > 0 and zero otherwise,
and K, is provided by eq. (8);.

3.2 State update

Letl = Uf:;o [tn, tnt1] be a partition of the time interval of interest into time steps.
It is assumed that at time ¢,, € I the state of the material (o, q,,) is known at any
quadrature point in the adopted finite element discretization. Also, let:

{e;:i=0,1,...,n+1}
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be the prescribed history of € up to time ¢,,+;. The computational problem to be
addressed is the update of the state variables:

a'gzzl -0 (efﬂl; On, qn) (11)
k ~( (k
0\t —a(eiona,) (12)
for a given increment Aegﬁl = 551121 — €y, relative to the global iteration (&), through

the integration of the system of ordinary differential equations (ODEs) (2)—(5) or (9)
provided by the elastoplastic constitutive equations. Note that the evolution prob-
lem defined by eqs. (2)—(5) belongs to the category of the so—called stiff differential—
algebraic systems — see [HW91] for details — for which implicit methods are ideally
suited. In the evolution problem governed by egs. (9), the algebraic constraint posed
by eqs. (5) has been linearized by imposing the consistency condition and then re-
moved. This format is therefore best suited for the application of explicit methods.

Whenever the existence of a free energy function ¢ = 1 (€°) can be postulated, the
stress tensor is linked to the elastic strain tensor by the relation:

o) = oo () (13)

and thus can be considered a dependent quantity. As such, o can be replaced in the
set of state variables by the elastic strain tensor €°. The evolution equations (11) and
(12) can then be recast in the following format:

62(4]2 — € (egzzl; €, qn> (14)
a\th —a(eliea,) (1s)

3.3 Consistent linearization of the stress update algorithm

In a standard finite element context, the starting point for the solution of a static equi-
librium problem is the weak form of the balance of momentum equation, which, for
the problem at hand, is stated as follows. Find the unknown function u(x) such that,
for any test function (variation) n() satisfying homogeneous boundary conditions on
the appropriate part of the boundary, the following non-linear functional equation is
satisfied:

g(u,n):‘/gvsn-a'('u,)dV—/Qp’r/-de—/F77~tdA:O (16)

In the above equation, non-linearity stems from the non-linear dependence of the
stress tensor on u induced by the constitutive equation. The iterative solution via
Newton’s method of the non-linear algebraic problem resulting after the introduction
of a standard finite element discretization, requires the linearization of the non-linear
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functional ¢ with respect to the independent field w:

~\ (k) .
k k s s
Do (u,<+)1,77) [5u5L+>1] _ /Q {v n- (D)Wv (5u)§f+)1} av 17
in which: "
~ (F) Jo,,
(D ) =i (18)
ntl 0€, {4

The fourth—order tensor Dfl _31 is the so—called consistent tangent stiffness matrix to
the update procedure defined by eqs. (11) and (12) or (14) and (15), i.e., by the stress—
point algorithm, see [ST85]. This quantity heavily depends on the adopted integration
algorithm, and its accurate evaluation is crucial to achieve the quadratic convergence
when using Newton—Raphson method to solve iteratively the global discrete equilib-
rium equations.

3.4 Explicit adaptive methods

Starting from the pioneering work of Sloan [Slo87], a significant amount of work has
been devoted to the development of explicit stress—point algorithms for infinitesimal
plasticity, based on the use of Runge—Kutta methods of various order. The key point in
the application of classical methods to the solution of the differential-algebraic evo-
lution problem posed by egs. (2)—(4) and (5) is the removal of the algebraic constraint
by its linearization through the consistency condition (6), in order to obtain the system
of ODEs of egs. (9).

Due to their conditional stability, explicit integration methods have been developed in
connection with adaptive time—stepping strategies employing variable substep sizes.
Adaptive time—stepping is usually implemented in two possible ways, see [SB92b]:

a) by comparing the solutions obtained with the same time step size with two ex-
plicit methods of different order (embedded Runge—Kutta methods);

b) by comparing the solutions obtained with the same algorithm using different
step sizes (typically, a single step of size h and two consecutive steps of size
h/2).

Methods of the first group have been used in the works of Sloan and coworkers
[S1o87, SB92a, SASO1, PSS08] and Tamagnini et al. [TVCD00]. A method of the
second group based on the repeated use of the simple Forward Euler algorithm has
been adopted by Fellin, Ostermann and Mittendorfer [FO02, FMOQ9]. In the fol-
lowing, we will focus our attention on these last two works, which, differently from
the others mentioned, address the point of computing the consistent tangent stiffness
matrix as a part of the integration algorithm.
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3.4.1 Substepping, time rescaling and consistent linearization

Letl = UfLO [tn, tnt1] be a partition of the time interval of interest [to, tgy,] into time
steps of amplitude At, 11 = t,11 — t,. As the material behavior is rate-independent,
it is possible to rescale the time axis by introducing the following non—dimensional
time factor:

(t—tn) (t—tn)

r= = T €[0,1 19
(tn+1 - tn) Atn_;'_l [ ] ( )

The (unit) non—dimensional time increment can then be divided in m substeps of size:

tha1 —t “
ATpyr =Ty — Tr = }Xiiﬂk provided that: Z AT, =1 (20
" k=1

Considering that, during the time step [t,,, t,,+1] the strain rate is assumed constant,
we can write:

Ae, d L dt
6 — €n+1 €

Al ar ~ Sar ~ St @h
and thus rewrite the evolution equations (9) as:
do ep
ﬁ =D (07 q)A€n+1 = E(o-a q, A(:-n-ﬁ—l) U’T:O =0n (22a)
dq -
ar - H?(0,q)A€épt1 =n(0,q,, Aénta) Q|T=O =4q, (22b)

where the strain increment A€, 1 is to be considered a given data. As indicated by
eq. (18), the consistent tangent stiffness emerging from the linearization of the algo-
rithm employed to integrate eqs. (22) in the interval [0, 1], with the initial conditions
given in eqs. (22a)2 and (22b),, measures the changes in the updated value of o (i.e.,
0 ,,+1) for an infinitesimal change of the prescribed strain increment, that is:

s aan+1 a0'n+1
Dn+1 - ==

= 23
8€n+1 6Aen+1 ( )

where the superscript (k) has been dropped to ease the notation. By deriving egs. (22)
with respect to A€, 1 we obtain:

d oo 0¢ Oo o€ Oq 193
& (g9 \_2% 9% 24
T <8Aen+1> 90 9henr: | 9q0he, s Ohe, W
d dq B al Jdo @ dq on
a7 (8Aen+1) = 90 0hens T 0qohens Oher, P
By setting:
~  Jo ~  Oq
D= 5hern C = e @3)
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eqs. (24) provide the following evolution equations for D and G:

dD  0¢ ~ O ~

o _ Y s ep D —

= = He D+ aqG+D D|,_,=0 (26a)
dG on ~  0n ~ ~

— =_LtD+— H? =0 26b
T~ e D 9q G+ G|, (26b)

The ordinary differential equations (22) and (26), integrated over the dimensionless
time interval [0, 1] with the prescribed initial conditions, will yield, at the end of the
integration process (1" = 1), the updated values of the state variables (6,41, q,,,1)-

The final integrated value of D at T = 1 will be the tangent stiffness consistent
with the numerical integration algorithm adopted to solve the evolution problem. This
approach to the consistent linearization of the integration algorithm has been proposed
by Fellin and Ostermann [FO02].

In view of the analytical difficulties in computing the derivatives of the functions &
and m with respect to o and q for realistic constitutive models, Fellin and Ostermann
suggest to replace the RHS of eqgs. (26a) and (26b) with the following approximation,
obtained by numerical differentiation:

dD 1 - . N
dil ~ 3 {5 (U + 9Dy, q + Gk, A€pyr + 1911@1) - (an7A€n+1>} (27a)

dG 1 ~ ~ ~
djfl ~ 3 {77 (0 + 9Dy, q + G, A€y + 19Ikl> -n (U»%Aenﬂ)}

(27b)
fork=1,2,3and [ = 1, 2, 3, with the initial conditions:
Dyi|;_=0 Gl p_y =0 Vk1)=1,23 (28

In egs. (27) and (28), the quantities 1~)kl, ékl and Tkl are defined as:

~ 0
Dy:=———— Gg:= 1

T Lu=(udpe e, 29
8A6kl,n+1 3Aekl_’n+1 Kl ( k ]l)e ®e] ( )

If Voigt notation is adopted to represents second—order and fourth—order tensors, with

the following index mapping:

(z‘j)/(kl)‘ll 22 33 12 23 31
alp ‘1 2 3 4 5 6

then the quantities in eq. (29) can be interpreted as the 3-th column vectors of the
Voigt matrices D, G and I, this last being the Voigt representation of the fourth—
order identity tensor.
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3.4.2 Adaptive time integration

Let the unknowns of the evolution problem — o, q, D and G — be collected into a
single vector:

r p =T ~T ~T ~T ~T ~T7\T
y:{a' »d 7D11aD22a'"D317G117G22a"'3G31} (30)

in which the stress o and the eventual tensorial internal variables collected in g are
represented in Voigt notation as 6-dimensional vectors and the matrices D and G
are stored columnwise. Then, the ODEs of eqs. (22) and (27) can be recast in the
following standard format:

dy

o7 = fW) T € [0,1] Yo = Yo 31
in which the vector f collects the RHSs of egs. (22) and (27). Eq. (31) could be in-
tegrated by means of different adaptive explicit algorithms with error control, such as
Forward Euler with Richardson extrapolation [FO02, FMOOQ9], or various types of em-
bedded Runge—Kutta schemes of different orders [Slo87, TVC00, SASO1]. Here, we
discuss in detail the implementation of the second—order adaptive substepping scheme
based on the simple Forward Euler method coupled with Richardson extrapolation,
first proposed by Fellin and Ostermann [FOO02], for its good properties of simplicity,
robustness and accuracy.

Let [Tk, Tx+1] € [0, 1] a generic substep of size ATy 1, and let y,, the known value
of y at the beginning of the step. Using the Forward Euler method, the following first
approximation to Y, ; is obtained:

v =1y, + AT 1 f(y) (32)

A second approximation to ¥, , ; is obtained by applying the Forward Euler method
to two steps of size AT}1/2:

AT, AT, AT,
w =y, + 2’”1f(yk)+ ;Hf{ywr ;“f(yk)} (33)

both v and w are first-order approximations to y,; but a straightforward Taylor
expansion shows that:

Yni1 = 2w — v+ O(AT,,) (34)
i.e., the difference 2w — v is a second—order approximation to the local solution.

The norm:

w; — U;

EST := ||w — v lw—-v]|,,., = max (35)

max max
i=1,...,ny

Sq

with s; a suitable scaling factor, is an asymptotically correct estimate for the local
integration error of w. Setting the quantity T'OL as the user—supplied tolerance, the
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comparison between TOL and EST provides an indicator of the accuracy of the
numerical integration procedure and an estimate of the optimal substep to be used. In
particular:

a) If EST < TOL: the substep is accepted, with y,, given by eq. (34). The
next substep size can be increased according to the relation:

. /TOL
ATyro = ATy41 min {7‘1, max <7’D,O.9 EST) } (36)

b) If EST > TOL: the substep is rejected, and the integration step repeated with
a smaller substep size given by:

. [TOL
ATg1q < ATy 1 min {rhmax <T‘D, 0.9 EST) } 37

In egs. (36) and (37), the coefficient 0.9 multiplying the square root of TOL/EST is a
“safety factor” accounting from the approximation introduced in the error estimation,
while r; and rp represent the maximum increase and decrease in the step size allowed.
Typically they are setto r; = 2.0 and rp = 0.2.

3.4.3 Drift correction and other computational aspects in explicit integration

When using explicit integration algorithms, the updated state variables (o1, G} 1)
may violate the consistency condition, so that:

fer1 = f(Okt1,q511) > FTOL

with F'T'OL a prescribed error tolerance for the consistency condition. This situation,
which corresponds to a stress state o1 outside the final yield surface, is commonly
known in computational plasticity as yield surface drift. The reason for this pathology
is that, in explicit methods, the algebraic constraint imposed by eq. (5); is linearized,
and thus enforced in a weak form. The extent of this violation depends on the ac-
curacy of the integration scheme, so it could be reduced by adopting stringent error
tolerances on the adaptive substepping scheme. Nonetheless, in order to prevent error
accumulation, it is highly recommendable to implement a drift correction algorithm
at the end of each substep, particularly for complex constitutive models.

Different types of drift correction algorithms have been proposed in literature. A
detailed discussion on the advantages and drawbacks of some of the more widely
used strategies for drift correction, focusing on their application to plasticity models
developed for soils, can be found in the works of [PG85, SASO1].

In addition to drift correction, the adoption of explicit integration methods in clas-
sical plasticity — where there is a non—smooth transition between elastic and plastic
behavior along a predefined stress—path — requires particular attention for those time
integration steps which:
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a) start from an elastic state and — if elastic response is maintained for the entire
step — end outside the current yield surface;

b) start from a plastic state (on the current yield surface) and crosses the yield
surface once before ending up on a new plastic state;

c¢) start from an elastic state and end on another elastic state, crossing the yield
surface twice during the path from the initial to the final state.

Situations of type (a) are quite common, particularly when relatively large integration
steps are used. Situations of type (b) may occur in presence of relatively small elastic
domains — e.g., in models for sands with rotational hardening, where the yield surface
is a cone with a small opening. Both these issues have been addressed in [SASO1].
Situations of type (c) may occur when the yield surface is non—convex. While the
opportunity of adopting a non—convex yield surface is questionable on both theoretical
and experimental grounds, the treatment of this case has been effectively addressed by
Pedroso et al. [PSS08].

3.5 Implicit Generalized Backward Euler method

Implicit algorithms based on the concepts of operator split and closest point projection
return mapping, as discussed for example in [SH87, SG91], have been applied to
computational geomechanics in a number of works, among which we mention [BL90,
Bor91, ARS92, MWA97, JIS97].

The starting point for this approach is the exploitation of the additive structure of
the governing equations of the differential-algebraic problem eqs. (2)—(5) to split the
update processes into two consecutive steps, as detailed in the following section.

3.5.1 Operator split and product formula algorithm

The constitutive equation of infinitesimal plasticity are amenable to the elastic—plastic
operator split of the original problem of evolution, into an elastic predictor problem
and a plastic corrector problem, as shown in Tab. 1 [SH87, SH98]. Note that in Tab. 1,
exploiting the existence of a free energy function and thus of the elastic constitutive
equation (13), the elastic constitutive equation in rate—form has been replaced by the
additive split of the strain rate: € = € — €”.

Starting from this operator split, a product formula algorithm is constructed as follows.
First, the elastic predictor problem is solved and a so—called trial elastic state is ob-
tained. Then, the constraints (5) are checked for the trial state, and if they are violated,
the trial state is taken as the initial condition for the plastic corrector problem.

3.5.2 Problem 1: elastic predictor

From the physical point of view, the elastic predictor problem can be derived from
the original problem of evolution by freezing the plastic flow (i.e., setting v = 0), and
taking an incremental elastic step which ignores the constraints placed on the stress
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Global Elastic predictor  Plastic corrector
e=V*(u) € =V*(u) e=0
0 0
Evolution eqs. €° = € — Wa—g =€ €= —ﬁa—g
q=h =0 q=7h
€ (t,) = €, € (t,) = €, €° = et
=0
Initial conds. =0
q(tn) = q, q(tn) = qy, q’ =ann
(¥=0)
flo.q) <0 fle.q) <0
Constraints ¥ >0 none ¥>0
flo.q)y=0 flo.q)y=0

Table 1: Operator split of the evolution problem of infinitesimal plasticity, formulated
in terms of strain rates.

state by the yield function. The solution of the predictor stage (trial state) in terms of
elastic strains is given by the following geometric update:

e,tr
€11 = €, T €ny1 — €p (38)

As for the internal variables, since they do not change during an elastic process, the
trivial solution for their trial values is:

a0 =4, (39)

Finally, the trial state of stress is obtained from efl’fl by a simple function evaluation:

= () (40)

a-nJrl T 8€e n+1

At the end of the elastic predictor stage, the trial state is checked for consistency with
the yield locus. If:
i1 = f (0041,4,) <0

the trial state satisfies the constraints imposed by the Kuhn—Tucker conditions. The
process is then declared elastic and the trial state represents the actual final state of the
material. If, on the contrary, ffH > 0, the process is declared plastic, and consistency
is restored by solving the plastic corrector problem.
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3.5.3 Problem 2: plastic corrector

If fi*,, > 0, the trial state lies outside the yield locus, and thus violates the constraints.
Consistency is then restored by solving the plastic corrector problem, which takes
place at fixed total strain (€ = 0). Since the objective of the plastic corrector stage
is to map the trial state back to the yield surface, the algorithms performing such task
are commonly referred to as return mapping algorithms.

Typically, the plastic corrector problem is solved numerically by integrating the cor-
responding system of ODEs by an implicit Backward Euler scheme, taking the trial
state as the new initial condition:

dg

e e,tr

Ent1 = €nvy ~ A <8a)n+1 @D
Api1 = qp + Avny1hni (42)

As A7y,41 > 0, the constraints of eq. (5) reduce to:

Jnr1=f(Oni1,q,41) =0 43)

Equations (41)—(43) provide a system of 7 + n;,; non—linear algebraic equations in
the 7 + niyy unknowns €7, 4, Avp+1, and q,, 11, which can be solved iteratively by
Newton’s method, at the Gauss point level.

Let: -
zorr = {ehy aly Ay €RT (44)

be a vector containing the the unknowns of the problem and
~ T . T
Lnt1 = {eff_;l qzﬂ} so that: Tnt1 = {mn—i-l A’Yn+1}

The return mapping equations (41)—(43) require the vanishing of the following resid-
ual vector:

ot
o1 —€n 1 e — Avn1Q, g

Ry (Bnt1) = 470 0= { = Qo + @it + Avngihnga ¢ =0 (45)
fn+1 fn+1

where Q,, | = (09/00),+1. The steps required for the iterative solution of eq. (45)
via Newton’s method are outlined in Tab. 2.

A first difficulty in applying the procedure outlined in Tab. 2 is that Step 3 requires
the inversion of a (7 + Nint) X (7 4 Nint) square matrix. By observing that the last
component of the residual vector Rﬁjjl does not depend on Av, 1, the resulting
linearized system of equation can be reduced in size by one via static condensation.

However, the inversion of the resulting tangent operator in closed form can still be
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1. Initialize:

__ etr _ ot _
€41 = €,11 9n+1 = 9nt1 AYpy1 =0

2.  Check for convergence:

€(4)
n+1

1) H <TOL, - ||q+|| ¢ THEN exit, ELSE:

T

| <ToL ety

IF: ‘ n+1

9, <ToLy;

3. Find update at local iteration (j):

Gy 171
G) _ OR )
6wnj+1 - [(w) +1‘| an—i-l

4. Update state variables and plastic multiplier:
2U+D _ ()

(7)
n+1 nt1 T 5wnj+1

5. Set:j< j+1,GOTO2.

Table 2: Iterative solution of the plastic corrector problem.

ALERT Doctoral School 2021



Tamagnini & Oliynyk 207

very difficult, especially in presence of a large number of internal variables (i.e., in the
case of anisotropic hardening models). In the most difficult cases, this problem can
be solved by resorting to symbolic computation tools (as, e.g., MATHEMATICA) or by
numerical methods, as in [TCNO02].

Another classical problem in the application of the implicit Backward Euler algorithm
to complex, three—invariants plasticity models lies in the need of computing the sec-
ond gradients of the plastic potential function 9%g/do ® o and the derivatives with
respect to o and g of the hardening function h. In the most complex situations, this
task can be performed by resorting to numerical differentiation, as suggested, e.g., in
[PFRFHOO].

3.5.4 Formulation of the corrector step in principal elastic strain space

A considerable simplification in the application of the implicit Backward Euler algo-
rithm to complex plasticity models can be obtained in the case of isotropic—hardening
plasticity, by formulating the return mapping stage in principal elastic strain space. By
exploiting the spectral decomposition of the tensors @, ¢, €5, ; and eflfl, eq. (41)
transforms into:

3 3

Ay e,tr (A),tr (A)tr
E (€411 nn+1 Omn, = E (€37) g gt @
A=1 A=1

A A
At Z < aaA> " n{Y onlY, @6

in which nﬁfgl and n;‘i)l’tr are the A-th unit eigenvectors of €, ; and €}";. Then, it
follows at once that: m "
,tr
Ny =MNp iy (47)
and: 5
e,tr g
e - — Ay, _— 48
(€)ny1 = (€5 )n+1 Tnt1 (80,4 > o (43)

for A =1, 2 or 3. Note that, as the trial elastic strain is known, so are its princi-
pal directions. Therefore, the only unknown quantities to be determined remain the
three principal elastic strains (€5 )n+1, the niy internal variables q,, 1 and the plastic
multiplier A~,, 1. Introducing for convenience the following vector notation:

€5 ef’tr o1 dg/004
/6\6 = ES %\67” = Eg,tr o= 02 Q = ag/aO'Q (49)
€5 eg’tr o3 0g/003
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the return mapping problem in principal elastic strain space can be recast as follows:

&=l — AMnaQ, (502)
Qni1 = Gpr + DYnrhng (50b)
fr1 = f(Ont1,4541) =0 (50c)

The iterative solution of the return mapping equations (50) follows a scheme similar to
that in Tab. 2. The number of equations to be solved is now reduced by 3. Moreover,
only the evaluation of the (3 x 3) matrix:

0%g

VVI= 6006

(S
is now required to compute the tangent operator R /0.

3.5.5 Consistent tangent stiffness

One of the advantages of the proposed algorithm is the possibility of evaluating the
consistent tangent operators in closed form, as shown in the following.

In the global iteration process, any (infinitesimal) variation in the total strain increment
induces, by definition, an equal variation in the trial elastic strain:

de = de®™ (52)

where the subscript n 4+ 1 and the superscript (k) have been omitted to ease the no-
tation. Moreover, the return mapping equations associate to each trial elastic strain

a well defined elastic strain tensor, obtained as a result of the local iteration process.
e,tr(k)

ni1 one has:

Therefore, for an infinitesimal variation of €
de® = L de®*" (53)

On the other hand, from the hyperelastic constitutive equation, we have:

9%
do = | =———— | de® = D°de® = D°L de®"" = E de®*" 54
7 (aee®aee> ¢ ¢ ‘ ¢ o9
By virtue of the definition (18) and of the identity (52), the tensor = is the required
consistent tangent stiffness tensor. Differentiation of the return mapping equations
(45) yields:

Adx =T de*"™ — d(Ay)U (55)

where:

T I+ AvA,D° +Av A
dx = {deeT qu} A= v Y Agq (56)
-AvB,D° I,—-AvB,
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T T
T .= [I 0{] U= {QT,—hT} (57)
_0Q 9%y Q9%
AJ'_aio'_@U@@U Aq'_(?iq_@a@@q (58)
oh oh
B, =" B, =52 (59)

and I, and 0, are the identity matrix in R™»* and the zero (ni,, x 6) matrix. The

variation in the plastic multiplier d(A~) can be evaluated by enforcing the consistency
(k)

condition df,,/; = 0. Defining:
e 8f 8f T T
P :=D"— == =4 P
o W= o 1% { W } (60)

the consistency condition reads:
Vdx =0 (61)

Solving eq. (55) for dz, substituting the result in eq. (61) and solving for d(A~), the
plastic multiplier increment is obtained as:

d(Ay) = V. [ATY T de"™ (62)

V.[ATNU
From eqgs. (55) and (62) we obtain:
do = D°de® = D°T" dz

. {DGTT [Al C) ®_(1V‘41)] T} de“t (63)
V-40)

By comparing eq. (63) with (54) the expression for the consistent tangent stiffness
tensor follows:

T (64)

k
(A7) (VAT ®
n+1 = :n+

= (k) = (k) eqnT —1
D =DT" |[A™ —
! [ (V-A"'U)

n+1

Note that the consistent tangent stiffness is, in general, non symmetric, even in the
case of associative flow rule (f = g).

4 Stress—point algorithms for finite deformation
multiplicative plasticity

4.1 Evolution equations

The evolution equations of finite deformation multiplicative plasticity for isotropic
materials are briefly summarized below, see [OT21] for details. Let the deformation
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gradient F' be multiplicatively decomposed into an elastic part F'¢ and a plastic part
F?:
F =F°F" (65)

Recalling the expression for the spatial velocity gradient I = Vv = FF~' and
defining accordingly the the elastic and plastic velocity gradients as:

1°:= F F? L’ = F'Fr! I? .= FT"F' (66
it is easy to show that:
l=1°+0 (67)

i.e., the multiplicative decomposition of the deformation gradient is consistent with
an additive split of the spatial velocity gradient. From the spatial elastic and plastic
velocity gradients, I° and I”, the elastic and plastic rates of deformation and spins can
be defined as:

d° ;= sym (I°) w® := skw (%) (68)
d? :=sym (I7) w? := skw (IP) (69)

In the following, consistently with the assumption of material isotropy, we will assume
that the plastic spin w? is always equal to zero, and IP = dP, as in [Sim98].

Then let us assume that the material possesses a free energy function per unit reference
volume of the form:

Y =9(b°) = (C) = (A, X5, A5) (70)

where b° be the left elastic Cauchy—Green strain tensor, C“isthe right elastic Cauchy—
Green strain tensor, and A%, with A = 1,2, 3 are the principal elastic stretches, eigen-
values of F'°. The Kirchhoff stress tensor is linked to the elastic strains by the follow-
ing alternative hyperelastic constitutive equations:

o

oy b° T=2F_——_F° (71)

=2
T o ac"

To incorporate irreversible behavior, let us assume the existence of an elastic domain:

E:={(r.q) |f(r.q <0] (72

defined via a suitable yield function f(7, q) depending on Kirchhoff stress and a vec-
tor g (of dimension ny,¢) of scalar internal variables, accounting for the effects of the
previous loading history.

Adopting the left elastic Cauchy—Green tensor b° and the internal variables q as the
main state variables, the problem of evolution of non—associative multiplicative plas-
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ticity can be cast in the following form:

b =1b° + b7 + Z,[b°) (73)
. Jg
[
d’ = 15, (74)
€ € 3 8-9 €
Z,[b°] = —2sym (dPb°) = =27 —b (75)
or
q=7h(t,q) (76)

where %, [b°] is the Lie derivative of b°, 4 > 0 is the plastic multiplier, g(7, q) is the
plastic potential and h is the hardening function for the internal variables g. Note that
the Kirchhoff stress tensor, appearing as an argument of the yield function f and of the
plastic potential g, can be considered a derived quantity by virtue of the constitutive
equation (71);.

The yield function f and the plastic multiplier + are subjected to the Kuhn-Tucker
complementarity conditions:

=0 flr,q) <0 Yf(r.q) =0 a7

as well as to the consistency condition:

e (OF L Of )\
7f—7<a7_~r+8q'q>—0 (78)

requiring that the state of the material remains on the yield surface (f = 0) whenever
plastic loading occurs (4 > 0).

Eq. (73) shows that the rate of change of the elastic left Cauchy—green tensor is the
sum of two contributions, the second of which — the Lie derivative of b® — is associated
to the development of plastic deformations. Eq. (74) is the non—associative flow rule
for the plastic rate of deformation d?, while eq. (75) provides the link between d° and
the Lie derivative of b°. The evolution equation for the internal variables q is provided
by the non—associative hardening law (76).

Differentiating the hyperelastic constitutive equation (66)s and taking into account
that:

1—e
d=d°+dP clezFe—T(2(1>F€—1 we=w-—w’ =w

the following expression for the Jaumann rate of Kirchhoff stress is obtained:

v Of
=a’ d — dp =a° d —y— 79
T=—a ( ) a ( 787) ( )
where:
A5k = Cijrr + Tikdj1 + Tujk (80)
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and:
c$ =C¢ FeFSn FeAFf Ce —4% (81)
ijkl ABcptiat jpt'kctip ABCD 9C andCcp
Substituting eqgs. (76) and (79) in eq. (78) — after noting that
of L 9y
or  or

since, by isotropy, 7 and 0 f /0T commute — and solving for the plastic multiplier, the
following expression for + is obtained:

1 of
y = = - ed 82
v Kb<&'a > (82)
in which: o7 5 o7
> 9
K,=—-a*"~—-—-h>0 83
P ar ? or dq > (83)
The elastoplastic constitutive equation in rate—form then reads
, HC(A 0 0
¥ =a’d a®? =a° — A(fY) (aeg) ® (aef) (84)
K, or or

where a°? is the elastoplastic continuum tangent stiffness of the material and % (z)
is the Heaviside step function, equal to one if x > 0 and zero otherwise.

4.2 State update

Letl = N tn,tne1| be a partition of the time interval of interest into time steps.
n=0 s bn—+ p P
It is assumed that at time ¢,, € I the state of the material be is known at an
ns dn y
quadrature point in the adopted finite element discretization. Also, let:

{F;:i=0,1,...,n+1}

be the prescribed history of F' up to time t,41. The computational problem to be
addressed is the update of the state variables:

b = b (Flibe.a,) (85)
0\l —a (Fi).a,) (86)

for a given deformation gradient F;k_zl through the integration of the system of ODEs

(73)—(77) provided by the elastoplastic constitutive equations. Note that the evolution
problem defined by (73)—(77) belongs to the category of the so—called stiff differential-
algebraic systems due to the algebraic constraints of eqs. (77) — see [HW91] for de-
tails. At the end of the update process, the Kirchhoff stress tensor 7,11 at time ¢,,41
can be evaluated from by, , ; by means of the hyperelastic constitutive equation (71);.
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4.3 Consistent linearization of the stress update algorithm

In a standard finite element context, the starting point for the solution of a static equi-
librium problem is the weak form of the balance of momentum equation, which, for
the problem at hand, is stated as follows. Find the unknown deformation ¢,, ,; =
X + un41 such that, for any test function (variation) 1) satisfying homogeneous
boundary conditions on the appropriate part of the boundary, the following non—linear
functional equation is satisfied:

G(ni1m) =™ (@p1,m) — 9 = /BT(<Pn+1) (V) dV =42, =0 (87)

The iterative solution via Newton’s method of the non-linear algebraic problem re-
sulting after the introduction of a standard finite element discretization, requires the
linearization of the non-linear functional ¢ with respect to the independent field ¢, | |
in the direction du:

D" Q") m)[5u] = /{VS &M, viou}av

/ {ri - (Vo)™ (Vm)} v (88)

in which: _
Cijrt = CapepFaFpFrcFip (89)

and:

~ a5\
ol = <2> with S=F'7F7T C:=F'F (90
oC
n+1
In eq. (88), the fourth—order tensor & is the so—called spatial algorithmic tangent stiff-
ness tensor, obtained from the material algorithmic tangent stiffness tensor C by the
pull-back operation (89). This last quantity represents the variation of the updated
second Piola—Kirchhoff stress tensor Sifﬂl associated to the infinitesimal change of

the right Cauchy—Green deformation tensor ct* 1 induced by the infinitesimal pertur-

n+
bation of the deformation field Ju. As such, the tensor (Eik_zl is strongly dependent on
the adopted integration algorithm [ST85]. Its accurate evaluation is crucial to achieve
the quadratic convergence when using Newton—Raphson method to solve iteratively
the global discrete equilibrium equations.

4.4 IMPLEX algorithm

In finite—deformation plasticity, explicit methods have not been so widely used as
in infinitesimal plasticity. Notable exceptions are represented by the works of refs.
[SO85, RFPH97, BRB16]. More recently, Monforte et al. [MCC*19] extended the
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IMPLicit-EXplicit IMPLEX) algorithm proposed by Oliver et al. [OHCO08] to in-
crease the robustness and efficiency of classical fully—implicit return mapping algo-
rithms to finite deformations. Applications of the IMPLEX method to computational
geomechanics problems are reported in [MCC*19, MGAt21, OCT21, HS21].

The basic structure of the IMPLEX algorithm consists in a two—step solver:

1. Extrapolation step: the boundary—value problem is computed using an extrapo-
lated value of the plastic multiplier increment.

2. Correction step: the final converged state is computed at each integration point
using the displacement field obtained in Step 1. The resulting final plastic mul-
tiplier is then used for the next extrapolation step.

In a typical time step [t,,, t, + 1] € I, the extrapolation step updates the state variables
to their so—called IMPLEX values:

e
(bn+1 ) qn+1)
obtained through explicit integration of the evolution equations by assuming a constant
plastic multiplier increment:
~ Atpi1
A =—"TTA
’y’rLJr 1 A tn Tn

To obtain an explicit update for b°, we observe that eq. (66)2 provides an evolution
equation for F? in the form:

F'=T"'Fr = {Fe—l (ygf_) F} F? 1)

By adopting an explicit exponential mapping to integrate the evolution equation (91)
we have:

F . =exp {A%HFZI <§i> Fi} Fy, (92)
n

from which, replacing A+, with the known extrapolated plastic multiplier Kvn 11
we finally obtain, after some algebra:

e — d . — B T
b, 1= fni1exp {_A’Ym-l (;) }bn €Xp {—A’Yn-u (85‘) } f£+1 93)

where f,, .| = Fp 1 F,) L=1+4 Vnupn41 is the relative deformation gradient. The
details of the derivation of eq. (93) are provided, for example, in [OCT21]. Using
the elastic constitutive equation (71)1, the derived Kirchhoff stress 7,1 = T(BZ 41)
is then obtained. Analogously, from the evolution equations (76), the following IM-
PLEX values for the internal variables are obtained:

qn-{-l = qn + A\j}/n—i-lh’n (94)
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According to eq. (94), the IMPLEX internal state variables depend only on known
quantities, while BZ 41 and 7,11 depend also on the unknown displacement field at
the end of the step, u, 1. This field is determined by solving the global discretized
equilibrium equations. In solving the global equilibrium problem, the global stiffness
matrix coming from the linearization of the internal force vector can be computed us-
ing the elastic tangent stiffness tensor of eq. (81), since the plastic flow is independent
of the displacement field.

Once the extrapolation step is completed, the correction step is performed at constant
spatial configuration (i.e., constant u,,41) to determine more accurate values of the
state variables at the end of the step (b}, ,q,,.1). In the original IMPLEX method
[OCW™07] this step is carried out by implicit numerical integration of the evolution
equations. In the method proposed by [MCC™19], an explicit adaptive scheme with
substepping and error control is adopted to update the left elastic Cauchy—Green tensor
and the internal variables. For a typical substep [tx, tk+1] € [tn, tn+1] We thus have:

e dg e Jg g
bpi1 = fryiexp {A%H <a7_>k} L €XDP {A%H <a7_)k} ffﬂ 95)

and:
Qi1 = Qi + Averrhy (96)

The plastic multiplier appearing in the above equations is provided by the explicit
integration of eq. (82):

. 1 of
A :At = —=_ ~ : ¢ : A 7
V41 k+17Vk For (8‘r>k, ap Vi (Augyr) o)

where V§ (Awuy41) is the symmetric part of the spatial gradient of the displacement
increment within the substep. The final value of the plastic multiplier at the end of the
step (t = t,,4-1) is then used for the extrapolation stage of the next computational step.

4.5 Implicit Generalized Backward Euler method

Until the beginning of the ‘80, computational methods for finite deformation elasto-
plasticity relied on models based on the additive decomposition of the rate of defor-
mation tensor, see [OT21] in this volume. Therefore, they remained restricted to small
elastic strains. Early works on computational applications of finite deformation plas-
ticity models based on the multiplicative decomposition of the deformation gradient
are presented, e.g., in [AD79, SO85, Sim85]. For the case of isotropic plasticity, a
very important contribution has been given by the work of Simo [Sim92] where he
advocated the use of principal elastic logarithmic strains as primary state variables, in
connection to an hyperelastic characterization of the elastic behavior of the material,
to formulate an implicit Backward Euler elastic predictor—plastic corrector algorithm
with the same structure of the corresponding integration scheme of infinitesimal plas-
ticity. Applications of this approach to computational geomechanics are reported in
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Global Elastic predictor  Plastic corrector
f=1 fF=1 f=0
€ e e T . ag e 7 © e eT ; € . ag e
Evol.egs. b =1Ib°+b°l" —29y —=b° b =1b°+ bl b =-29y—=b
or or
q="7h q=0 q="h
b°(tn) = by, b (ta) =by, b =brY
Init. conds. (3=0)
a(tn) = q, a(tn) = q, q‘ = dyy
(9=0)
f(r.q) <0 f(r,@) <0
Constr. ¥2>0 none ¥ >0
flr.@)y =0 flr.@)y=0

Table 3: Operator split of the evolution problem of multiplicative plasticity, formu-
lated in terms of elastic deformation rates.

the works of [SM93, BT98, CAS98, SSS02, OT20]. In the remainder of this sec-
tion, we focus on this class of stress—point algorithms following closely the work of
[OT20].

4.5.1 Operator split and product formula algorithm

For the implicit numerical integration of the evolution equations (73)—(77), we pro-
ceed as in the case of infinitesimal plasticity by adopting the operator split shown in
Tab. 3, suggested by the additive structure of the evolution problem.

Again, computational strategy is to solve the elastic predictor problem first, with initial
conditions provided by (b, q,,), obtaining the so—called trial solution (b, ' ).
Then, if the constraints posed by the complementarity conditions are violated, solve
the plastic corrector problem using the trial solution as initial conditions. The attrac-
tiveness of this strategy stands in the geometric interpretation which can be given to
each Problem, as detailed below.

4.5.2 Problem 1: elastic predictor

The evolution equations of the elastic predictor problem are obtained from the original
problem by assuming that no dissipative processes take place (4 = 0) and ignoring
the constraint placed on the state variables by the yield function.

ALERT Doctoral School 2021



Tamagnini & Oliynyk 217

From a geometric point of view, during the elastic predictor stage, the update of the

current configuration from &,, to S,,4+1 takes place at fixed intermediate configuration

(modulo a rigid body rotation), with F2'\", = F”_ Thus we have:

Foni1=fo 1 Fo=F 0 F" = Fo' = f, F¢ (98)

From this last result and the (trivial) evolution equation for g of the elastic predictor
problem (see Tab. 3), the complete trial state is obtained:

123 T .
bfz—t‘rl = fn—&-lbifn-&-l q::—&-l =q, (99)

Then, the trial Kirchhoff stress is evaluated via the hyperelastic constitutive equation
(Thyas 77y, = (b))

It is worth noting that, due to its formulation in terms of kinematics, the elastic pre-
dictor problem can be solved exactly. The trial value of b at the end of the step is just
the geometric update (actually, the push—forward) of b, to the current configuration
8,41 via the relative deformation gradient.

4.5.3 Problem 2: plastic corrector

If the trial state satisfies the constraint posed by the Kuhn—Tucker conditions, i.e.:
t L e,tr t
nii-l T f (bn+17an+1) S 0

then the trial state provides the exact update of the material state sought after. Oth-
erwise, the intermediate configuration needs to be modified in order to restore the
consistency with the yield surface:

for1 = F (5415 Gni1) =0 (100)

where b;, ; and g, ; are the solution of the differential-algebraic plastic corrector

problem. Since f = 0 in this case, the plastic corrector problem is formulated on a
fixed current configuration S,, 1.

The numerical solution of the plastic corrector problem is typically obtained by adopt-
ing an implicit strategy such as the Backward Euler method. In particular, the structure
of the evolution equation for b° suggest the use of the following exponential approxi-
mation, see [Sim92]:

€ a e,tr
be ., = exp {—QA%H <af’_> } o, (101)
n+1

where A7, is the increment of the plastic multiplier associated to the plastic defor-
mations, to be determined as part of the solution.

Finally, using the Backward Euler algorithm to integrate the evolution equation for q,
we obtain:
dn+1 = q:’Lr—‘rl + Avpt1hni1 = q, + Avng1hng (102)
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In principle, the system of (6 + nj,; + 1) non—linear algebraic equations (101) and
(102) can be solved to provide the unknowns b}, |, q,,,; and A+, 1. However, as
first shown by Simo [Sim92], the solution of the plastic corrector problem can be
significantly simplified by exploiting the isotropy of the material response, as shown
in the following.

4.5.4 Plastic corrector problem in principal logarithmic elastic strains space

Due to the assumption of material isotropy, the tensor (0¢g/07T),+1 has the same
principal directions of 7 and hence of by, , ;, due to eqgs. (70) and (71);. Therefore,

the spectral decomposition of the tensors by, , , (9g/07),4+1 and bfb’fl appearing in
eq. (101) read:

3

fb-‘rl = Z ( 164,n+1)2 ngfi-)l ® ngfi-)l (1033)
A=1
<ag> = i: (8g> ni onll (103b)
87' il _A=1 67—A 1 n+1 n+1
3 2
b =3 (Ai;f;H) R @ nA (103¢)
A=1

where the quantities /\i{tr and n(4)-* denote the trial principal elastic stretches (eigen-

values of F*“') and the unit eigenvectors of b>"™, respectively, while the scalars
0g/0T4 are the derivatives of the plastic potential functions with respect to the prin-
cipal values of 7.

Rewriting eq. (101) as:

g e etr
exp {2A7n+1 (8'7'),1+1} il = bn’j.1 (104)

and incorporating the spectral decompositions (103), it easy to show that:

a) the principal directions of b}, ; coincide with the (known) principal directions
of by\':
n{) = (A=1,2,3) (105)

b) the principal values of the three tensors b, , ,, (9g/0T),,11 and b, }"; are related

by the following equations:

e 2 _ _ ag e,tr 2
( A,n+1) = exp { 2A7+1 ((?TA)H+1} ()\A’nJrl) (106)

with A=1,2,3.
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The result in eq. (106) is particularly relevant since, taking the natural logarithm of
both sides, we obtain:

dg
e,tr
EAn+1 = E4Ant1 — Dyl <67’A (107)
n+1
where:
e,tr o e,tr o
EA,n-‘rl T ln(/\A,n—i-l) Efﬁl,n-&-l = ln(/\A,n-‘rl)

Introducing the following vector notation:

et €f dg/0m

ée,tr = E;,tr ée = ES Q = 89/(97’2
eyt £§ dg/0Ts

The system of algebraic equations governing the return mapping problem formulated
in principal logarithmic elastic strains space takes the following form:

Enp =&ty — A%+1Qn+1 (108a)
qn,+1 = qn + A’Yn—&-lhn—i-l (108b)
fasr = f (0141 €ps1) =0 (108c)

This set of (3+n;j,+1) non—linear algebraic equations can be solved using Newton’s
method to obtain the updated state at the end of the step and the plastic multiplier
increment, as shown in Tab. 4.

As noted by [Sim92], the use of the exponential algorithm in connection with the
choice of formulating the plastic corrector problem in principal logarithmic elastic
strain space leads to an algebraic system of equations which are formally similar to
the Generalized Backward Euler algorithm of infinitesimal plasticity, see egs. (50).

4.5.5 Consistent tangent stiffness

By differentiating the expression for 7,41 provided by the spectral decomposition of
Tab. 4, the following expression for the spatial consistent tangent stiffness tensor € of
eq. (89) is obtained (see [Sim98]):

A =05 | s 0
9
*Z{ (BT~ )2 e
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1. Determine the trial principal elastic stretches 5" 1 and the principal eigen-

(A)tr

Wi via the spectral decomposition of bS\"

vectors 71z 1+

2. Set:

(A _ (A)tr
nn+1 - nnJrl

for A=1,2,3.
3. Solve the system of nonlinear algebraic equations:

~e,tr

R, = _éfLH +&,1— A%+1Qn+1 =0
R, :=—q, 1 + 4, + Ayngihni =0
Rf = —f (bfl+1a qn+1) =0

via Newton’s method, to obtain the updated state variables at the end of the
step.

4. Recover bj, | and 7,4, using the spectral decomposition and the hyperelastic
constitutive equation:

3
e _ e e _ e (A) (A)
bA,n+1 = €xp (QEA,n+1) bn+1 - Z bA,n+17 nn+1 & nn+1
A=1

3
T = 81/) T = E T n(A) ®n(A)
An+l = e n+l — An+1, Ty g n+1
A/ n+1 A=1

Table 4: Solution strategy for the plastic corrector problem of isotropic multiplicative
plasticity.
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where:

m? i=n @n mAB .= nW gn®B) pBA .= B g

MWB) . AB o W AB | AB o ) BA

The quantities d Ap in eq. (109), defined as:

0Ta

—_— 110
86%’“ (110)

JAB =

are the components of the (3 x 3) matrix d:=or /9&*" of tangent moduli in principal
strain space. In presence of repeated eigenvalues for b**", the third term on the RHS
of eq. (109) becomes singular. The singularity can be easily eliminated as shown in
[Ogd84], Ch. 6.

For the case at hand, the exact calculation of the matrix d is possible only if, during
the current time step, the loading process is elastic. When the plastic deformations
occur, the Kirchhoff stress tensor is a function of b;, , ; which is determined numeri-
cally via the algorithm of Tab. 4. In such conditions, the evaluation of d requires the
linearization of the integration algorithm and proceeds as follows.

In terms of principal values of Kirchhoff stresses and principal elastic logarithmic
strains, the hyperelastic constitutive equation reads:

TA = 37¢ or, in vector format T = 33{ (111)
9% np1 e
where 7 := {71, 72, 73}7. From this equation we have:
() o7\ oec NP oy [ 0ec\W
dy1= | 5z reE =D i1 | 5w (112)
e n+1 0e” n+1 0e” n+1
where: ®
<\ (F) 2.7
~ e\ (k) oT 0 ’L/)
D = == =| s—== 113
D s (aéE)nH (3&6 ® 0e* (a1
n+1
is the (3 x 3) elastic tangent stiffness matrix in principal directions. Now, let us define:
ey (K
) . "
k k ~ e(k ~ e
wﬁzll = ng)_l Kn+1 = [D 0(3><nim) O(le)} it (114)
k
A’Yr(hL)l

as the vector of unknown state variables and plastic multiplier increment, and a aux-
iliary matrix containing the elastic stiffness matrix, eq. (112)5 can be rewritten in the
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following alternative form:

(k)
~ (k) . e(k) [ Ox
d, 1=K, <8ée,u>n+1 (115)

The derivative Ox/9&“" measures the variation in the converged solution of the iter-
ative algorithm used to solve the plastic corrector problem for an infinitesimal change
in the relative displacement gradient f, ., and thus in éfL’L. This quantity can be
obtained by linearizing the plastic corrector problem equations of Tab. 4.

Let:

~e,try (K ~e ~e,tr A~
(e tr)fz-&)-l —Epy1 T En—ti-l — Avp1Q i
k).t k
millr = q, ngil =9 Gni1 T 9, +Avgiihag (116)
0 -f (bfz+1’qn+1)

be the vector of trial values for the problem unknowns and the residual vector of the
plastic corrector problem. Then, let:

ren (K k A% (k
)" +ay® (@H%R),

Kk k),tr Kk
gfz+)1 = 5”;42{ - st)l = qffl)l - A'Y&thﬁl (117)
f(k)
n+1

be the difference between mg’ﬁ’l‘f and the residual vector Rglkll of eq. (116), i.e., the
only part of the residual vector which actually depends on the problem unknowns.
Then the governing equations of the plastic corrector problem in Tab. 4 can be recast

as follows:

g (@) =2l (118)
Deriving both sides of eq. (118) with respect to £, we have:
dg (k) oz (k) Ozt (k)
(a> <8Ae,tr> = (aAe,tr> (119)
T n+1 € n+1 € n+1
Noting that:
dg (k) B oR\ B *)
-4 == =—-J (120)
oz ox ntl
n+1 n+1
tr\ (k) I
( ?B&U) - s —T (121)
€ ntl 0(nim+1><3)
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and considering that the Jacobian matrix J (k)

n41 18 non—singular if the plastic corrector
problem is well-posed, we obtain:

k
0w \W —— (" T (122)
Heer . - n+1
and, finally:
g S(k) e(k) o g (k)
dpir =K, (1), T (123)

The evaluation of the RHS of eq. (123) is relatively easy as the inverse of the Jacobian
matrix needs to be computed for the iterative solution of the local plastic corrector
problem.

References

[AD79] J. H. Argyris and J. S. Doltsinis. On the large strain inelastic analysis
in natural formulation part I: Quasistatic problems. Comp. Meth. Appl.
Mech. Engng., 20(2):213-251, 1979.

[ARS92]  H. Alawaji, K. Runesson, and S. Sture. Implicit integration in soil plas-
ticity under mixed control for drained and undrained response. Int. J.
Num. Anal. Meth. Geomech., 16:737-756, 1992.

[BL90] R.I. Borjaand S. R. Lee. Cam—clay plasticity, part I. implicit integration
of elastoplastic constitutive relations. Comp. Meth. Appl. Mech. Engng.,
78:49-72, 1990.

[Bor91] R. I. Borja. Cam—clay plasticity, part II. implicit integration of constitu-
tive equation based on a non-linear elastic stress predictor. Comp. Meth.
Appl. Mech. Engng., 88:225-240, 1991.

[BRB16] K. C. Bennett, R. A. Regueiro, and R. I. Borja. Finite strain elastoplastic-
ity considering the eshelby stress for materials undergoing plastic volume
change. International Journal of Plasticity, 77:214-245, 2016.

[BT98] R. I. Borja and C. Tamagnini. Cam-—clay plasticity, part III: Extension
of the infinitesimal model to include finite strains. Comp. Meth. Appl.
Mech. Engng., 155:73-95, 1998.

[CAS98] C. Callari, F. Auricchio, and E. Sacco. A finite-strain cam-clay model
in the framework of multiplicative elasto-plasticity. Int. J. of Plasticity,
14(12):1155-1187, 1998.

[dPO11] E. A. de Souza Neto, D. Peric, and D. R. J. Owen. Computational meth-
ods for plasticity: theory and applications. John Wiley & Sons, 2011.

[FMO09] W. Fellin, M. Mittendorfer, and A. Ostermann. Adaptive integration of
constitutive rate equations. Comp. & Geotechnics, 36(5):698-708, 2009.

ALERT Doctoral School 2021



224  Numerical implementation of elastoplastic models in the Finite Element

Method

[FOO02]

[HS21]

[Hug84]

[HW91]

[JS97]

[MCC*19]

[MGA+21]

[MWA97]

[OCT21]

[OCWT07]

[Ogd84]

[OHCO08]

W. Fellin and A. Ostermann. Consistent tangent operators for constitu-
tive rate equations. Int. J. Num. Anal. Meth. Geomech., 26(12):1213—
1233, 2002.

L. Hauser and H. F. Schweiger. Numerical study on undrained cone
penetration in structured soil using g-pfem. Comp. & Geotechnics,
133:104061, 2021.

T. J. R. Hughes. Numerical implementation of constitutive models: rate—
independent deviatoric plasticity. In S. Nemat-Nasser, R. Asaro, and
G. Hegemier, editors, Theoretical Foundations for Large Scale compu-
tations of Non Linear Material Behavior, pages 29-57, Horton, Greece,
1984. Martinus Nijhoff Publisher, Dordrecht.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems, 2nd. Ed. Springer Verlag, New
York, 1991.

B. Jeremi¢ and S. Sture. Implicit integration in elastoplastic geotechnics.
Mech. Cohesive—Frictional Materials, 2:165-183, 1997.

L. Monforte, M. O. Ciantia, J. M. Carbonell, M. Arroyo, and A. Gens. A
stable mesh—independent approach for numerical modelling of structured
soils at large strains. Comp. & Geotechnics, 116:103215, 2019.

L. Monforte, A. Gens, M. Arroyo, M. Madnica, and J. M. Carbonell. Anal-
ysis of cone penetration in brittle liquefiable soils. Comp. & Geotechnics,
134:104123, 2021.

E. J. Macari, S. Weihe, and P. Arduino. Implicit integration of elasto-
plastic constitutive models for frictional materials with highly non—linear
hardening functions. Mech. Cohesive—Frictional Materials, 2:1-29,
1997.

K. Oliynyk, M. O. Ciantia, and C. Tamagnini. A finite deformation mul-
tiplicative plasticity model with non—local hardening for bonded geoma-
terials. Comp. & Geotechnics, 137, 2021.

J. Oliver, J. C. Cante, R. Weyler, C. Gonzdlez, and J. Herndndez. Parti-
cle finite element methods in solid mechanics problems. Computational
Methods in Applied Sciences, 7:87-103, 2007.

R. Ogden. Nonlinear Elastic Deformations. Ellis Horwood, Chichester,
1984.

J. Oliver, A. E. Huespe, and J. C. Cante. An implicit/explicit inte-
gration scheme to increase computability of non-linear material and
contact/friction problems. Comp. Meth. Appl. Mech. Engng., 197(21-
24):1865-1889, 2008.

ALERT Doctoral School 2021



[OT20]

[OT21]

[PFRFHO0]

[PG85]

[PSS08]

[RFPHY97]

[SASO1]

[SB92a]

[SB92b]

[SG91]

[SH87]

[SH98]

[Sim85]

Tamagnini & Oliynyk 225

K. Oliynyk and C. Tamagnini. Finite deformation hyperplasticity theory
for crushable, cemented granular materials. Open Geomechanics, 2:1—
33, 2020.

K. Oliynyk and C. Tamagnini. Finite deformation plasticity. In C. Ta-
magnini and D. Masin, editors, Constitutive modelling of soils. ALERT
Geomaterials, 2021. This volume.

A. Perez-Foguet, A. Rodriguez-Ferran, and A. Huerta. Numerical differ-
entiation for non-trivial consistent tangent matrices: an application to the
mrs-lade model. Int. J. Num. Meth. Engng., 48:159-184, 2000.

D. M. Potts and A. Gens. A critical assessment of methods of correcting
for drift from the yield surface in elasto-plastic finite element analysis.
Int. J. Num. Anal. Meth. Geomech., 9(2):149-159, 1985.

D. M. Pedroso, D. Sheng, and S. W. Sloan. Stress update algorithm for
elastoplastic models with nonconvex yield surfaces. Int. J. Num. Meth.
Engng., 76(13):2029-2062, 2008.

A. Rodriguez-Ferran, P. Pegon, and A. Huerta. Two stress update algo-
rithms for large strains: accuracy analysis and numerical implementa-
tion. Int. J. Num. Meth. Engng., 40(23):4363—4404, 1997.

S. W. Sloan, A. J. Abbo, and D. Sheng. Refined explicit integration of
elastoplastic model with automatic error control. Engineering Computa-
tions, 18(1):121-154, 2001.

S. W. Sloan and J. R. Booker. Integration of tresca and mohr—coulomb
constitutive relations in plane strain elastoplasticity. Int. J. Num. Meth.
Engng., 33(1):163-196, 1992.

J. Stoer and R. Bulirsch. Introduction to numerical analysis, 2nd ed.
Springer Verlag, New York, 1992.

J. C. Simo and S. Govindjee. Non—linear B—stability and symmetry pre-
serving return mapping algorithms for plasticity and viscoplasticity. Inz.
J. Num. Meth. Engng., 31:151-176, 1991.

J. C. Simo and T. J. R. Hughes. General return mapping algorithms for
rate—independent plasticity. In C.S. Desai et al., editors, Constitutive
Laws for Engineering Materials, Horton, Greece, 1987. Elsevier Science
Publishing.

J. C. Simo and T. J. R. Hughes. Computational inelasticity, volume 7.
Springer Science & Business Media, 1998.

J. C. Simo. On the computational significance of the intermediate con-
figuration and hyperelastic stress relations in finite deformation elasto-
plasticity. Mechanics of Materials, 4(3-4):439-451, 1985.

ALERT Doctoral School 2021



226 Numerical implementation of elastoplastic models in the Finite Element

Method

[Sim92]

[Sim98]

[S1o87]

[SM93]

[SO85]

[SSS02]

[ST85]

[TCNO2]

[TVCO00]

[TVCDO00]

J. C. Simo. Algorithms for static and dynamic multiplicative plasticity
that preserve the classical return mapping schemes of the infinitesimal
theory. Comp. Meth. Appl. Mech. Engng., 99(1):61-112, 1992.

J.C. Simo. Numerical analysis and simulation of plasticity. Handbook of
numerical analysis, 6:183-499, 1998.

SW Sloan. Substepping schemes for the numerical integration of elasto-
plastic stress—strain relations. Int. J. Num. Meth. Engng., 24(5):893-911,
1987.

J. C. Simo and G. Meschke. A new class of algorithms for classical
plasticity extended to finite strains. application to geomaterials. Compu-
tational Mechanics, 11(4):253-278, 1993.

J. C. Simo and M. Ortiz. A unified approach to finite deformation elasto-
plastic analysis based on the use of hyperelastic constitutive equations.
Comp. Meth. Appl. Mech. Engng., 49(2):221-245, 1985.

L. Sanavia, B. A. Schrefler, and P. Steinmann. A formulation for an
unsaturated porous medium undergoing large inelastic strains. Compu-
tational Mechanics, 28(2):137-151, 2002.

J. C. Simo and R. L. Taylor. Consistent tangent operators for rate inde-
pendent elasto—plasticity. Comp. Meth. Appl. Mech. Engng., 48:101-118,
1985.

C. Tamagnini, R. Castellanza, and R. Nova. A Generalized Backward
Euler algorithm for the numerical integration of an isotropic hardening
elastoplastic model for mechanical and chemical degradation of bonded
geomaterials. Int. J. Num. Anal. Meth. Geomech., 26:963—1004, 2002.

C. Tamagnini, G. Viggiani, and R. Chambon. A review of two different
approaches to hypoplasticity. In D. Kolymbas, editor, Constitutive Mod-
elling of Granular Materials, pages 107-145. Springer, Berlin, 2000.

C. Tamagnini, G. Viggiani, R. Chambon, and J. Desrues. Evaluation of
different strategies for the integration of hypoplastic constitutive equa-
tions: Application to the CLoE model. Mech. Cohesive—Frictional Ma-
terials, 5:263-289, 2000.

ALERT Doctoral School 2021



di Prisco & Flessati 227

Macroelement modelling

Claudio di Prisco & Luca Flessati

Politecnico di Milano

In the current engineering practice, displacement-based design approaches are
progressively gaining popularity in the solution of soil structure interaction prob-
lems. In case of geo-structures, a reliable estimation of displacements can be ob-
tained by performing finite element numerical analyses in which a sufficiently so-
phisticated constitutive relationship for the soil is adopted. An alternative approach
consists in following an upscaling procedure aimed at defining a constitutive rela-
tionship between generalized stress and strain variables. In this chapter the authors
intend to discuss the concepts on which these alternative approaches (known in
literature as macroelement models) are based on.

1 Introduction

In case of soil-structure interaction (SSI) problems, the assessment of displacement
is done by performing numerical (finite element or finite difference) analyses, con-
sidering both the structure and the surrounding soil. Since the soil mechanical be-
haviour is non-linear, anholonomous and irreversible, relatively complex constitu-
tive relationships have to be employed to obtain reliable results. An alternative ap-
proach consists in lumping structure and surrounding soil into a “macroelement”
(ME), whose behaviour is governed by a constitutive law, defining a relationship
between a (low number) of generalized stress and strain variables considered repre-
sentative for the global system response.

In the last thirty years, the ME approach was successfully employed for different
soil-structure interaction problems, such as shallow foundations ([NM91], [MN97],
[GHB99], [CPD01] [GKMO08] [ST09] [PFdP16] [FdPC21]), offshore foundations
and wind turbines ([MHO01], [BHO03], [CRBO06]), buried pipelines ([CAPGNO09]),
rock boulders impacting on soil strata ([dPV06]), pile foundations ([LKET16]),
earth embankments ([dPFFG20]), tunnel cavities and faces ([dPFFL18], [dPFP20],
[dPF21]). These generalized constitutive relationships (representing a sophisticated
evolution of standard elastic springs) can be very simply introduced in standard
structural finite element codes, allowing the solution of fully coupled soil-structure
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interaction problems, without solving a fully coupled geo-structural problem and
consequently dramatically increasing computational times and costs.

In this chapter, the authors intend to put in evidence (i) the similarities of the ME
approach with the upscaling procedures commonly adopted for soil constitutive
modelling (82) and (ii) the fundamental ingredients necessary for the formulation of
ME models (83 and §4).

2  The upscaling procedure in SSI problems

As was clearly shown by “micro-experimental” and discrete element numerical test
results concerning granular media, the mechanical response of the representative
elementary volume (REV) (Figure 1a), perturbed by means of surface forces applied
on its boundaries, essentially depends on both “micro” geometry (grain dimen-
sion/shape and void spatial distribution, etc) and mechanical behaviour of grains. To
avoid the description of all the micro mechanical processes taking place in the REV,
the response of the material is usually described at the “macro” scale in terms of
average static (stresses) and kinematic (strain) variables. Under the hypothesis of
neglecting body forces (gravity), both stresses and strains are assumed to be uniform
and work conjugated. As is well-known, up to ‘80s, constitutive relationships have
been phenomenologically conceived by assuming specimens tested in the laboratory
to be coincident with REVs.

In case of SSI problems (e.g. shallow foundations as sketched in Figure 1b), per-
turbations are applied on the boundary of the domain (stress distributions or dis-
placement field) and the system response depends on both system geometry and soil
mechanical behaviour described at the macroscale: a boundary value problem has to
be solved and the constitutive relationship at the upscaled level (“mega” scale) has
to be defined in terms of forces and displacements. With respect to the REV case, in
SSI problems the state of stress/strain is not uniform in the considered spatial do-
main.

Figure 1: Upscaling procedure: a) for REVs and b) for SSI problem

With reference to Figure 1b, the generalized force applied on the B-width founda-
tion (V) and the associated displacement (v) can be defined as it follows:
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B/2 I *
o)V (x)dx
v =[P o'r(x)dx p="B2 (1)

-B/2 v
being o' (x) the stress applied to and v*(x) displacements of (in general depend-
ing on coordinate x of Figure 1b) the foundation.

3  One-dimensional case

To emphasise the theoretical bases of the approach, in this paragraph a structural
problem is first considered and then (83.1 and §3.2) geotechnical applications are
discussed.

As is well-known, the structural response of a L-long beam characterized by a
moment of inertia I, subject to a progressively increasing vertical load (V) applied in
the middle (Figure 2a) may be upscaled by employing a suitable elastic-perfectly
plastic constitutive relationship for the beam cross section (Figure 2b), defined in
terms of bending moment (M) and curvature (y), being M, the maximum bending
moment, EI the bending stiffness and E the material Young modulus. The balance
of momentum implies the external work W, = Vv (being v the displacement in the
point of application of V), to be equal to the internal work (W;). The expression for
W; changes according to the value of V applied to the beam: (i) initially, when the
response is elastic W; is associated with the elastic beam bending, (ii) subsequently
(V =1,) a plastic hinge develops in point A of Figure 2c, the response becomes
elastic plastic and W; is given by the sum of the elastic work and the plastic work
dissipated by the plastic hinge and (iii) finally, for V' = V, a second hinge develops
in point B of Figure 2d, W; becomes equal to the plastic work dissipated by the two
plastic hinges and the system collapses.

From the equality W, = W; (the analytical derivation is hereafter omitted for the
sake of brevity) the incremental generalized constitutive relationship (Figure 2e)
reads:

dv V<,

— 7 _ —_ —_ —

v ={=dv V,<V<V, )
0 V=0,

where d stands for increment, the non-dimensional generalized stress and strain
variables are defined V =V/(M,/L) and v = W/ve)Vr/(My/L), respectively,
being v, the elastic displacement for V = V; and ¥, = 16/3, whereas V; = 6 are
the non-dimensional load values corresponding to V;, and V, respectively. The em-
ployment of non-dimensional variables is particularly convenient: Equation 2 is
unique, independently on both geometry and material mechanical properties. The
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“structural hardening”, taking place for ¥, < V < V%, is due to the static redundancy
of the system.

a) b)
\"
j !
A L 4

c) d)
v=y,=16Me v=y=-Me

3L L
l Mo | Mo
A r:|\,'|0 @ ';Mo B @
~ ~ . ,
L L

Figure 2: Elastic plastic beam: a) geometry, b) M-y upscaled constitutive relation-
ship, ¢) developing of first plastic hinge, d) developing of the second plastic hinge
and e) V — v relationship

»V

3.1 Undrained response of shallow foundations on normally-
consolidated clays

Analogously to what done for elastic-plastic beams, in this section, an elastic-plastic
upscaled constitutive model [FAPC21], capable of simulating the undrained mechan-
ical behaviour of shallow foundation foundations positioned on a H-thick normally-
consolidated clay stratum behaving according to the Modified Cam Clay (MMC)
constitutive relationship, is discussed. The B-width foundation (Figure 1a), is as-
sumed to be rigid and to be loaded only by means of a uniform effective stress oy.
The vertical effective stresses at the foundation plane, hereafter named oy, are as-
sumed to be constant. A discussion on the influence of variations in a7, on the defi-
nition of generalized constitutive relationships is reported in [PFdP16]. Two non-
dimensional static/kinematic variables are introduced:

7= 7 = 2 Yimu 3)
SuB Ve SuB
being V = (o7 — a7,)B, Su the undrained strength (corresponding to a depth equal
to B/2) calculated by integrating the MCC constitutive equations under triaxial com-
pression undrained stress paths, V;;,, the undrained limit load and v, the elastic
displacement corresponding to V = Vy;,,, ,,. To calculate v,; [FAPC21] suggests to
employ an elastic solution, in which the elastic properties are evaluated at B/2 depth.
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In [FAPC21] the undrained limit load is shown to be dependent on both geometry
and material mechanical properties. By interpreting numerical finite element anal-
yses results, the following expression is proposed:

! * 1 ! *
Vlim,u = [O-fg(Nq -1+ EB]/ Ny] B, (4)

where N; and Ny are undrained MCC bearing capacity coefficients, depending on
MCC constitutive parameters (being M, x and A the slope of the critical state line,
the unloading line inclination and the virgin load line inclination, respectively), as is
shown in Figure 3.

a) b)

1r 3r
0.9+
2.5
0.8 -
3 Z
0.7+ 5L
06 F
. I ) 1.5 L . !
0 50‘5 0.8 1 1.2 0.6 0.8 1 1.2
M M

Figure 3: Variation of N; and Ny with M, k and A (adapted from [FdPC21])

Owing to the non-dimensional variable definitions, in the V — & plane, the initial
branch of the load settlement curves is independent of the geometry and soil me-
chanical properties ([FdPC21]). The initial slope is not elastic, since irreversible
strains develop beneath the foundation edge from the onset of the loading process, as
is testified by the contours of irreversible deviatoric strains of Figure 4a, correspond-
ing to point A of Figure 4b.

To reproduce the mechanical response of the system, a non-dimensional strain hard-
ening elastic-plastic constitutive relationship is adopted. The generalized strains
(v = v, where u stands for undrained) are given by the sum of a reversible/elastic
(#¢') and an irreversible/plastic (#°') part. The elastic law is defined as: ¥l =
V/KE, being K¢ the elastic undrained stiffness. For the plastic law, the failure sur-
face (F,), the yield function (f,), the plastic potential (g,) and the hardening rule
have to be defined:

Fuzv_vlim,u fu=9u=‘7—‘7u d%:au<1—7v )dﬁgl: )

Vlim,u

being ¥, the hardening variable, Vi = Viimu/(SuB) the non-dimensional limit
load, whereas a,, a non-dimensional constitutive parameter.
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Figure 4: a) Contour of irreversible deviatoric strains (only a portion of the domain
is represented) and b) non-dimensional load settlement curves (adapted from
[FdPC21]) (B=2m, o/,=20kPa, M=1, k = 0.05, 1/x =0.2, y'=10kN/m?3, H/B=5)

By employing (i) both standard flow rule and consistency conditions, (ii) the elas-
tic law and (iii) the generalized strain additivity, the constitutive relationship can be
written as:

dﬁ:(L+1V”—m-u_)dV, ©6)

l I
Kg oy Vigmu—V

that in case of 7=0 reduces to:

av _ KElay, (7)

dv ~ KEl4ay

The numerical results have been used by the authors to calculate once and for
all K&, a, and V;,,,,, (Equation 3), whereas the initial value of the hardening varia-
ble, in case of normally consolidated clays, is imposed to be nil. The comparison
between the numerical results and the constitutive law prediction is reported in Fig-
ure 4b. The use of the upscaled model substitutes the employment of a finite element
code for the evaluation of footing settlements and allows to abruptly reduce compu-
tational times and costs

3.2 Partially drained response of shallow foundations on normal-
ly-consolidated clays

In this section, the extension of the model discussed in §3.1 to partially drained
cases is presented. The model can be employed both to analyse the influence of
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loading rate on the foundation response and to estimate settlements developing after
the end of the foundation loading. The model is defined by employing non-
dimensional variables: the static and kinematic variables coincide with those adopt-
ed in the undrained case (Equation 5) and the non-dimensional time is defined as:

_ Cpat _ kE
r= B2 Cv2 = 2yw(1+v)(1-2v) ' (8)

where t stands for time, k for isotropic soil permeability, y,, for water unit weight, v
for Poisson ratio and E for the Young modulus calculated at a B/2 depth.

This model is based on the rheological scheme of Figure 5, where a spring in series
with a plastic slider (A) represent the undrained response, whereas a spring in series
with a plastic slider (B) in parallel with a viscous damper (C) represent the drained
response. The undrained elastic response, the undrained yield function and plastic
potential are the same of the model of 83.1. On the contrary, the undrained harden-
ing rule is modified as it follows:

dl, =a,(1-5-)dol' + AVy Vi = Vimu +Ba?h' . )

being V, the drained hardening variable, ﬁgl the drained plastic displacements
and B, a model parameter. Equations 11 introduces a drained-undrained coupling. In
fact, the hardening of ¥, partially inhibits the ¥, hardening. At the same time, the
consolidation process taking place in the foundation soil, associated with an increase
in effective stresses, induces (drained) settlements and an increase in undrained
strength. For this reason in Equation 11, any increment in ﬁgl induces an increment

in ‘7lim-

Undrained response
<l
c

—l

Drained response
<l
a
AN
AAAA

|
i

AL —
'
'

Figure 5: Rheological scheme

The drained elastic law is defined as: 75' = V'/KS', being 75 the elastic drained
displacements, V' the non-dimensional force acting on the drained spring and slider
(Figure 5) and K& a constitutive parameter. The yield function (f,) and the plastic
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potential (g,) are defined as: f; = g, = V' — V;. The hardening function for ¥ is
inspired to that employed to describe the characteristic curves for deep tunnel cavi-
ties and faces ([dPFFL18], [dPFP20]):

onlit) |
v, = |—L——| di), (10)

el
d Kg

being K ;”and a, two non-dimensional constitutive parameters.

For the viscous damper (C of Figure 5), the following expression is adopted:

.
U=n=2, (11)

being U the non-dimensional force acting on the damper and n a non-dimensional
constitutive parameter.

Even in this case, the 8 parameters (K&, a,,, K&', K37, aq, 1, Ba, Viim.) are cal-
culated once and for all by using hydro-mechanical coupled numerical analyses
results. As is evident from Figure 6, for all the cases considered the agreement be-
tween finite element numerical results and model predictions is very satisfactory.
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Figure 6: Validation of the generalized constitutive relationship for different loading
rate values
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4. Multi-dimensional case

The macroelement theory was originally conceived for rigid strip footings posi-
tioned on horizontal homogeneous granular material strata under inclined and eccen-
tric loads [NM91]. In this case, three generalized stress variables (the vertical load
component V, the horizontal load component H and the overturning moment M) and
the corresponding three generalized strain variables (vertical displacement v, hori-
zontal displacement u and foundation rotation 6) are considered. The stress and
strain variables are collected into three-dimensional vectors, named Q and q, respec-
tively. Under three-dimensional loading conditions, both Q and q become six-
dimensional ([GKMO08], [ST09]).

Analogously to the case presented in §3.1, an elastic-plastic strain-hardening consti-
tutive relationship is generally employed. Generalized strains are given by the sum
of a reversible/elastic (g¢') and an irreversible/plastic (gP*) part. The elastic law is
expressed as g% = €°'Q, being C¢ the elastic compliance matrix, usually assumed
to be diagonal. The three non-nil terms of €® can be calculated, for instance, by
employing the expressions reported in [G91].

The failure mechanisms developing beneath the foundation severely depend on the
applied combination of generalized stress variables. As a consequence, for the fail-
ure locus an interaction domain has to be introduced ([BT79], [GB88], [NM91],
[BGY4], [GHB99]). For the sake of brevity, hereafter only the expression proposed
in [NM91] is considered:

B
F= () + (o) + o) (1-72)" 12)

being V;;,, the limit load under vertical loads, whereas u, ¥ and S are non-
dimensional constitutive parameters. In Figure 7, the curves associated with Equa-
tion 14 are compared with the small scale laboratory experimental test results of
[NMmo1].

o,a Experimental results [NM91]

0,ax Experimental results [NM91] — Ihteraction domain

— Interaction domain

018 (30.95, =048, y=0.33) 009  (B=0.95, u=0.48, y=0.33)
. Jy B
A ’,73“ 3

0.12 "oz L £0.06 - ;
E x x o >
2 b ¢ @ ’
T p = x

0.06 - / o 0.03 -

D 1 1 1 1 0 L L 1 1
0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1
V/Viim V/Viim

Figure 7: Interaction domain proposed in [NM91]
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In [NM91] the yield locus f is homothetic with F and its size is governed by the
hardening variable V., evolving according to:

Ve

av, = (1= =) RP (dv? + adu? + yBd6P), (13)

lim

being a and y two non-dimensional constitutive parameters, whereas R”, analogous
to a,, of Equation 5, represents the initial plastic stiffness. The plastic potential g
does not coincide with f, in order to nullify vertical upward displacements when
pure sliding occurs.

In [NM91] the model parameters were calibrated on the basis of experimental test
results. More recently, an alternative approach, consisting in employing numerical
analyses (e.g. finite element or discrete element) results, has become very common.

In the last three decades, many authors have suggested different formulations, for
macroelements employed to reproduce the mechanical behaviour of shallow foot-
ings characterized by different embedment values and under cyclic loading. In case
of seismic actions anisotropic hardening rules ([CPDO01], [CPS09]) and hypoplastic
constitutive relationships [ST09] were proposed.

5 Conclusions

In this chapter, the authors presented an upscaling procedure that can be employed
for the solution of soil-structure interaction problems. This procedure consists in
lumping the structure and its surrounding soil in a unique macroelement, individuat-
ing suitable static and kinematic variables representative for the system response and
introducing a generalized constitutive relationship. By adopting this approach, once
the constitutive law is both defined and calibrated by using either experimental test
or numerical analysis results, the solution of a complex soil-structure interaction
problem becomes the integration of a constitutive relationship, with negligible com-
putational times.
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