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True triaxial experiments: experimental setup

Experimental setup

True triaxial apparatus at Laboratoire 3SR

Schematic of the apparatus

Experimental developments:
 Protocol for corrected and stress invariants controled loading paths

Enhancement of critical loading components (friction reduction, membrane preparation) and 
acquisition methods (speckle patterns, strain gauge for out of plane deformation measurement) 
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True triaxial experiments: DIC

Acquisition and correlation of optical images during the loading phase
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True triaxial experiments: isotropic sandstone
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True triaxial experiments: isotropic sandstone
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True triaxial experiments: isotropic sandstone
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True triaxial experiments: bifurcation analysis
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True triaxial experiments: bifurcation analysis

(a) initial model (b) 2 invariants model

(d) elastic parameter sensitivity(c) associated model

2 invariants model

K=15 GPa, S=9 GPa (+50%)

K= 5 GPa, S=3 GPa (-50%)
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(a) initial model (b) 2 invariants model

(d) elastic parameter sensitivity(c) associated model

K=15 GPa, S=9 GPa (+50%)

K= 5 GPa, S=3 GPa (-50%)

2 invariants model

Model comparison

deformation band angle dilatancy angle

The three invariant model provides a better fit than simplified models:
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True triaxial experiments: bifurcation analysis
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True triaxial experiments: anisotropic sandstone
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True triaxial experiments: anisotropic sandstone
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True triaxial experiments: anisotropic sandstone

σ
1

σ
1

Deformation band angle evolution
with the bedding plane angle

Stress peak evolution
with the bedding plane angle

σ
1

attraction
partial attraction
no attraction

13 ©



True triaxial experiments: anisotropic sandstone

σ
1

σ
1

Deformation band angle evolution
with the bedding plane angle

Stress peak evolution
with the bedding plane angle

σ
1

attraction
partial attraction
no attraction

10

15

20

25

30

35

40

45

60

St
re

ss
 d

ev
ia

to
r 

[k
si]

25 ksi

15 ksi

10 ksi

5 ksi
1 ksi

Green river shale [McLamore et al., 1967]

Comparable beahviour to rocks with pronouned bedding and lamination planes... but differs from typically observed 
strength anisotropy in sandstones 

50 MPa
37.5 MPa

25 MPa

12.5 MPa

5 MPa

0 MPa

0

20

40

60

80

100

120

140

160

St
re

ss
 d

ev
ia

to
r 

[M
Pa

]

St
re

ss
 d

ev
ia

to
r 

[M
Pa

]

0 MPa

Adamwiller sandstone [Gatelier, 2002]
Adamwiller sandstone [Millien, 1993]

13 ©



FEMxDEM simulations: double scale approach
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FEMxDEM simulations: concurrency and 2nd gradient model

FEM boudary value problem (2D)

...
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800 elements

first gradient 
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Homogenized DEM law at each integration point (3D)

Homogenized Cauchy stresses
Tangent operator

 1. initial state
2. deformation
3. stabilization

F
[Desrues et al, 2019]
[Guo and Zhao, 2016]
[Guo and Zhao, 2014]
[Nguyen et al, 2014]
[Nitka et al, 2011]

Numerical developments:

Random and organized distribution of elementary volumes at the integration points

True triaxial loading paths in 2D-3D to impose constant stress invariants
Damageable cohesive-frictional contact law at the DEM level 
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FEMxDEM simulations of sandstone

Preparation of numerical samples:

Three configurations of elementary volumes (EV): loose, dense and anisotropic

Z : coordination number1000 spherical particles
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periodic boundary conditions
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FEMxDEM simulations of sandstone
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FEMxDEM simulations of sandstone

Distribution of elementary volumes in bedding planes: effect of the bedding plane angle 
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FEMxDEM simulations of sandstone
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FEMxDEM simulations of sandstone

Rotation of anisotropic elementary volumes with respect to imposed principal stresses
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FEMxDEM simulations of sandstone

Rotation of anisotropic elementary volumes with respect to imposed principal stresses
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[Millien, 1993]
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bands, effect of bedding plane anisotropy, ....

Theoretical study

Bifurcation analysis for a three invariants model, showing a good agreement between 
observations and prediction of deformation band kinematic

Numerical study
Damageable cohesive-frictional contact law and loading path procedure for a double scale 
FEMxDEM model 
Numerical simulations on the effect of true triaxial loading path for  heterogeneous rocks 
and material anisotropy at different scales
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Supplementary: experimental
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Supplementary: experimental

σm= 60 MPa; θ=15o σm= 60 MPa; θ=30o σm= 60 MPa; θ=45o σm= 60 MPa; θ=60o

Deformation band cross section
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Supplementary: experimental

Deformation band profile
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Supplementary: bifurcation

Failure surface in the meridian plane 
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(a) Fσ > 0 (b) Fσ < 0

Failure surface in the octahedral plane 
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Supplementary: bifurcation
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Supplementary: bifurcation

(a) σm = 60 MPa (b) σm = 90 MPa
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Supplementary: bifurcation

(a) initial model (b) 2 invariants model

(d) elastic parameter sensitivity(c) associated model
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Supplementary: numerical
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Supplementary: numerical
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Supplementary: numerical
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Supplementary: numerical

2. Bedding plane anisotropy

1. Initially similar mechanical response
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